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Notch signaling is a key regulator of angiogenesis, in which sprouting
is regulated by an equilibrium between inhibitory Dll4-Notch signal-
ing and promoting Jagged-Notch signaling. Whereas Fringe proteins
modify Notch receptors and strengthen their activation by Dll4
ligands, other mechanisms balancing Jagged and Dll4 signaling are
yet to be described. The intermediate filament protein vimentin,
which has been previously shown to affect vascular integrity and
regenerative signaling, is here shown to regulate ligand-specific
Notch signaling. Vimentin interacts with Jagged, impedes basal
recycling endocytosis of ligands, but is required for efficient receptor
ligand transendocytosis and Notch activation upon receptor binding.
Analyses of Notch signal activation by using chimeric ligands with
swapped intracellular domains (ICDs), demonstrated that the Jagged
ICD binds to vimentin and contributes to signaling strength. Vimentin
also suppresses expression of Fringe proteins, whereas depletion of
vimentin enhances Fringe levels to promote Dll4 signaling. In line
with these data, the vasculature in vimentin knockout (VimKO) em-
bryos and placental tissue is underdeveloped with reduced branch-
ing. Disrupted angiogenesis in aortic rings from VimKO mice and in
endothelial 3D sprouting assays can be rescued by reactivating Notch
signaling by recombinant Jagged ligands. Taken together, we reveal
a function of vimentin and demonstrate that vimentin regulates
Notch ligand signaling activities during angiogenesis.
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The intermediate filament (IF) proteins are a large protein
family with tissue- and developmental stage-specific expres-

sion. Whereas IFs provide cells with mechanical stability, there is
mounting evidence indicating that IFs are involved in a range of
metabolic, signaling, and regulatory processes that are unrelated
to mechanical functions (1–14). The vimentin IF has been shown
to act as a scaffold for signaling proteins that regulate epithelial
mesenchymal transition (EMT), cancer cell invasion, wound
healing and tissue repair, tissue aging, as well as inflammatory
signaling (3, 4, 6–8, 10). Vimentin anchors and organizes adhesion
molecules as well as actomyosin complexes (15) to regulate cell
adhesion and migration (4, 5). Vimentin also influences protein
function through regulation of protein trafficking and is involved in
the regulation of gene expression (7, 8, 10, 16–18). Vimentin, thus,
has regulatory functions especially in dynamic cellular processes.
Recently, vimentin has been linked to angiogenesis and vascular
homeostasis, and lack of vimentin is associated with defects in
vascular tuning, endothelial migration, adhesion, and sprouting,
as well as flow-induced arterial remodeling (1, 2). Whereas the
above-listed studies determine that vimentin-deficiency could
compromise vascular integrity, it is unclear whether there is direct
causal relationship between vimentin and vascular development,
and molecular links to signaling pathways that regulate angiogen-
esis have not been identified.
The Notch signaling pathway is a key regulator of angiogenesis.

Genetic removal of Notch components results in disorganized and

nonfunctional tissue and embryonic lethality (19–25). Deregula-
tion of ligands or alterations in Notch activity is associated with
pathological angiogenesis and disturbances in vascular remodel-
ling (19–21, 26–30). The Notch ligands Dll4 and Jagged 1 have
opposing roles during angiogenesis (19, 25). Dll4 and Jagged 1 sig-
naling regulates tip cell versus stalk cell selection in the branching
endothelium, and the creation of new branching points (22, 31).
VEGF-VEGFR2 signaling is a key driver of angiogenesis and in-
duces Dll4 expression in the tip cell (32). Dll4 activation of Notch in
neighboring cells reduces expression of VEGFR2 and inhibits tip
cell selection. In contrast to Dll4, Jagged-Notch signaling promotes
tip cell selection and sprouting by antagonizing Dll4-Notch signaling
(31, 33–36). How the competition between the ligands is balanced
and how ligand-receptor signaling specificity is achieved is under
intense investigation (31, 33, 34, 37, 38). Modification of the Notch
receptor by the Fringe family of glycosaminyltransferases has been
shown to enhance Dll4-Notch signaling and to suppress sprouting
(31). However, other mechanisms that balance the competition
between Jagged and Dll4 signaling are still to be elucidated.
Notch signaling is elicited by ligand binding to the Notch re-

