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An Advanced Deep Learning 
Approach for Ki-67 Stained Hotspot 
Detection and Proliferation Rate 
Scoring for Prognostic Evaluation 
of Breast Cancer
Monjoy Saha1, Chandan Chakraborty1, Indu Arun2, Rosina Ahmed2 & Sanjoy Chatterjee2

Being a non-histone protein, Ki-67 is one of the essential biomarkers for the immunohistochemical 
assessment of proliferation rate in breast cancer screening and grading. The Ki-67 signature is always 
sensitive to radiotherapy and chemotherapy. Due to random morphological, color and intensity 
variations of cell nuclei (immunopositive and immunonegative), manual/subjective assessment of 
Ki-67 scoring is error-prone and time-consuming. Hence, several machine learning approaches have 
been reported; nevertheless, none of them had worked on deep learning based hotspots detection and 
proliferation scoring. In this article, we suggest an advanced deep learning model for computerized 
recognition of candidate hotspots and subsequent proliferation rate scoring by quantifying Ki-67 
appearance in breast cancer immunohistochemical images. Unlike existing Ki-67 scoring techniques, 
our methodology uses Gamma mixture model (GMM) with Expectation-Maximization for seed point 
detection and patch selection and deep learning, comprises with decision layer, for hotspots detection 
and proliferation scoring. Experimental results provide 93% precision, 0.88% recall and 0.91% F-score 
value. The model performance has also been compared with the pathologists’ manual annotations and 
recently published articles. In future, the proposed deep learning framework will be highly reliable and 
beneficial to the junior and senior pathologists for fast and efficient Ki-67 scoring.

Automated breast cancer (BC) detection research has been increased nowadays due to the inflation of BC mortal-
ity rate worldwide1. In the GLOBOCAN 2012, BC has been reported as the second most common cancer, which 
occurs mostly among women than men2, 3. As per the Nottingham grading system, BC grading is done based 
on the scores of nuclear pleomorphism, mitotic count, and tubule formation4. Additionally, to confirm the BC 
subtypes, to distinguish normal and malignant tumor and to guide treatment decisions smoothly, immunohisto-
chemical (IHC) analysis of breast tissue is required. The most commonly used IHC markers are Ki-67, estrogen 
receptors, progesterone receptor, protein P53 and human epidermal growth factor-25.

Ki-67, non-histone protein, is one of the essential prognostic and predictive markers for BC detection. Gerdes 
et al.6, 7 reported that Ki-67 signature is exhibit only in proliferating cells and disappears in quiescent cells. 
Furthermore, the Ki-67 expression doesn’t appear in G0 cell cycle but instead appears in G1, S, G2, M cell cycle7. 
The level of Ki-67 becomes low during G1 and S cell cycle phase but increases during mitosis (exception anaphase 
and telophase). Mitotic index is considered as one of the most significant proliferation markers for BC grading 
or screening. Although it has some limitations, e.g., the rate of mitosis proliferation is non-linearly related to the 
number of mitosis in high power field8. Hence, the IHC analysis of Ki-67 using monoclonal antibody has emerged 
for the alternative assessment for the proliferation index9. The proliferation score determines the severity of BC as 
follows: low (<15%), average (16–30%) and highly (>31%) proliferate5. Patients with high Ki-67 is very sensitive 
to radiotherapy and chemotherapy10. Ki-67 expression possesses the significant predictive and prognostic value 
in BC. Personalized treatment and diagnosis facility can improve the survival rates of BC patients. Hence, the 
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identification of accurate grading (grade I, grade II and grade III) remains always a challenge for pathologists. 
Till now, the clinical decision on BC grading is mostly made manually based on both predictive and prognostic 
pathological markers. The manual assessment of Ki-67 is subjective, error-prone and dependent on the Intra and 
inter-observer ambiguities. Moreover, in the rural and urban areas with minimum or few advanced instrumenta-
tion, manual inspection of Ki-67 scoring may provide wrong results. Henceforth, automated assessment of Ki-67 
scoring is highly required. The automatic scoring will provide high throughput, more objective and reproducible 
results in comparison with the manual evaluation. The proliferation score is calculated as the ratio between total 
numbers of immunopositive nuclei and a total number of nuclei present in the image11. The immunopositive 
(brown color) and immunonegative (blue color) nuclei together called as hotspots. Figure 1 shows the Ki-67 
stained BC images according to their proliferation score and their corresponding color distribution map using 
open source ImageJ software. To date, the Ki-67 automated assessment was done mainly based on conventional 
imaging techniques. But due to the heterogeneous and massive dataset in medical imaging or biomedical applica-
tions scientists are getting interested in deep learning. Deep learning is a versatile biomedical research tool with 
numerous potential applications. P. Mamoshina et al. (2016) proposed a deep learning framework in biomedicine 
application12. Y. Xu et al. (2014) reported deep learning for medical image analysis13. This paper has been struc-
tured as an introduction, literature review, experimental setup, results & discussion and finally conclusion.

