
1Scientific Reports | 7: 3247  | DOI:10.1038/s41598-017-03268-w

www.nature.com/scientificreports

Discovering overlapped protein 
complexes from weighted PPI 
networks by removing inter-module 
hubs
A. M. A. Maddi1,3 & Ch. Eslahchi2,3

Detecting known protein complexes and predicting undiscovered protein complexes from protein-
protein interaction (PPI) networks help us to understand principles of cell organization and its 
functions. Nevertheless, the discovery of protein complexes based on experiment still needs to be 
explored. Therefore, computational methods are useful approaches to overcome the experimental 
limitations. Nevertheless, extraction of protein complexes from PPI network is often nontrivial. 
Two major constraints are large amount of noise and ignorance of occurrence time of different 
interactions in PPI network. In this paper, an efficient algorithm, Inter Module Hub Removal Clustering 
(IMHRC), is developed based on inter-module hub removal in the weighted PPI network which can 
detect overlapped complexes. By removing some of the inter-module hubs and module hubs, IMHRC 
eliminates high amount of noise in dataset and implicitly considers different occurrence time of the PPI 
in network. The performance of the IMHRC was evaluated on several benchmark datasets and results 
were compared with some of the state-of-the-art models. The protein complexes discovered with 
the IMHRC method show significantly better agreement with the real complexes than other current 
methods. Our algorithm provides an accurate and scalable method for detecting and predicting protein 
complexes from PPI networks.

Many biological functions, in living organisms are accomplished by proteins. In fact, proteins are the smallest 
operating units in cells whose cell organization and functions comprehension depends on their behavior. A pro-
tein rarely operates stand-aloan. In other words, proteins operate in groups which are called complex1. A complex 
is made up of proteins that are all physically connected at the same time. It is notable that a protein complex 
should not be mistaken by a functional module. A functional module is defined by high density of interactions 
within a group of proteins, where a group is said to have high density when the amount of intergroup interactions 
are more than intragroup ones. An approach to study these crucial molecules is recognition of different com-
plexes. We know that, a single cell of a simple organism consists of thousands of proteins, so there are millions 
of potential complexes related to them. Although available accurate experimental methods can determine the 
authenticity of proposed complexes, the mentioned experimental processes are not possible and reasonable, due 
to the extreme number of these candidate complexes2. It seems that computational approaches can be a suitable 
alternative for detecting these complexes3. Extracting protein complexes from protein interaction networks is 
one of these computational approaches. In recent decades, many powerful experimental methods have been pro-
posed to extract a large amount of protein-protein interactions (PPIs)4. Tandem Affinity Purification with mass 
spectrometry (TAP-MS)5, Yeast-Two-Hybrid (Y2H)6, Co-immunoprecipitation (Co-IP) and Protein-Fragment 
Complementation Assay (PCA)7 are examples of these high-throughput techniques. This collection of PPIs is 
usually known as PPI network. PPI networks can be modeled as an undirected graph, where nodes denote pro-
teins and edges represent interactions between these proteins. In such networks, complexes are considered as 
dense subgraphs because it is reasonable to assume that the number of inner interactions between members of 
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one complex is usually more than the number of outer interactions of its members8, 9. By making such an assump-
tion, the problem of detecting protein complexes changes to the traditional graph clustering problem.

We know that the existence of several limitation in experimental methods causes considerable noise (false 
positive and false negative) in the production process of PPI networks8. Although, there is not any certain solu-
tion for reducing the noise, some suggestions have been made by some methods. For example, Chua et al.10 and 
Brun et al.11 have proposed two algorithms which use FS-weights12 and CD-distance respectively. In addition, 
some of proteins are multifunctional and simultaneously serve in more than one complex. Therefore complexes 
may have overlap13. It is worth mentioning that not all of the protein-protein interactions have the same reliability 
and time of occurrence14. The reliability of an interaction is often shown by the weight of corresponding edge in 
PPI networks15 while the time is often ignored. Clustering methods should be capable of handling noise, weights 
and occurrence times of interactions in PPI network.

Due to the variety of available complex detection algorithms, there is no categorization that covers all types of 
complex detection methods. The primary idea and also type of information which are used in the algorithms, are 
usually the main axis to classify them. Hence, all available complex detection algorithms can be divided into two 
main categories. The first category consists of all algorithms that don’t use any biological information except PPI 
networks. The second category covers the algorithms that use various kinds of biological information in addition 
to PPI networks. This information is used for making better decisions. In both categories, all algorithms are differ-
ent types of graph clustering algorithms. The algorithms in the first category are classified into five main groups16, 

17. (1) Local neighborhood Density search (LD); in which every cluster is initialized with a single node or a group 
of nodes which construct a dense subgraph. In every step of the algorithm, one or more nodes can be joined to 
a cluster or to be discarded. The possibility of proposing overlapped clusters is one of the advantages of meth-
ods which use this strategy. For example, MCODE18 and ClusterONE13 belong to this category. (2) Cost-based 
Local search (CL); the methods in this category decompose the graph into some parts in every step. This graph 
decomposition is led by a cost function for accessing to a better partitioning. Such methods are often unable to 
produce overlapped clusters, which is an significant disadvantage of methods in this category19. The importance 
of producing overlapped clusters is due to the large amount of proteins that belong to several protein complexes 
simultaneously20. The core of RNSC algorithm (without the filtering step) is a famous example of such methods21. 
(3) Flow Simulation (FS); the main idea of the methods of this category is the behavior of a fluid in canals and 
spread of information on a network. The MCL4 and RRW22 methods are the best examples for this category. 
They use random walk theorem for implementing their approach. (4) Clique finding methods (CF); algorithms 
in this category, predict clusters by merging, mixing or deleting the different types of cliques or k-cores. CMC8 
and CFinder19 are samples of this category. (5) Other traditional graph clustering methods; there are often a few 
methods which don’t have any prominent idea. These methods are unique in their characteristics. Therefore, 
these algorithms are put in a separate category. AP is an example of this category23. Its idea is the same as the 
popular k-center clustering algorithm which is implemented on weighted graph instead of multi-dimensional 
vector space23. It is also possible to classify algorithms in the second category based on considerable diversity of 
the types of biological information which is used by them24. We only focused on the first category of these algo-
rithms for two main reasons. First, our knowledge and technology is not sufficient for extracting all biological 
information so, our perspective of biological rules is limited and incomplete. Hence, the significant existing noise 
and information defects may cause deviation and bias in the extracted biological information and the algorithm’s 
results. Second, an improvement on the algorithms of the first category can improve the results of algorithms in 
the second category automatically.