ceptor on neighboring cells, which leads to proteolytic processing
of the receptor and release of the Notch intracellular domain
(NICD), which translocates to the nucleus and regulates transcription
of target genes (37, 39, 40). Notch signaling is critically regulated
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by protein trafficking (41–43). In addition to controlling number
of ligands and receptors on the cell surface, ligand endocytosis is
required for receptor activation (41). Two separate models for
the requirement of endocytosis have been suggested: the first
model suggests that recycling is important for maturation of the
ligands to become active, whereas according to the second
model, transendocytosis of the extracellular domain of the Notch
receptor (NECD) is needed to produce a strain on the receptor.
This strain is termed the pulling force (41, 42, 44, 45) and is
thought to reveal the cleavage site and initiate proteolytic pro-
cessing of the receptor with subsequent release of the NICD.
Here we demonstrate a previously unexplored link between

vimentin and Notch signaling in the vasculature. We show that
vimentin not only interacts with Jagged, but also regulates Jagged-
mediated receptor transendocytosis, expression of Fringe genes, and
ligand-specific Notch activation. Our data suggest that vimentin is
important for balancing Jagged and Dll4 signaling and in the absence
of vimentin, Dll4-Notch signaling dominates to suppress angiogenesis.

Methods
For cell culture, quantitative PCR (qPCR), Western blotting, immunofluorescence,
proximity ligation assay (PLA), Notch activity, and Jagged trafficking assays,
please see SI Methods. Animal experiments were approved by and carried out in
accordance with the National Animal Experiment Board of Finland and con-
formed to the regulations set by The Finnish Act on Animal Experimentation.

Aortic Ring Assay. Eight-week-old vimentin wild-type, heterozygous, or null
Sv129/Pas mice were killed and aortae harvested. Rings were embedded into
1.5 mg/mL collagen type I and once the collagen had polymerized, fed with
Opti-MEM containing 2.5% FBS and 40 ng/mL VEGF. Aortic ring assays were
incubated at 37 °C with 5% CO2, and after 4 d, media were replaced. After
6 total days of incubation, aortic ring assays were fixed with 4% para-
formaldehyde in PBS for 20 min and rinsed two times with Tris-glycine.

Vimentin Null Aortic Rings with Notch Ligands. A total of 1 μg of Recombinant
Delta-like ligand 1 (Dll1) (R&D Systems, 5026-DL-050), Delta-like ligand 4 (Dll4)
(R&D Systems, 1506-D4-050), Jagged (R&D Systems, 599-JG-100), or IgG Fc
control (Jackson Immunoresearch, 009–000-008) were coupled to 10 μL Pro-
tein A agarose beads (Roche, 11719408001), diluted in PBS to give a final
volume of 100 μL. The bead–ligand mixtures were gently rotated for 30 min
at room temperature (RT), and the entire 100 μL mixture was added to 900 μL
collagen type I, on ice, for a final collagen concentration of 2 mg/mL. Aortae
were harvested from vimentin null mice, as described above. A total of 70 μL
of the collagen–bead mixture was added per well of a full area 96-well plate,
three wells at a time, and 0.5-mm aortic rings were oriented so the lumen was
visible. After the collagen polymerized, aortic rings were fed with 150 μL Opti-
MEM containing 2.5% FBS and 40 ng/mL VEGF and incubated at 37 °C with
5% CO2. After 4 d of incubation, the media were replaced. Rings were fixed
after 7 d with 4% paraformaldehyde in PBS and rinsed twice with Tris-glycine.