Literature review.  Many machine learning techniques have been published for Ki-67 scoring using IHC 
stained BC images. To the best of our knowledge, most of the Ki-67 scoring methods are based on conventional 
machine learning techniques. Based on the extensive literature survey, we conclude that there are no such reports 
available till date specially aimed to the deep learning approaches for considering much finer information inher-
ent in the microscopic images. Table 1 shows the characterization of different Ki-67 scoring methods.

Review on conventional techniques.  M. Abubakar et al.14 proposed a computer vision algorithm for Ki-67 scor-
ing in BC tissue microarray images. Their algorithm shows promising performance measure in comparison with 
other scoring technique. The authors achieved 90% classification accuracy with 0.64 kappa value. The automated 
quantification of Ki-67 using nasopharyngeal carcinoma has been described in P. Shi et al.15. Their algorithm 
mainly consists of smoothing, decomposition, feature extraction, K-means clustering, and quantification. They 
achieve 91.8% segmentation accuracy. F. Zhong et al. (2016) compared the visual and automated Ki-67 scoring 
on BC images16. The authors used total 155 Ki-67 immunostained slides of invasive BC. The scoring has been 
performed based on hotspots and average score. They employed correlation coefficient to analyze the consistency 
and to minimize the errors between the two techniques. Z. Swiderska et al.17 employed computer vision algorithm 
for hotspots selection from the whole slide meningioma images. The authors used color channel selection, Otsu 
thresholding, morphological filtering, feature selection and classification. The authors achieved high correlation 

Figure 1.  Ki-67 proliferation scoring by the pathologists with respect to differential color distribution: Three 
input Ki-67 stained images of breast cancer at 40× with the scores (a) = 30%; (b) = 60%; (c) = 90%; and color 
spectrum visualization of the inputs images (d–f).
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between manual and automated hotspots detection. F. Xing et al. (2014) proposed an automated machine learn-
ing algorithm for Ki-67 counting and scoring using neuroendocrine tumor images11. The proposed algorithm has 
three stages. Stage-I comprises of seed point detection, segmentation, feature extraction and cell level probability 
measurement. Stage-II consists of tumor or non-tumor cell classification, probability map generation, and feature 
extraction. Finally, stage-III provide immunopositive and negative cell classification along with Ki-67 scoring. 
This approach achieved 89% precision, 91% recall and 90% F-score. J. Konsti et al.18 reported virtual applica-
tion for Ki-67 assessment in BC. The algorithm mainly developed using ImageJ software. At first, images were 
processed using color deconvolution to separate hematoxylin and diaminobenzidine stain color channels. Then 
a mask was moved over the images to get target objects. This approach showed 87% agreement and 0.57 kappa 
value. The Ki-67 scoring using Gamma-Gaussian Mixture Model (GGMM) has not been attempted yet. Khan et 
al. (2012) proposed GMM model for mitosis identification from histopathological images19.