Complex detection methods which are using PPI networks, have a limited accuracy. The large amount of 
noise (false positive and false negative interactions) are responsible for this fault. Previously, biologists generally 
had concurred that the amount of connections between vertices in a PPI network are closely related to the their 
biological importance, hence hubs were more likely to be lethal genes25, whereas later it was found that this cor-
relation might not be completely true26. On the other hand, Han et al. have proposed a binary hub classification 
which divided hubs into two groups, ‘party hubs’ and ‘date hubs’27. Date hub refers to a group of vertices that 
have many connections with other vertices but in different times. This group of vertices emerges in the form of 
hubs, when we have a static snapshot of all the occurred interactions, as PPI networks. While party hubs are high 
degree vertices which appear as global connectors in the PPI networks28. Similarly Liu et al. classified hubs into 
two types, ‘module hubs’ and ‘inter-module hubs’14. Based on this classification the hubs in a module are recog-
nized as module hubs and the hubs which connect modules to each other are considered as inter-module hubs. 
Comparing these two classifications, it seems that inter-module hubs are date hubs and module hubs are party 
hubs. As a result, module hubs are important biological hubs in which their presence is crucial in clusters, while 
inter-module hubs are unessential or even fake hubs and if necessary, they can be ignored. The more in-depth 
analysis has been provided by Batada et al.28, 29.

Thus, probably by eliminating inter-module hubs not only do we have a better-separated network with less 
noise28, but also we consider different occurrence time for protein interactions indirectly. Considering the hubs 
has recently received much attention. For example Liu et al. and Yong et al. have considered the biological proper-
ties of hubs and have tried to detect protein complexes by removing all hubs in network30, 31. Since these methods 
are classified as the second category, so we were not able to compare their methods with the methods in the first 
category.

Here we propose a new protein complex detection method from PPI networks which is classified as the first 
category ‘LD’. The main idea of this method has been based on eliminating noise in networks via removing hubs. 
In this approach, some of the hubs were removed at the beginning stage. This group of hubs included both mod-
ule hubs and inter-module hubs. In fact, our study show that many high degree hubs are inter-module hubs in the 
PPI networks which are denser while these hubs change to module hubs in the case of sparser networks. Then a 
greedy growth process were used for creating primary clusters from different single nodes. After that, some of the 
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eliminated hubs were added to the primary clusters based on the density of PPI network and modularity concept. 
This concept helped us to add module hubs to appropriate primary clusters and filter the inter-module hubs. 
Final clusters were presented by merging highly overlapped primary clusters and filtering the sparse clusters. The 
experimental results demonstrate that our algorithm (IMHRC) outperforms other protein complex detection 
methods, especially ClusterONE algorithm, that is a state-of-the-art method32.

Results
Before presenting the results of our study, we have discussed datasets, evaluation metrics and Gold Standards 
which were used to assess the results of complex detection algorithms. Then the results of the methods are 
presented.

Evaluation metrics.  Comparing the outputs of complex detection algorithms with a predefined gold stand-
ard set is one of the common ways to assess their performance. Existing significant amount of overlap between 
real complexes in the gold standard sets and also between predicted complexes, cause the difficulty in comparison 
methods. On the other hand, it is possible to match a real complex with more than one predicted complex and 
vice versa. In addition, the matching between predicted complexes and real complexes is often partial. So we 
need to use some standard criteria in order to calculate the amount of matching between the gold standard and 
predicted complexes.

One of the common criteria in literature is the geometric accuracy (Acc) which has been introduced by Brohee 
and van Helden33. It is the geometric mean of clustering-wise sensitivity (Sn) and clustering-wise positive predic-
tive value (PPV). Given n complexes in the gold standard as references and m predicted complexes, let tij denote 
the number of common proteins between reference complex i and predicted complex j and also let Ni denote the 
number of proteins in the reference complex i. Sn, PPV, and Acc are defined as followed:
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Sn measures the fraction of proteins in the reference complexes that is detected by predicted complexes. Since 
the availability of a giant component can increase the amount of Sn, PPV was used. In fact, protein aggregation 
in one predicted complex inflates Sn while putting every protein into to the correct predicted complexes which is 
the same as reference complexes, can maximize the PPV. So accuracy criterion (Acc) was used for balancing the 
two measures. It should be noted that using Acc cannot turn them into a perfect criterion for evaluating complex 
detection algorithms. Assume that there is a perfect complex detection algorithm whose output is the same as 
reference complex sets. Sn gets the maximum value on this algorithm. But this is not true about the PPV. As a 
matter of fact, because of the overlapping property, there are some proteins which belong to more than one pre-
dicted complex. So the numerator of PPV is always smaller than its denominator. It means that although overlap 
property is one of the intrinsic properties of complexes, the PPV criterion would not be maximized when overlap 
exists and this is an obstacle.