Quantification of Aortic Ring Sprouting Responses. To quantify endothelial
sprouting responses, four images were taken of sprouting structures origi-
nating from the upper edge of the ring using an Olympus CKX41 inverted
microscope equipped with a Q color 3 Olympus camera. Average sprout
length was quantified using ImagePro Analyzer software by measuring the
distance from the edge of the ring to the tip of invading multicellular
structures. The average number of endothelial sprouts per ring was quan-
tified from the four images. Error bars represent SEM.

Immunostaining of Aortic Rings. Aortic rings stored in Tris-glycine were per-
meabilized for 30 min with 0.5% Triton X-100 in PBS, then blocked overnight
at 4 °C with blocking buffer (0.1% Triton X-100, 1% BSA, and 1% goat serum
in TBS). Rings were immunostained using primary antibodies directed
against PECAM-1 (Santa Cruz, sc-1505R), VE-cadherin (Enzo Life Sciences,
ALX-210-232-C100), or rabbit IgG as a control (Invitrogen, 02-6102), followed
by incubation with Alexa-594 or Alexa-488 conjugated secondary antibodies
(Invitrogen, A11012 and A11008) and FITC-conjugated phalloidin (Invi-
trogen, A12379) or cy3-conjugated alpha smooth muscle actin (Sigma,
C6198), respectively. Cell nuclei were stained with 1.09 μM DAPI (Invitrogen,
D1306). Z stacks of 1 μm step-size compressed images of aortic rings were
taken using a Nikon TI A1R inverted confocal microscope at 40× magnifi-
cation. (Scale bar, 100 μm.)

Receptor Binding and Ligand Transendocytosis. Cells were plated on 12-well
plates, or coverslips for immunofluorescence, a few days in advance. rN1ECD
(R&D Systems, cat. no. 1057-TK) (1 μg/mL) and Alexa-Fluor 488 goat anti-
human IgG (Invitrogen, cat. no. A11013) (1:200) were diluted in sterile PBS
and incubated on rotation in +4 °C for 1 h. Simultaneously, the cells were
blocked with DMEM containing 10% goat serum and 1% BSA for 45 min in
+37 °C. The rN1ECD–Alexa-488 solution was further diluted in blocking so-
lution at a ratio of 1:5 and this solution was added to the cells, followed by
incubation in 37 °C for 2 h. The cells were then detached, centrifuged (450 × g,
5 min) and quenched with 200 μg/mL Trypan blue in PBS for 5 min at RT.
Then the cells were centrifuged again and excess Trypan blue was removed.
The cells were resuspended in PBS and analyzed by FACS. For immunofluo-
rescence, the incubation was followed by fixation and immunocytochemistry
was conducted as stated above. To produce resistance to Jagged-mediated
endocytosis and mimic force-dependent ligand-mediated receptor endocy-
tosis and Notch activation, the N1ECD was coupled to fluorescent protein A
agarose beads (N1ECDPrtA) (42).

Chorion Allantois Membrane Angiogenic Assay. Matrigel plugs (V = 150 μL)
were mixed with H2O, 50 ng/mL FGF, 0.2 mg/mL DAPT, 10 μM WFA, as well as
with both DAPT and WFA, and allowed to solidify on top of precut 1.5 cm2

pieces of 500-μmnylon mesh. Nylonmeshwith Matrigel was placed on chorion
allantois membrane (CAM) on top of major blood vessel and incubated for 5 d.
After 5 d, the embryos were visualized live by a Canon 6D SLR, with a
24-105Lf4 lens at maximum focal length using a 25-mm extension tube. An-
giogenic branches in Matrigel were quantified via optical visualization.