Review on deep learning techniques.  To the best of our knowledge, automatic Ki-67 scoring and hotspots detec-
tion using deep learning approach were not attempted yet.

The major contributions of this paper include:

•	 Development of an advanced deep learning model for Ki-67 stained hotspots detection and calculation of 
proliferation index.

•	 Inclusion of decision layer in the proposed deep learning framework.
•	 It is a value addition in terms of main quantification in the already existing established techniques for Ki-67 

scoring.

Experimental setup.  Slide preparation and image acquisition.  The slide having histological sections of 
the tissue biopsy was stained by using Ki-67 monoclonal antibody. At 40x magnification, total 450 microscopic 
images from 90 (histologically confirmed) slides were grabbed and digitally stored using Zeiss Axio Imager M2 
microscope with Axiocam ICc5 camera at constant contrast and brightness in BioMedical Imaging Informatics 
(BMI) Lab of School of Medical Science & Technology, IIT Kharagpur and Department of pathology, Tata 
Medical Center (TMC), Kolkata. The field of view (FOV) of the each image-matrix was 2048 × 1536 pixels 
(width × height). All the images contained almost 259,884 (131,053 immunopositive and 128,831 immunoneg-
ative) annotated and un-annotated nuclei. All procedures, e.g. slide preparation, image acquisition, etc. were 
performed in accordance with the institutional guidelines. The ethical statement details have been discussed in 
Ethics and consent statements.

Layers of Convolutional Network (CN).  A CN mainly consists of multiple consecutive convolution layers, 
subsampling/pooling layers, non-linear layers and fully-connected layers. Let, f is a CN and a composition of a 

Categories Year Cancer type Methodology used Results

Conventional techniques

2016 Nasopharyngeal cancer K-means clustering 91.8% Segmentation accuracy15

2015 Meningiomas and 
Oligodendrogliomas tumor

Morphology operation, thresholding, 
feature extraction and classification

The results shows the effectiveness 
of the proposed algorithm33

2014 Neuroendocrine tumor Learning based approach 89% precision, 91% recall, 90% 
F-score11

2014 Breast Cancer Otsu thresholding
High correlation observed 
between manual and automated 
procedure34

2014 Breast cancer Aperio Genie and Nuclear v9 
software Misclassification rate 5–7%35

2013 Pancreatic neuroendocrine 
tumor

Voting-Based Seed Detection, 
Repulsive Deformable Model, Two 
step classification

87.68% classification accuracy, 
88.01% sensitivity and 87.12% 
specificity36

2013 Rabbit Liver Inform 1.4 image analysis software Useful in clinical practice37

2012 Breast cancer K-means clustering T-test shows reliable proliferation 
rate38

2012 Not mentioned Watershed segmentation, Laplacian-
of-Gaussian filtering, SVM classifier

90% sensitivity at confidence level 
I, 99% sensitivity at confidence 
level VIII39

2012 Breast Cancer Slidepath Tissue IA system software
Excellent agreement between 
manual and automated 
technique40

2010 Breast cancer ImmunoRatio software 20% labeling index as a cutoff, 2.2 
hazard ratio41

2009 Meningiomas tumor
Thresholding, watershed and 
morphological operations, SVM 
classifier

The proposed method helpful for 
further research42

Deep Learning No work has been carried out for Ki-67 scoring using deep learning approaches

Table 1.  Characterization of Ki-67 scoring approaches.
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sequence of N number of layers or functions (f1, f2…fN). The mapping between input (w) and output (u) vector of 
a CN can be represented as20:

= … = . … . .− −  u f w X X X X f w X f X f X f X( ; , , , , ) ( ; ) ( ; ) ( ; ) ( ; ) (1)N N N N N1 2 3 1 1 2 2 1 1

Conventionally, fN has been assigned to perform convolution or, non-linear activation or, spatial pooling. 
Where XN denotes the bias and weight vector for the Nth layer fN. Given a set of η training data η

=w u{( , )}i i
i

( ) ( )
1, we 
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where fLOSS indicates loss function. The equation 2 can be performed using stochastic gradient descent and back-
propagation methods.