Nepusz et al. used the Fraction and MMR criterion to overcome this issue13. If P is denoted the set of predicted 
clusters and C is denoted the set of gold standard complexes, the fraction criterion is defined as following:

ω= ∈ ∃ ∈ ≥N c c C p P O p c{ , , ( , ) } (4)c

=Fraction N
C (5)

c

As mentioned later, O p c( , ) which is called as the matching score, calculates the extent of matching between a 
reference complex c and a predicted complex p. So these criteria show the fraction of gold standard complexes 
which are matched by at least one predicted cluster. The threshold ω was set to 0.25. By choosing 0.25 for ω, it is 
guaranteed that at least half of the proteins in a matched gold standard cluster is distinguished by at least half of 
the proteins in a matched predicted cluster. To evaluate MMR, a bipartite weighted graph was constructed which 
one of its parts associated to the reference complexes and another associated to the predicted complexes. The 
matching score between every member of one part with each member of another part was calculated by the equa-
tion (12) and was considered as a weighted edge in the graph, if its value was greater than 0.2. By running a max-
imum weighted bipartite graph matching algorithm, we obtained a one-to-one mapping between members of two 
groups with the maximal match. The value of MMR criterion is equal to the normalized maximal match which is 
total weight of selected edges, divided by the number of the reference complexes. Nepusz et al. have proposed sum 
of the Accuracy, MMR and Fraction criterions for comparing the performance of the complex detection algo-
rithms13. They showed ClusterONE dominates other complex detection methods, and introduced ClusterONE as 
a state-of-the-art method. In addition, recently Feng et al. have introduced ClusterONE as the state-of-the-art 
complex detection method and have proposed a new supervised learning method that has achieved a better 
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performance than ClusterONE32. Since in the learning step of this algorithm biological information are used, we 
can put this algorithm in the second category. So we compared our experimental results with ClusterONE and 
other best complex detection methods in the first category.

Gold Standard set.  For evaluating result of the methods, two gold standards were used as benchmarks. 
These gold standards include the recent version of the MIPS catalog of protein complexes and the Gene Ontology 
based protein complex annotations from SGD. The MIPS catalog has a hierarchical structure, so the complexes 
may be composed of several subcomplexes which are available at most in five hierarchy levels deep13. We extracted 
all complexes from all MIPS categories which consist of at least three and at most 100 proteins. It should be 
mentioned that the MIPS category 550 was excluded, because of all its complexes is predicted by computational 
methods. Also, we used Saccharomyces Genome Database (SGD) as another source for extracting the second 
gold standard set. SGD includes Gene Ontology (GO) annotations for all yeast (Saccharomyces cerevisiae) pro-
teins. These GO terms provide biological information which can be used for producing reference complexes. This 
process has been introduced in refs 13 and 22. Therefore, we used this approach for creating SGD gold standard 
set which included the reference complexes of at least three and at most 100 protein. In this experiments, the 
threshold for matching between a predicted complex and a reference complex was considered as 0.25 based on 
equation (12).

Datasets.  In our assessment four experimental yeast PPI datasets were used which include Gavin1, Collins15, 
Krogan Core and Krogan Extended34. All these datasets are weighted. Weights express the reliability of each 
interaction which is a value between zero to one. The weights in the Gavin dataset are Socio-affinity index, which 
measures affinity between proteins. This criterion calculates how many times pairs of proteins are observed 
together as preys, or a bait and a prey in the data set and then computes their log-odds35. All PPIs in the Gavin 
data set have socio-affinity index larger than five1. All chosen PPIs in the Collins data set were selected based on 
their purification enrichment score which contains the top 9074 interactions, as suggested in the original paper15. 
In these experiments, we also used two different versions of Krogan dataset. All PPIs in the first version which are 
referred to as Krogan Core, have weights larger than 0.273, while all PPIs in the second version which are referred 
to as Krogan Extended, have weights larger than 0.101. Generally, all settings and parameters in every dataset 
were set based on what the original papers have proposed. Moreover, we decided to eliminate self-interactions 
and isolated proteins from all datasets. Other properties of these networks are shown in Table 1.

Evaluation.  To assess the robustness of IMHRC against other complex detection algorithms, we selected 
seven of the best algorithms in this topic. In this paper, we tried to have a comprehensive comparison of all the 
state-of-the-art complex detection methods which not only have been introduced in the last decade but also their 
source codes or binary execution files is accessible. Furthermore, these groups of methods only use topologi-
cal information and don’t use any biological information except PPI networks. These algorithms include: AP23, 
CFinder19, CMC8, MCL4, ClusterONE13, Core of RNSC21 and RRW22. Parameters of all these methods was set to 
the values that have recommended by their authors or by Nepusz et al. in ref. 13. In fact, Nepusz et al. have calcu-
lated the best setting for every algorithm on each datasets. In evaluation, the best setting for IMHRC algorithm 
was used too.

Determination of β and γ.  For implementing the idea of removal and putting the hubs back, we used the 
parameters β and γ. In order to specify the values of β and γ, we calculated the results of IMHRC for each β and γ 
in the range of γ≤ β ≤ .0 , 0 2 by considering the change 0.001 of these values in each step. The resulting surfaces 
are shown in Figs 1 and 2 and Supplementary Figures 1 to 6.

We investigated for the values of β and γ for which performance obtain is the best. Table 2 shows the values 
of β and γ on the all datasets. The experimental results demonstrate that the best value of β and γ depend to the 
density of datasets and type of gold standards. It seems that, high values for β and low values for γ are appropriate 
when the network is dense, while for sparser network, low values should be specified for both of them.

Performance.  Table 3 shows the values and settings of all methods. Tables 4 and 5 show the details and the 
overall performance of the methods based on Accuracy (Acc), Fraction (Frac) and Maximum Matching Ratio 
(MMR). Variety in the number of real complexes in different datasets is interesting. A real complex was remained 
in the gold standard set with respect to a dataset, if at least half of its proteins belonged to that dataset. The size 
of gold standards in Tables 4 and 5 clearly show that krogan datasets are more comprehensive than Collins and 
Gavin datasets. While the numbers of proteins and interactions in the datasets show that the Gavin and Collins 
datasets are denser than the other two (Table 1).

Similarly, the number of predicted complexes often were increased when methods were implemented on 
sparser datasets. This process was more evident about CMC, IMHRC, Cluster ONE and MCL respectively. 

Dataset
Release 
year #Proteins #Interactions Density

Collins 2007 1622 9074 0.007

Gavin 2006 1855 7669 0.004

Krogan Core 2006 2708 7123 0.002

Krogan Extended 2006 3672 14317 0.002

Table 1.  Details of four PPI Network datasets used in the experiments.
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However, this was not true about CFinder. In contrast, it did not seem any specific patterns for increasing the 
number of matched clusters from denser datasets to sparser datasets, except in Cluster ONE and IMHRC. In 
fact, Cluster ONE and IMHRC were the only two methods whose matched predicted clusters increased when the 
number of predicted clusters increased. In addition, the number of matched predicted clusters which were intro-
duced by IMHRC was always more than other methods. The Fraction criterion clearly shows which methods are 

Figure 1.  Performance of IMHRC for the different values of β and γ on the Collins dataset and the SGD gold 
standard. The β and γ axes indicate the number of hubs that have been removed and put back, respectively and 
T axis specifies the performance of method. (a) The back view of surface is shown in this figure. (b) The front 
view of surface is shown in this figure.