Results
Vimentin Interacts with Jagged. We have previously shown that
loss of the astrocytic intermediate filament cytoskeleton, composed
of GFAP, vimentin, and nestin, affects Jagged-mediated Notch
signaling during neurogenesis (13). As genes that are coexpressed in
certain tissues have a higher probability to share a functional re-
lationship (46), we screened tissue expression data in the GeneSapiens
database (47) and found a strong positive correlation between the
expression of vimentin and Jagged ligands in several tissues, e.g., in
blood, breast, leukocytes, central nervous system, heart, kidney,
muscle, and testis (Fig. S1A). A significant correlation was also
evident in several types of cancer (Fig. S1B). The data suggest the
notion of a functional relationship between Jagged and vimentin.
To elucidate the mechanisms and nature of the interrelationship

between Jagged and vimentin, we first analyzed whether the pro-
teins physically interacted. Proximity ligation assays demonstrated
that vimentin interacts with Jagged 1. Interactions between
vimentin and Dll4 were significantly less prominent (Fig. 1 A and
B). Coimmunoprecipitation assays further confirmed the in-
teraction between Jagged and vimentin (Fig. 1C, and Fig. S2A).
Vimentin interacts with membrane-tethered proteins through
PDZ motifs (48) and Jagged and Dll carry distinct PDZ sequences
in their ICDs (49–51). Whereas the ECDs are important for re-
ceptor binding, the ICDs play important roles in signal activation
through posttranslational modifications (37, 52) and interac-
tions with endocytic regulators (41–43). To elucidate whether
the ICDs of Dll4 and Jagged 1 influence vimentin binding and
Notch signaling, we swapped the ICDs of Dll4 and Jagged 1 (53)
to generate the chimeric variants: JaggedECDDll4ICD and
Dll4ECDJaggedICD. Swapping the ICD of Jagged with that of
Dll4 led to loss of vimentin interaction as demonstrated by loss of
the PLA signal (Fig. 1D). We next expressed Dll4 and Jagged, and
the chimeric ligands in mouse embryonic fibroblasts (MEFs) de-
rived from WT (VimWT) and vimentin knockout (VimKO) mice
and cocultured them with 293HEK reporter cells stably expressing
full-length Notch 1 (FLN reporter cells) and then measured signal
activation in FLN reporter cells stably expressing full-length Notch
1 using the CSL (CBF-1, suppressor of hairless, Lag-2)-based lu-
ciferase reporter system (FLN reporter cells) (13). Transfection
efficiency and expression levels of the different proteins were
confirmed by immunofluorescence and Western blot (WB).
VimWT MEFs expressing Dll4 were significantly stronger signal
activators than MEFs expressing Jagged (Fig. 1E). However,
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whereas Dll4 signaling was unaffected by vimentin depletion, Jag-
ged signaling was significantly reduced in VimKO MEFS (Fig. 1E).
Further, signaling from the Dll4ECJaggedICD-expressing MEFs
was significantly higher than from cells expressing JaggedECDll4ICD.
Signaling from JaggedECDll4ICD was not significantly different
in VimWT and VimKO cells. However, signaling from Dll4EC-
JaggedICD was significantly reduced in VimKO cells (Fig. 1E).
The data suggest that Jagged ICD contributes to signaling
strength and vimentin is required for efficient Jagged signaling.

Vimentin Regulates Jagged Recycling and Surface Levels. To gain
further insight into a potential functional link between vimentin
and Jagged, we analyzed Jagged protein levels in VimWT and
VimKO MEFs. The protein levels of Jagged in MEFs were un-
affected by the absence of vimentin (Fig. 2A), but were surpris-
ingly enhanced in vimentin-negative SW13 cells (Fig. S2B),
demonstrating a cell-type dependent effect. However, we ob-
served no difference in proteasomal (Fig. S2C) nor lysosomal
degradation of Jagged 1 in the absence of vimentin in SW13 cells
(Fig. S2D), demonstrating that vimentin does not directly affect
Jagged turnover.
Endocytosis of Notch ligands is important for Notch activity

(41–43). As vimentin has been shown to regulate protein traf-
ficking (3), we assessed whether vimentin affects Jagged routing.