Convolution layers.  In deep learning, the convolution operation extracts different low-level (e.g. lines, edges, 
and corner) and higher-level hierarchical features from the input images. In our proposed deep learning frame-
work multiple layers are stacked in a way so that the input of hth layer will be the output of (h−1)th layer. A convo-
lutional layer usually learns convolutional filters to calculate feature map. The equation21 of feature map (FMm

h) at 
a level m will be

∑α= + ×−FM f FM G( )
(3)

m
h

m
h

j
j
h

jm
h1

In equation 3, ∈ ∑ −−j FM[0, 1]j in
h 1  represents input feature map indices and ∈ ∑ −m FM[0, 1]j out

h  denotes 
output feature map indices. Here, −FMin

h 1 and FMout
h  represent a number of input and output feature maps at hth 

level. Gjm
h  and αm

h represent biases and corresponding kernels respectively. In each convolution layer, there are two 
components which create feature maps. The first element is Local Receptive Field and the second part is shared 
weights. A feature map is the output of one filter applied to the previous layer. The each unit in a feature map looks 
for the same feature but at different positions of the input image.

Max-pooling layer.  The pooling layers have been employed to get spatial invariance by reducing the feature 
maps’ resolution. The pooling operation makes the features more robust against distortion and noise. There are 
two types of pooling mostly used in deep learning. Those are average pooling and max-pooling. In both the cases, 
the input is divided into two-dimensional spaces (non-overlapping). Based on our requirement and image char-
acteristics we have chosen max-pooling operations in our proposed framework. The advantages of this type of 
layer are the capability of downsampling the input image size and create positive invariance over the local regions. 
The max-pooling function has been calculated using the below equation22, 23.

ψΨ = × z n nmax( ( , )) (4)j i
n n

The max-pooling window can be overlapped and arbitrary size. Here ψ is the input image, z denotes window 
function and n × n = 71 × 71 is the input patch size.

Rectified Linear Unit.  In deep learning, Rectified Linear Units (ReLUs) have been used as an activation function 
and as a gradient descent vector. It is defined by the below equation24, 25

=q r r( ) max(0, ) (5)

where q denotes model’s output function with an input r. The size of input and output of this layer is same. The 
ReLU enhances the performance of the network without disturbing receptive fields and increases nonlinearity of 
the decision function. ReLU trains the CN much faster than the other existing non-linear functions (e.g., sigmoid, 
hyperbolic tangent and absolute of hyperbolic tangent).

Fully Connected (FC) Layer.  The FC layer is often used as a final layer of a CN in a classification problem. This layer 
mathematically sums a weighting of features of a previous layer. It works like a classifier. This layer is not spatially 
located and serves as a simple vector. In the proposed model, FC layer height and width of each blob is set to 1.

Dropout Layer.  Dropout is a regularization technique which is mostly used for reducing overfitting and preventing 
complex-co-adaptions on training data. Due to this layer, the learned weights of nodes become more insensitive to 
the weights of the other nodes. This layer helps to increase the accuracy of the model by switching off the unneces-
sary nodes in the existing network. The dropout neurons do not contribute in the backpropagation and forward pass.

Decision Layer.  An additional decision layer comprises of decision trees, has been introduced in the proposed 
deep learning framework. As per our knowledge, the concept of decision layer in deep learning framework has 
not been used so far. The inclusion of decision layer increases the performance of the proposed model. In our 
proposed method we used decision trees inspired by P. Kontschieder et al.26. The proposed decision layer consists 
of decision nodes and prediction nodes. The decision layer algorithm is a recursive algorithm and implemented 
in C++27. The column of the blob data table has been split based on information gain or least entropy.
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Let, the input and finite output spaces are denoted by X and Y respectively. In the decision tree, decision nodes 
are also called internal nodes of the tree and indexed by D. Similarly, prediction nodes are called terminal nodes 
and indicated by P. Each decision node 0 ∈ D assigned a decision function . Θ →f X( ; ): [0, 1]d . Each projection 
node p ∈ P possesses probability distribution πp over Y. When a sample x ∈ X reaches a decision node d it will send 
to the right or left subtree based on the output of Θf x( ; )d . On decision trees fd are binary, and the routine is deter-
ministic. The final prediction result for sample x from tree T with decision notes parametrized by Θ is denoted by