Figure 2.  Performance of IMHRC for the different values of β and γ on the Gavin dataset and the SGD gold 
standard. The β and γ axes indicate the number of hubs that have been removed and put back, respectively and 
T axis specifies the performance of method. (a) The back view of surface is shown in this figure. (b) The front 
view of surface is shown in this figure.

Dataset

SGD MIPS

Performance β γ Performance β γ

Collins 2.096 0.098 0.036 1.689 0.0 0.0

Gavin 2.017 0.042 0.011 1.604 0.01 0.008

Krogan Core 1.832 0.004 0.001 1.456 0.002 0.001

Krogan Extended 1.671 0.015 0.008 1.289 0.001 0.0

Table 2.  The threshold of β and γ in IMHRC on all datasets.



www.nature.com/scientificreports/

6Scientific Reports | 7: 3247  | DOI:10.1038/s41598-017-03268-w

more powerful in recognizing real complexes. Based on Tables 4 and 5, IMHRC, Cluster ONE and CMC have the 
first, second and third best performance on the Fraction criterion respectively.

It is notable that the number of the matched clusters in Tables 4 and 5 is the cardinality of a maximal 
one-to-one matching between real complexes and predicted clusters based on MMR criterion. Fraction calculates 
how many real complexes are recognized by at least one of the predicted clusters of a method. So considering the 
quantity of matched clusters is stricter than the value of Fraction criterion. Size and quality of predicted clusters 
are other important issues that were measured by Acc and MMR. It is obvious that a predicted cluster is more 
valuable if the number of its common proteins with the proteins of real complexes is high. The Sn criterion cal-
culates the amount of matching. As it is evident in Tables 4 and 5, CFinder, ClusterONE, IMHRC, and MCL have 
the highest Sn value. But we know that if a method produces a giant component between its predicted clusters, 
the value of Sn is not completely trustable. The results in Tables 4 and 5 show CFinder and somewhat ClusterONE 
have such a behavior. As mentioned previously, using PPV criterion is a way for resolving this defect. A significant 
difference between the value of Sn and PPV for CFinder is a proof of this claim. Hence, we had to use Acc for 
comparing the performance of methods. The results showed that ClusterONE, IMHRC, and MCL are the first, 
second and third best algorithms in the terms of Acc respectively. MMR was the last criterion for comparing 
the performance of methods. This criterion clearly indicated how much a method could detect real complexes 
based on both quality and quantity. Again Tables 4 and 5 clearly represent IMHRC, CMC, and ClusterONE as the 
first, second and third best methods in the terms of MMR criterion. So these algorithms have more accuracy to 
distinguish and fit predicted clusters with real complexes. For example, we investigated one of the real complexes 
in the MIPS, based on the Krogan Extended dataset whose proteins are: APC5, CDC23, CDC26, CDC27, APC1, 
APC4, APC9, APC2, CDC16, DOC1 and APC11. The matching score 0.909, 0.736, 0.699, 0.649, 0.556, 0.545, 
0.545 and 0.545 was achieved by IMHRC, CFinder, MCL, ClusterONE, AP, RRW, RNSC and CMC algorithms 
respectively. Figure 3 depicts the clusters obtained by these algorithms which are matched with the real complex. 

Algorithm Version Parameter

SGD MIPS

Collins Gavin
Krogan 
Core

Krogan 
Extended Collins Gavin

Krogan 
Core

Krogan 
Extended

AP Unknown(10 Sep 
2007) Preference (P) 0.4 −0.6 0.35 0.3 −0.9 −0.15 0.35 0.4

CFinder

k-clique size(k) 3 4 3 4 3 4 3 3

Lower link weight threshold(w) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.0.6 upper link weight threshold(W) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Maximum time of clique searching(t) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

CMC 2

Overlap threshold(w) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Merge threshold(m) 0.5 0.5 0.4 0.3 0.5 0.5 0.4 0.5

Minimum degree ratio(c) 1 1 1 1 1 1 1 1

Minimum size of clusters(s) 3 3 3 3 3 3 3 3

MCL 14–137 Inflation(I) 4.6 4.7 2.0 2.6 4.9 3.2 2.3 2.3

ClusterONE 1.1 Default — — — — — — — —

RNSC Unknown(20 
Apr 2010)

Shuffling diversification length(d) 9 9 3 9 5 9 9 9

Diversification frequency(D) 50 10 20 50 50 20 20 20

Number of experiments(e) 3 3 3 10 3 3 3 3

Naive stopping tolerance(n) 50 20 50 50 10 20 10 20

Scaled stopping tolerance(N) 5 15 5 1 5 5 5 1

Tabu length(t) 100 100 50 50 100 100 10 50

Tabu tolerance(T) 1 1 1 1 1 5 3 1

RRW Unknown(1 Sep 
2014)

Restart probability(r) 0.5 0.6 0.5 0.5 0.5 0.6 0.5 0.5

Overlap threshold(overlap) 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.2

Early cutoff(lambda) 0.5 0.6 0.6 0.7 0.5 0.6 0.6 0.7

Minimum cluster size(min) 3 3 3 3 3 3 3 3

Maximum cluster size(max) 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000

IMHRC 1.0

Minimum density of clusters(min-
density) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Minimum size of cluster(min-size) 3 3 3 3 3 3 3 3

Maximum size of cluster(max-size) 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000

Hub retrieving threshold(black-list)(γ) 0.036 0.011 0.001 0.008 0.001 0.008 0.001 0.0

Hub removing threshold (black-list)(β) 0.098 0.042 0.004 0.015 0.004 0.01 0.002 0.001

Overlap threshold(max-overlap) 0.59 0.88 0.82 0.81 0.53 0.86 0.80 0.81

Growing penalty(growth-penalty) 2 2.2 3.3 2.3 2.1 4.1 2.6 2.1

Hub retrieving penalty(back-penalty) 3.6 0.8 2 2 0.1 2.5 2.1 2

Table 3.  The applied clustering algorithms’ settings in different datasets.
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Finally as Figs 4 and 5 demonstrate, IMHRC dominates all other methods on all datasets except in one case. 
Actually, the performance of IMHRC is lower than clusterONE, when MIPS and Collins are gold standard and 
dataset respectively.