∑π π µ| Θ = |Θ∈P y x x[ , , ] ( ) (6)T p P py p

Here, πpy and π = (πp)p ∈ P represents the probability of a sample reaching leaf p on class y and routine func-
tion indicated by µ Θx( )p . When x ∈ X, µ∑ Θ =x( ) 1p p .

In decision nodes decision function works based on stochastic routine and is defined as

σΘ = Θf x f x( ; ) ( ( ; )) (7)d r

Here σ(x) is a sigmoid function and defined as σ =
+ −x( )

e
1

(1 )x . The . Θ →f X( ; ):r  is a real-valued func-
tion. An ensemble of decision trees are called decision forest and are denoted by

= …F T T T{ , , , } (8)z1 2

The learning of decision trees along with decision nodes and prediction nodes have been done using CAFFE 
stochastic gradient descent approach. The pictorial representation of decision layer connections in CAFFE has 
been shown in Fig. 2.

Patch selection.  Patch selection is a very much essential part of the proposed methodology. The overall patch 
selection work flow diagram has been shown in Fig. 3. Due to variations of nuclei size, shape and the localiza-
tion of nuclei, image patches may vary. In the case of overlapping nuclei, it is very complicated to crop a patch 
which will only contain a single nucleus (immunopositive or immunonegative). Henceforth, we have detected 
seed point using Gamma mixture model (GMM) with Expectation-Maximization algorithm. The algorithm is an 
iterative method and used to find maximum posterior or maximum likelihood. The iteration alternates between 
performing an expectation (E) and maximization (M) for each parameter.

Let I is an image I = (I1, I2, I3, …, IQ) where Q represents a number of pixels and IQ denotes gray-level intensity 
of a pixel. To infer a configuration of positive labels L, K = (K1, K2, K3, … KQ) where KQ ∈ L L = {0, 1}. Now as per 
MAP criteria the labeling satisfies:

= Θ⁎K Y I K Y Karg max{ ( , ) ( )}
(9)k

Here, Y(K) is a Gibbs distribution. In the Expectation-Maximization algorithm the equation 9 can be written as

= Θ +
∈

⁎K U I K U Karg max{ ( , ) ( )}
(10)K k

Here, U denotes urinary potential or likelihood energy and denoted by

∑
µ
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As per the hypothesis, we are assuming that the segmented region’s intensity will follow a Gaussian distribu-
tion with parameters σxi = (μxi, σxi). This hypothesis is unable to model real-life objects. So for complex distribu-
tion GMM is the best choice for the engineers. A GMM with c components is represented by below equations28:

σ µ σ µ σ= …{ w w( , , ), , ( , , ) (12)i i i i i c i c i c,1 ,1 ,1 , , ,

The Gaussian distribution with parameters can be written as

α
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Comparing the equation 12 with equation 13, we get the weighted probability as follows

∑α µ σ= =G z w G z( ; ) ( ; , ) (14)mix i c
h

i c i c i c1 , , ,

For a color RGB image the pixel intensity is a 3-dimensional vector. The parameters of GMM now becomes28

∑ ∑α µ µ= …w w( , , ) ( , , ) (15)xi i i i i c i c i c,1 ,1 ,1 , , ,

Comparing equation 15 with equation 11, we will get the likelihood Energy Equation as below
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The seed points of immunopositive and immunonegative nuclei have been denoted as red and yellow color 
respectively. Finally, each patch of size 71 × 71 have been cropped using centroid points of each selected seed 
points, and lastly, patches have been feed into our proposed deep learning framework.