Discussion
Protein complexes are fundamental operating units in cells. Therefore, understanding the characteristics and 
behavior of cells depend on analyzing proteins and their complexes. Many computational methods have been 
proposed to detect protein complexes from PPI networks.

In this paper, we propose a new complex detection algorithm which recognizes real complexes from PPI net-
works by removing inter-module hubs. Removing hubs are one of the fundamental parts of this algorithm. In fact, 
we observed that the existing noise in PPI networks and different time of protein interactions are two basic chal-
lenges for detecting real complexes from PPI networks. Our survey show removing and putting some part of hubs 
back can be a good alternative for overcoming these two problems. Actually, module hubs are fundamental units 
in the structure of complexes and perform many tasks such as “RNA metabolic process”, or “nuclear organization 
and biogenesis”. Therefore, the presence of them in the complexes is required, but the roles of inter-module hubs 
are less important in the duty of complexes. In other words, inter-module hubs have mediator roles such as “signal 
transduction”14.Our study show that many of the high degree nodes in dense PPI networks are inter-module hubs 
while these nodes are module hubs in sparse PPI networks. This is in agreement with the researches on hubs by 
Han et al.27 and the results of Liu et al. on the DIP dataset which is really a sparse network14.

We also created a powerful mechanism which is capable of considering the weights of protein interactions and 
overcoming the overlap property of complexes. For assessing the effect of removing hubs and robustness of our 
mechanism, we performed detailed evaluation. We compared our method with seven state-of-the-art techniques 
on four popular datasets. The results showed that not only did our method not only have the highest number 

Gold 
Standards Dataset Algorithm #complexes #clusters #matches

Minimum 
Size of 
Complexes

Maximum 
Size of 
Complexes

Minimum 
Size of 
clusters

Maximum 
Size of 
clusters Fraction sensitivity PPV Acc MMR Total

SGD

Collins

AP

137

202 93

3 32

3 27 0.839 0.783 0.660 0.719 0.502 2.060

Cfinder 114 68 3 358 0.613 0.858 0.490 0.648 0.396 1.657

CMC 327 94 3 68 0.810 0.770 0.612 0.687 0.522 2.019

MCL 181 90 3 78 0.839 0.799 0.654 0.723 0.494 2.056

ClusterONE 208 91 3 111 0.810 0.847 0.635 0.734 0.507 2.051

RNSC 163 91 3 69 0.810 0.758 0.667 0.711 0.506 2.027

RRW 186 89 3 25 0.766 0.690 0.675 0.682 0.487 1.935

IMHRC 193 95 3 45 0.839 0.814 0.663 0.734 0.511 2.096

Gavin

AP

130

305 89

3 29

3 26 0.808 0.694 0.659 0.676 0.423 1.907

Cfinder 137 67 4 93 0.615 0.817 0.543 0.666 0.356 1.637

CMC 856 98 3 24 0.800 0.675 0.586 0.629 0.515 1.944

MCL 253 85 3 36 0.754 0.698 0.676 0.687 0.431 1.871

ClusterONE 240 89 3 29 0.792 0.792 0.623 0.702 0.465 1.960

RNSC 224 77 3 35 0.738 0.738 0.660 0.698 0.429 1.865

RRW 235 84 3 34 0.754 0.672 0.693 0.682 0.466 1.902

IMHRC 259 100 3 23 0.815 0.784 0.584 0.677 0.523 2.017

Krogan 
Core

AP

167

354 93

3 41

3 24 0.593 0.531 0.600 0.564 0.337 1.494

Cfinder 115 57 3 667 0.413 0.679 0.357 0.493 0.230 1.136

CMC 853 101 3 22 0.659 0.588 0.610 0.599 0.402 1.659

MCL 367 96 3 49 0.641 0.687 0.590 0.637 0.344 1.621

ClusterONE 600 110 3 54 0.683 0.733 0.618 0.673 0.399 1.755

RNSC 261 92 3 22 0.647 0.561 0.638 0.598 0.370 1.615

RRW 261 91 3 15 0.605 0.488 0.671 0.572 0.360 1.537

IMHRC 680 119 3 30 0.725 0.723 0.595 0.656 0.451 1.832

Krogan 
Extended

AP

189

377 96

3 49

3 25 0.545 0.491 0.587 0.537 0.293 1.375

Cfinder 88 45 4 425 0.265 0.551 0.401 0.470 0.145 0.879

CMC 2461 111 3 24 0.619 0.575 0.569 0.572 0.364 1.555

MCL 517 91 3 47 0.492 0.585 0.604 0.594 0.244 1.330

ClusterONE 972 111 3 81 0.577 0.670 0.632 0.651 0.323 1.550

RNSC 305 83 3 23 0.508 0.511 0.633 0.569 0.286 1.362

RRW 231 92 3 15 0.534 0.439 0.656 0.536 0.312 1.383

IMHRC 1060 122 3 33 0.640 0.654 0.623 0.638 0.392 1.671

Table 4.  Experimental results and performance comparison of all methods used in this paper on the SGD gold 
standard. The bold values show the best results in comparison with other methods.
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of matches in all cases, but also the quality of these matches were better than the other methods. Therefore, our 
method can predict real complexes with more accuracy and precision.

The evaluation in our comparison was based on three common criteria which have been used in literature. But 
it seems that there are still some defects in these criteria that prevent us from a flawless assessment. The effect of 
a giant component and the number of predicted complexes are samples of imperfections. Therefore, one of our 
future works will be designing a mixture of criteria with fewer defects. In addition, we will try to redesign our 
complex detection mechanisms for detecting real complexes with more accuracy and precision.

Application.  For accessing a rigorous analysis, we performed an assessment for other algorithms the same as 
IMHRC algorithm. For this purpose, we removed β percent of vertices of network according to step 1 of IMHRC 
Algorithm section. Next, we run all algorithms on new network. After that, we put γ percent of eliminated hubs 
back according to the repairing phase of step 3 of IMHRC Algorithm section. Because the calculations were too 
long, we run them upon one gold standard – SGD – and two datasets that one is denser – Collins – and the other 
one is sparser – Krogan Core -. So we were able of understanding how removing and putting hubs back affect the 
performance. The results are depicted in Figs 1 and 2 and Supplementary Figures 1 to 20.

As shown by Figs 1 and 2 and Supplementary Figures 1 to 20, this idea can improve performance of all the 
algorithms except CFinder on the Collins dataset. We can partition results into three groups. The first group 
includes the algorithms that have significant improvement. The algorithms in the second group, have satisfactory 
improvement and all algorithms with partial improvement are placed in the third group. According to this classi-
fication, we placed IMHRC, ClusterONE, RNSC on the Collins dataset and MCL, CFinder on the Krogan Core, in 
the first group when the SGD was used as gold standard. The second group included IMHRC on the Gavin dataset 
and AP, CMC, RRW on the Collins dataset and also AP, RNSC, CMC, RRW on the Krogan Core dataset when the 

Gold 
Standards Dataset Algorithm #complexes #clusters #matches

Minimum 
Size of 
Complexes

Maximum 
Size of 
Complexes

Minimum 
Size of 
clusters

Maximum 
Size of 
clusters Fraction sensitivity PPV Acc MMR Total

MIPS

Collins

AP

127

196 72

3 74

3 29 0.756 0.537 0.475 0.505 0.341 1.602

Cfinder 114 54 3 358 0.575 0.679 0.360 0.494 0.281 1.350

CMC 327 71 3 68 0.732 0.560 0.494 0.526 0.347 1.605

MCL 183 73 3 71 0.740 0.598 0.465 0.527 0.353 1.620

ClusterONE 208 73 3 111 0.787 0.660 0.461 0.552 0.355 1.694

RNSC 160 67 3 71 0.740 0.564 0.463 0.511 0.330 1.581

RRW 186 66 3 25 0.724 0.487 0.464 0.475 0.333 1.533

IMHRC 188 74 3 73 0.764 0.647 0.462 0.547 0.355 1.688

Gavin

AP

122

305 66

3 77

3 26 0.705 0.460 0.473 0.466 0.305 1.476

Cfinder 137 53 4 93 0.582 0.599 0.397 0.488 0.251 1.320

CMC 856 71 3 24 0.770 0.455 0.451 0.453 0.332 1.555

MCL 253 66 3 40 0.705 0.520 0.472 0.495 0.298 1.499

ClusterONE 240 68 3 29 0.730 0.541 0.445 0.491 0.332 1.552

RNSC 232 61 3 34 0.648 0.501 0.461 0.481 0.299 1.427

RRW 235 62 3 34 0.705 0.470 0.472 0.471 0.318 1.494

IMHRC 293 73 3 30 0.754 0.537 0.436 0.484 0.360 1.604

Krogan 
Core

AP

143

354 61

3 70

3 24 0.538 0.372 0.396 0.384 0.229 1.152

Cfinder 115 36 3 667 0.357 0.542 0.241 0.361 0.142 0.860

CMC 853 63 3 22 0.559 0.403 0.392 0.397 0.238 1.195

MCL 376 68 3 39 0.601 0.463 0.409 0.435 0.247 1.283

ClusterONE 600 76 3 54 0.657 0.516 0.385 0.446 0.272 1.375

RNSC 204 53 3 21 0.503 0.365 0.427 0.395 0.209 1.108

RRW 261 59 3 15 0.503 0.315 0.424 0.365 0.216 1.085

IMHRC 628 80 3 30 0.650 0.507 0.404 0.453 0.302 1.456

Krogan 
Extended

AP

162

321 60

3 78

3 23 0.432 0.329 0.392 0.359 0.190 0.982

Cfinder 121 27 3 1312 0.216 0.624 0.155 0.311 0.095 0.622

CMC 2565 72 3 22 0.537 0.372 0.369 0.370 0.226 1.133

MCL 483 63 3 60 0.438 0.421 0.393 0.406 0.180 1.025

ClusterONE 972 79 3 81 0.525 0.471 0.374 0.420 0.235 1.180

RNSC 284 60 3 22 0.488 0.349 0.421 0.383 0.200 1.070

RRW 231 60 3 15 0.475 0.297 0.424 0.355 0.194 1.024

IMHRC 1041 90 3 34 0.556 0.453 0.395 0.423 0.290 1.289

Table 5.  Experimental results and performance comparison of all methods used in this paper on the MIPS gold 
standard. The bold values show the best results in comparison with other methods.
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SGD was used as gold standard. Finally, all remained cases were placed in the third part. The results of IMHRC 
show that the improvement is partial when MIPS is the gold standard. Analyzing the results based on SGD gold 
standard shows that, MCL, CMC and RRW on the Collins Dataset have the best performance when we remove a 
lot of hubs and don’t put them back. Whereas, MCL, CFinder and RRW on the Krogan Core dataset have the best 
performance when we removed a lot of hubs and put them back. Nevertheless, IMHRC, ClusterONE and RNSC 
on the Collins dataset have the best performance when almost half of the eliminated hubs would be put back. In 
some cases, we need to eliminate a few hubs for accessing the best performance. For example, AP and RNSC on 
the Krogan Core dataset are two cases to name. For these cases, we also need to put eliminated hubs back. But it 
didn’t need to do for IMHRC on the Gavin, AP on the Collins, and CMC on the Krogan Core. Table 6 shows the 
performances of all algorithms after removing and putting hubs back.