Proposed Deep Learning Model (DLM).  The proposed DLM has been developed using CAFFE deep 
learning framework, and CUDA enabled parallel computing platform29. The architectural details of the proposed 
DLM have been shown in Table 2. The proposed model includes one decision layer, two fully connected layers, 
four max-pooling layers, five convolution layers and six ReLUs. The decision layer has been added after fifth con-
volutional layer. ReLU has been employed after each convolutional layer to fasten the computing time. Dropout 
layer has been inserted after first FC layer to avoid the over-fitting. After the rigorous experiment, it was found 
that dropout ratio = 0.5 is provided the best result in this dataset. The workflow diagram of the proposed DLM 
has been illustrated in Fig. 4. Our proposed model learns from the labeled data.

Figure 2.  Shows pictorial representation of decision layer connections in CAFFE.

Figure 3.  Illustrates the flow diagram of the patch detection from original images.
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Parameter initialization.  The numbers of training and validation samples were considered as 70% and 30% 
respectively out of 450 images. The training and validation batch size were set to 128. The testing interval and 
maximum iteration were assigned to 5000 and 450,000 respectively. The other important parameters include 
learning rate (=0.01), weight decay (=0.005) and momentum (=0.85). The detailed source code of the model and 
parameter initialization files has been included as supplementary documents.

Ethics and consent statements.  Ethical approval has been taken from the TMC, Kolkata (ref. no. EC/
GOVT/07/14; dated August 11, 2014) and Indian Institute of Technology, Kharagpur (ref. IIT/SRIC/SAO/2015; 
dated July 23, 2015) to conduct this research work. The patient consent forms have been signed by the patient and 
their close relatives. The slides were prepared and maintained by TMC, Kolkata. All procedures, e.g. slide prepa-
ration, image acquisition, etc. were performed in accordance with the institutional policies.

Results and Discussion
In this portion, we assess the efficacy of our proposed deep learning framework. We randomly divided the image 
patch dataset into five subsets (5-fold cross validation); each subset includes 20% of the total data. It should 
be noted that during training phase each time we performed patch selection, model learning and classification 
using the four subsets. Finally, the selected patches and trained model were used to assess the performance of the 
left-out testing sub-dataset. Five-fold cross validation results have been shown in Table 3. Furthermore, perfor-
mance based on various combinations of training and testing dataset has been indicated in Table 4. The seed point 
selection and object detection algorithms have been developed using MATLAB and Python tools on a machine 
with AMD Opteron processor 128 GB RAM, NVIDIA Titan X pascal GPU. The proposed cascaded framework 
achieved almost 0.974 training accuracy and 0.0945 loss.

Quantitative evaluation.  The quantitative assessment results have been shown in Table 5. Figure 5 illustrates 
the regression curve (R2 = 0.9991) between automatic and manual hotspots detection. The graph indicates that the 
model generated immunopositive and immunonegative nuclei count provides almost exact results in comparison 
to the pathologists’ count. The model is evaluated using precision (Pr), recall (Re) and F-score as below30:

=
+

×Pr (%) True positive
True positive False negative

100
(17)

Layer Type Maps Neurons Filter size

0 Input Image 3 71 × 71 —

1 Conv-1 90 70 × 70 2 × 2

2 MP-1 90 35 × 35 2 × 2

3 Conv-2 180 32 × 32 4 × 4

4 MP-2 180 16 × 16 2 × 2

5 Conv-3 360 14 × 14 3 × 3

6 MP-3 360 7 × 7 2 × 2

7 Conv-4 720 6 × 6 2 × 2

8 MP-4 720 3 × 3 2 × 2

9 Conv-5 1440 2 × 2 2 × 2

10 Decision layer — 720 1 × 1

11 FC-1 — 100 1 × 1

12 FC-2 — 2 1 × 1

Table 2.  Proposed deep learning approach.

Figure 4.  Shows the flow diagram of the proposed deep learning model.
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=
+

×Re (%) True positive
True positive False positive

100
(18)

= ×




×
+



 ×F (%) 2 Pr Re

Pr Re
100

(19)

Our proposed model achieved 93% precision, 88% recall and 91% F-score value. We also added confusion matrix 
for better understanding the results. Figure 6 shows precision and recall curve across 5-fold cross-validation.

Qualitative evaluation.  The first, second, third, fourth and fifth convolution layer feature maps of immu-
nopositive and immunonegative nuclei patches have been displayed in Fig. 7. The feature maps generated by 
using various kernels in convolution layers decodes the signature of the expression level of color content of brown 
(for immunopositive) and blue (for immunonegative) nuclei. In this context, Fig. 7 has been revised by present-
ing two immunopositive and immunonegative images. It can be observed that the ki-67 expression is different 
with respect to filters for immunopositive and immunonegative nuclei. Basically from the feature maps, we can 
assume a nucleus is immunopositive or, not. But for the confirmation, we have to classify the image. Due to a clear 

Cross-Validation Pr Re F-score

1st 0.930 0.881 0.910

2nd 0.927 0.875 0.910

3rd 0.926 0.879 0.920

4th 0.930 0.881 0.900

5th 0.931 0.880 0.910

Average 0.930 0.880 0.910

Table 3.  5-fold cross-validation.

Training 
images (%)

Testing 
images (%) Pr Re F-score

0 100 0.909 0.777 0.838

25 75 0.925 0.877 0.901

50 50 0.929 0.880 0.904

75 25 0.950 0.882 0.914

100 0 0.971 0.893 0.930

Table 4.  Performance based on various combinations of training and testing dataset.

Confusion Matrix Pr Re F-score

17028 2277
0.93 0.88 0.91

1287 15840

Table 5.  Quantitative performance measures for Ki-67 scoring.

Figure 5.  Regression curve between automated and manual hotspots count.
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visualization of feature maps, only a few feature maps in each layer have been displayed. The qualitative and hot-
spots detection results have been shown in Figs 8 and 9 respectively. Hence, we can conclude that our proposed 
methodology is performing better than the existing ones.

Computational time.  Computation time is one of the most vital factors of machine learning. For this rea-
son, we have always tried to keep the patch size as small as possible. The small patch size decreases the compu-
tation time and increases the detection performance. The model took almost 5 days (24 × 5 = 120 hours) for 
training and, on average, takes 1.33 seconds (in GPU) and 1.64 seconds (in CPU) to detect the hotspots (immu-
nopositive and immunonegative nuclei). In comparison, the method in N. Khan et al.31 requires an average of 
7 seconds only to segment a color image. Overall, the proposed method is much more efficient than the existing 
Ki-67 scoring methods.

Automated Ki-67 proliferation scoring (APS).  The automated Ki-67 proliferation scoring has been cal-
culated using the below equation32

=
+

×APS TIP
TIP TIN

(%) 100
(20)

here, the TIP = total number of immunopositive nuclei and the TIN = total number of immunonegative nuclei. 
Table 6 shows the overall proliferation score based on two pathologists and our automated technique. In this 
table reference range shows the standard proliferated category and their ranges, which are already gold standard 
in pathology. We compared the proliferation score of both the pathologists’ with the proposed technique. It is 
observed that in both the cases error rate is negligible. More specifically, in the less proliferated category error rate 
is 0.06%, average proliferated category error rate is 0.01% and highly proliferated category error rate is 0%. It can 

Figure 6.  Shows precision and recall curve.

Figure 7.  Visualization of feature maps of various convolution layers.



www.nature.com/scientificreports/

1 0Scientific Reports | 7: 3213  | DOI:10.1038/s41598-017-03405-5

be observed that the proposed deep learning framework provides consistent and efficient results as evident from 
the similar performance.