Methods
Terminologies.  As mentioned, mathematically, a PPI network is modeled as an undirected weighted graph 

=G V E W( , , ) where V is a set of nodes, = ∈{ }E e i j V: ,ij  is a set of edges and → +W E:  is a function that 

Figure 3.  In this figure, we show results of all clustering methods on detection of a real complex based on the 
Krogan Extended dataset. The yellow nodes denote real complex and the blue nodes are others proteins. In 
addition, the halos represent results of algorithms. (a) The red halo shows the result of IMHRC. (b) The red and 
blue halos show the result of MCL and ClusterONE respectively. (c) The blue halo shows the results of RRW, 
RNSC and CMC. (d) The yellow and violet halos show the result of CFinder and AP respectively.

Figure 4.  Modules obtained by different methods. Comparison of the total performance of all methods used in 
the evaluation on all datasets and using the SGD gold standard.
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assigns a weight (a positive value between 0 and 1) to every edge in the graph, in a way that nodes denote the 
proteins, edges denote interactions between proteins and the weights denote credibility of interactions. In this 
model, every =C V E W( , , )k k k k  where ⊆V Vk , ⊆E Ek , ⊆W Wk  shows kth cluster or subgraph which is distin-
guished by a graph clustering algorithm. For any protein v ∈V , = ∈N v a va E( ) { } is a set of neighbors of v and 

=deg v N v( ) ( )  is the degree of v. Let w i j( , ) indicates the weight of eij and =A a[ ]ij  indicate adjacency weighted 
matrix of G which is defined by:

=





∈a w i j if i j E
otherwise

( , ), ( , )
0, (6)ij

Also, the weighted degree of node i is defined by as:

∑=
∈

deg i a( )
(7)

w
j N i

ij
( )

We defined the weighted degree of a predicted cluster Ck as:

= +deg C deg C deg C( ) ( ) ( ) (8)w k w
in

k w
out

k

In which deg C( )w
in

k  and deg C( )w
out

k  are inner weighted degree and outer weighted degree of cluster Ck respec-
tively and defined as follows:

∑ ∑
∩

=
∈ ∈

deg C a( ) 1
2 (9)

w
in

k
i V j N i V

ij
( )k k

∑ ∑=
∈ ∈ −

deg C a( )
(10)

w
out

k
i V j N i V

ij
( )k k

Also the density of Ck is defined by ref. 36:

Figure 5.  Modules obtained by different methods. Comparison of the total performance of all methods used in 
the evaluation on all datasets and using the MIPS gold standard.

Dataset Algorithm
Old 
performance

New 
performance

Difference of 
performances β γ

Collins

AP 2.060 2.069 +0.009 0.044 0.014

CFinder 1.657 1.657 0 Affectless Affectless

CMC 2.019 2.027 +0.008 0.116 0.006

MCL 2.056 2.058 +0.002 0.18 0.046

ClusterONE 2.051 2.104 +0.053 0.098 0.036

RNSC 2.027 2.098 +0.071 0.09 0.02

RRW 1.935 1.947 +0.012 0.104 0.01

Krogan Core

AP 1.494 1.698 +0.204 0.05 0.034

CFinder 1.136 1.208 +0.072 0.12 0.104

CMC 1.659 1.678 +0.019 0.012 0.006

MCL 1.621 1.699 +0.078 0.118 0.106

ClusterONE 1.755 1.774 +0.019 0.005 0.001

RNSC 1.615 1.643 +0.028 0.006 0.0

RRW 1.537 1.554 +0.017 0.094 0.008

Table 6.  Influence of removing and putting hubs back in all methods used in this paper.
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=
×

−
den C

deg C
V V

( )
2 ( )
( )( 1) (11)

w k
w
in

k

k k

In addition, quantifying the extent of overlap between two clusters A and B were calculated in accordance with 
neighborhood affinity score that is defined as3:

∩=
×

O A B
A B
A B

( , )
(12)

2

IMHRC Algorithm.  In our approach, we detected complexes in four steps. These steps were designed to 
reduce noises in the network, process weighted graphs, consider the property of the overlapped complexes and 
indirectly consider times of interaction occurrence.

Step 1: In this step β percentage of the vertices with the highest degree (hub) were removed from the PPI 
network. The intuition behind the hub removal was based on two effects. First, since the occurrence probability 
of interactions are independent and identically distributed (i.i.d), the higher a node’s degree is, the more likely 
to have false positive interactions. Therefore, removing the nodes with a high degree (hub) can eliminate much 
more false positive interactions (Fig. 6). Second effect is to add the time asynchronization to the network implic-
itly. Since biological interactions occur in different times14, many interactions may have different times. But the 
weighted graph which is constructed from PPI network is static and it can’t distinguish the time of different 
interactions31. In this situation, it is possible that a vertex with low or normal degree which is common between 
two or more complexes turns into a vertex with a high degree or hub which is known as an inter-module hub. In 
fact, it is possible for a dense subgraph to rises from integrating a number of smaller and sparser subgraphs, with 
common vertex (Fig. 7)28. Our study show that such a dense subgraph is recognized wrongly as a big complex, by 
many methods. Although we know that this isn’t a comprehensive rule for all hubs (such as module hubs) in the 
main graph, a significant amount of hubs in the network behaves as mentioned. In other words, there is not a spe-
cific threshold that separates module hubs and inter-module hubs. By removing hubs, we expected that not only 

Figure 6.  Removing hubs decreases noise and make the graph sparser. The red nodes in the figure (a) denote 
inter-module hubs and the green nodes denote module hubs in the network. When we remove inter-module 
hubs from the network, we will eliminate some noise and will have sparser and well-separated graph (b).

Figure 7.  Effect of eliminating occurrence time of different interactions. The probability of creating wrong 
dense subgraph and hub vertices are increased when the time is not considered. The orange node is a sample 
that shows this situation. This normal node is a member of two dense complexes while it changes to a hub and a 
member of a larger subgraph in PPI network.
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have the effects of ignored occurrence time of biological interactions been reduced, but also the new manipulated 
graph has less noise and is less complicated. In this way, we have a sparser graph of which the dense subgraphs are 
more obvious and complexes can be more easily detected. To implement this step, we constructed a new graph 
by removing hubs. In order to select hubs to be eliminated, we sorted them in the priority queue based on their 
degree and select β percentage of them from the head of the queue.