The training performance graph has been shown in Fig. 10. After 297,000 iterations the accuracy and loss 
graph become saturated. Hence we have only shown the graph up to 297,000 iterations. Figure 11 illustrates the 
ROC curve and the area under the curve (AUC) is 91.

Comparison with the existing methods.  From the exhaustive literature review, it is evident that the 
quantification and proliferation rate scoring of Ki-67 stained BC or other cancer images using deep learning 
approach has not been attempted so far. Moreover, there have few limitations, e.g., nonstandard dataset, conven-
tional imaging approach, etc. for which we cannot directly measure the performances of our proposed method 
with the existing methodologies. Based on some technical understanding of image similarities, we compared the 
qualitative and quantitative performances with the two recently published articles15, 31 on Ki-67 scoring in Table 7. 
Furthermore, we measured the efficiency of our proposed framework with other conventional methods. Table 8 
shows the comparison of performance measures with various combinations, e.g. proposed method but without 
decision layer, GMM and random forest but without deep network, GMM plus SVM but without deep network, 
replacing the decision layer with additional FC layer and the proposed methodology. From the Table 8 it is obvi-
ous that proposed method including decision layer provides better performance in terms of precision, recall and 
F-sore value in comparison with the other techniques. Henceforth, the proposed methodology is far better than 
the existing methods.

Figure 8.  Ki-67 detection results by using the proposed algorithm.

Reference range26 Pathologists MPS (%) APS (%)

Less proliferate 
(<15%)

Expert-1 12.87 13.00

Expert-2 13.01 13.00

Average 12.94 13.00

Average proliferate 
(16–30%)

Expert-1 27.29 27.99

Expert-2 28.00 27.99

Average 27.64 27.99

Highly proliferate 
(>31%)

Expert-1 90.00 90.00

Expert-2 90.00 90.00

Average 90.00 90.00

Table 6.  Overall proliferation score. ‘MPS’: Manual Proliferation Score.
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Figure 9.  Overall detection of hotspots in breast cancer IHC images at different proliferation levels.

Comparison 
parameters P. Shi et al.15 N. Khan et al.31

Proposed 
Methodology

Image type Human nasopharyngeal 
carcinoma Xenografts Neuroendocrine tumor Breast cancer

Sample size 100 images 57 images 450 images

Image size 2040 × 1536 10 × 5 K 2048 × 1536

Image Magnification 40x 40x 40x

Methodology used

Conventional techniques 
(smoothing, color 
channel decomposition, 
local feature extraction, 
K-means, watershed 
segmentation)

Conventional technique 
(Perceptual clustering)

Deep Learning 
integrated with 
decision layer

Accuracy (%) 91.8 94.60 97

Computation time 
(sec) 1.7 7 1.33 in GPU and 

1.64 in CPU

CPU or GPU used CPU CPU CPU and GPU 
both

Error rate 0.82 Not mentioned 0.41

Table 7.  Comparison with the existing methods.
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Conclusion
In this manuscript, our contribution is twofold, (i) development of an efficient deep learning model comprises of 
decision layer for automated detection of hotspots, and (ii) development of an automatic proliferation rate scoring 
technique of Ki-67 positively stained BC images. The proposed deep learning model is capable of computing the 
scoring index with any IHC image, provided that immunopositive nuclei will manifest as brown color and immu-
nonegative nuclei will show as blue color. The proposed framework starts with a seed point detection using GMM 
which makes the algorithm more robust. This step substantially eliminates unnecessary background objects. Our 
proposed deep learning model considers both, the pathologist’s information as well as spatial similarity while 
detecting hotspots. Our quantitative and qualitative evaluation results showed the better performance of our 
proposed model. The model provides higher learning accuracy and performance scores as measured by precision, 
recall and F-score, in comparison with the existing conventional techniques for Ki-67 scoring. The model perfor-
mance has also been compared with the pathologists’ manual annotations. Prospectively, this model will be highly 
beneficial to the pathologists for fast and efficient Ki-67 scoring from breast IHC (cancer) images.
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