Step 2: In this step we tried to recognize primary clusters. In many methods it is a common assumption that com-
plexes are considered as dense subgraphs24. We used this idea to detect the primary clusters, too. These clusters might 
have overlapped properties. In our definition, density was a concept that is a composition of structure and weights 
of edges. On the other hand, a dense subgraph not only is well separated from the rest of the network, but also its 
inner edges have more weight than outer edges. For detecting these subgraphs, we used a quality function named 
“modularity function”. The main idea in this step was based on maximizing modularity function in the form of local 
and greedy. The Value of modularity function for subgraph Ck was calculated by the equation (13).

=
+ +

Q C
deg C

deg C deg C p C
( )

( )
( ) ( ) (13)

k
w
in

k

w
in

k w
out

k k

In this formula, “p” is a controlled variable, by which, we could model uncertainty. Actually, because of limitation 
in the experimental methods, all interactions have not been discovered. So “p” can be observed as an agent for these 
undiscovered interactions and implicitly consider them in the calculation of function. On the other hand, “p” is also 
a way to consider noise. In fact, this variable helped us control the sensitivity of density variation that stems from 
adding or removing 1 node to the subgraph. If there is significant amount of noise in the network, the density altered 
dramatically when 1 node is added to or removed from the spars subgraph. So, the smaller the size of subgraph is, 
the more effective the role of “p” is in adding a node to or removing a node from the subgraph. For implementing 
this approach, we acted as ClusterONE algorithm13. At first, we selected one node which was not in any available 
cluster and has the highest degree. This node which is called the “seed”, can create a new cluster. Next we tried to 
maximize the value of modularity function of the new cluster by an iterative and greedy approach. In this process, 
the best decision was made for maximizing the modularity function in every step. The best decision could be adding 
an external boundary node to or deleting an internal boundary node from current cluster. In this definition every 
external node which is the neighbor with at least one of the cluster nodes is called “external boundary node” of that 
cluster; and every internal node of a cluster which is the neighbor with at least one of a cluster’s external boundary 
node is called the “internal boundary node” of that cluster. After reaching to the maximal value of modularity func-
tion for a growing cluster, it was introduced as a new primary cluster. We repeated the process for the remaining 
nodes. This greedy process is explained in five following steps. Let u0 represents the initial seed:

	(1)	 Let =C uk 00
 and the step number =t 0

	(2)	 Calculate the value of modularity function for Ckt
 and set =

+
C Ck kt t1

	(3)	 For every external boundary node u of Ckt
 calculate the modularity function for ∪′ = .C C u{ }k kt

 If 
>′

+
Q C Q C( ) ( )k kt 1

, let = ′
+

C Ck kt 1
.

	(4)	 For every internal boundary node u of Ckt
 calculate the modularity function for ′′ = − .C C u{ }k kt

 If 
″ >

+
Q C Q C( ) ( )k kt 1

 then let = ″
+

C Ck kt 1
.

	(5)	 If ≠
+

C Ck kt t1
, let = +t t 1 and return to step 2. Otherwise, maximal value of modularity function for Ckt

 
is reached. Therefore, Ckt

 is recognized as a new primary cluster.

It should be noted that the initial seed could be eliminated from the cluster during growth process like as oth-
ers nodes. In addition, every node only had one chance to be a seed of a new cluster. So the eliminated seed could 
no longer be considered as a seed but it could be added to another cluster in its growth process.

Step 3: After introducing primary clusters, in this step we tried to repair clusters and merged some of them. In 
repairing phase, γ percentage of eliminated hubs were considered and checked whether adding them to the primary 
clusters, increased the modularity functions or not. In fact, we wanted to add module hubs to the primary clusters and 
filter inter-module hubs. This part of hubs were selected from initially eliminated hubs which had the lower degree than 
the others. If the hubs are inserted in an ascending priority queue based on their degrees, in form of …x x x x( , , , )n1 2 3 , 
γ percentage includes … γx x( , )n1  nodes. In repairing phase, an iterative process was run on all primary clusters. In this 
process xi was added to a primary cluster. If modularity function of the new cluster increased, the change was preserved 
and the same process was repeated on updated cluster with xi+1. On the contrary, if modularity function did not 
increase, the change did not maintain and the same process was repeated on the primary cluster with xi+1. It is obvious 
that module hubs have more chance than inter-module hubs to be added to the primary clusters. This is due to the 
number of outer edges which is usually more than the number of inner edges in an inter-module hub. This is often 
reversed for module hubs. So adding module hubs usually could increase modularity but it was not true about 
inter-module hubs. It is notable that index i was begun from 1 to γ⌊ ⌋n  for every primary cluster. The threshold γ was 
chosen as a value between 0 to 10 percent. Actually, our study show that β − γ percent of eliminated hubs with higher 
degrees are inter-module hubs. So not only does deleting this group of hubs reduce the complexity of the network, but 
also in this manner a significant amount of noise in the network is reduced.

After repairing phase, the clusters which had a significant overlap with each other were merged. For imple-
menting this process, we created a new graph called “overlap graph”. In overlap graph, every cluster is indicated 
as a node and the amount of overlap between two clusters is represented by a weighted edge. This edge is created 
if the overlap value is above the overlap threshold (max-overlap). Based on the overlap graph, every pair of nodes 
was sorted in a priority queue according to their overlap value if they had an edge between them. Overlap value 
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was calculated according to the equation (12). Next in finite steps, one pair popped from the head of the queue. 
If the overlap value of the pair was above the overlap threshold (max-overlap), they were merged and then the 
queue are updated with a new cluster and the old clusters are deleted. When there aren’t any pairs for merging, the 
process was terminated. This process demonstrates a fundamental difference between IMHRC and ClusterOne. 
ClusterOne partitions primary clusters into several groups. Each cluster will be put to a group, if its overlap value 
with at least one of the members of that group, is above the overlap threshold −0.8 as default-. Then, ClusterOne 
merges members of each group without any updating phase.

Step 4. In this step, all remaining clusters that contained less than three members were discarded. This 
approach is common in literature. In the final part, the clusters with density below 0.3, were discarded. The value 
of density was calculated according to equation (11).
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