To this end, we tracked the ligand with fluorophore-conjugated
recombinant peptides, mimicking the extracellular domain of
Notch 1 (N1ECDF). Flow cytometry demonstrated enhanced
binding and internalization of N1ECDF in VimKO compared
with VimWT cells (Fig. 2B). Confocal microscopy revealed that
the N1ECDF-positive vesicles were differently distributed in
VimKO cells compared with VimWT MEFs (Fig. 2C).
To further investigate intracellular routing of ligands, we tracked

the movement of N1ECDF vesicles in VimWT and VimKO cells.
In VimKO cells, the average linearity of the vesicle tracks was
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Fig. 1. Jagged interacts with vimentin and the intracellular domain of
Jagged potentiates signal activation. (A) In situ PLA was used to demonstrate
physical interaction between vimentin and Jagged versus Dll4. Vimentin or
Jagged were used as negative controls. (B) Number of PLA signals per cell.
Quantification of signals is shown from three separate experiments. P values
are <0.0001 for all groups compared with Jagged. (C) Jagged coimmuno-
precipitates with vimentin from VimWT MEFs. (D) PLA using an antibody
against the Jagged 1 extracellular domain shows strong PLA interaction
between Jagged and vimentin, but the chimeric ligand JaggedECDDll4ICD
where the intracellular domain of Jagged is switched to Dll4 shows no visible
interaction. (E) The signal sending potential of Dll4, Jagged, and chimeric
ligands, JaggedECDDll4ICD and Dll4ECDJaggedICD, was measured by
coculturing ligand expressing VimKO and VimWT MEF cells with 293HEK
cells expressing the Notch 1 receptor (293HEK-FLN1) using a luciferase-based
reporter system. Values represent means of three separate experiments in-
cluding three experimental repetitions ± SEM. Statistical significance was
determined using one-way ANOVA and Bonferroni post hoc test, P < 0.05.
RLU, relative light unit.
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Fig. 2. Vimentin alters Jagged 1 trafficking. (A) Representative immunoblot
shows Jagged 1 protein levels in VimWT and VimKOMEFs. (B) Quantification
of ligand endocytosis VimWT and VimKO cells using fluorescently labeled
recombinant peptides mimicking the Notch 1 extracellular domain conju-
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(Scale bar, 10 μm.) (D) VimWT and VimKO cells were live labeled with
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N1ECD–Alexa-488 labeled vesicle track linearity in VimWT and VimKO cells.
Values represent means ± SEM. Statistical significance was determined using
Student’s t test, P < 0.05. (F) Analysis of N1ECD–Alexa-488 labeled vesicle
speed in VimWT and VimKO cells. (Scale bar, 10 μm.) (G) Ligand localization
into different endosomal compartments was analyzed by evaluating the
colocalization between Jagged 1-stained vesicles and Rab4- or Rab11-linked
recycling endosomes. Jagged 1 colocalization with Rab4 and Rab11 was
analyzed by Manders’ colocalization coefficient. Confocal microscopy images
of 30 cells from three experiments described above were quantified using Fiji
ImageJ. P < 0.05.
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significantly enhanced compared with WT cells, implying that
vimentin decreases directional mobility of N1ECDF vesicles (Fig. 2
D and E). No significant differences were detected in movement
speed of the vesicles (Fig. 2 D and F). We next analyzed the oc-
currence of Jagged in different endosomal compartments. The
colocalization of Jagged with Rab4 or Rab11, markers for fast and
slow recycling endosomes, respectively (54), was reduced in
VimKO cells compared with VimWT (Fig. 2G).
We then used a biotin cell surface labeling and stripping pro-

tocol to analyze recycling of Jagged 1 in VimWT and VimKO
MEFs. The results indicated that fairly small amounts of Jagged
were recycled at steady state in both VimWT and VimKO MEFs.
Recycling of ligands appeared faster in VimKO cells (Fig. 3A),
which is in agreement with the reduced presence of Jagged in
recycling endosomes (Fig. 2G). We subsequently used a bio-
tinylation assay to analyze Jagged surface levels and demonstrated
that Jagged was accumulated at the cell membrane in VimKO
MEFs (Fig. 3B). Confocal microscopy of cells immunolabeled
for Jagged corroborated that the surface levels were enhanced
(Fig. 3C). Importantly, surface levels were also enhanced in

vimentin-negative SW13 cells, suggesting that surface accumula-
tion is directly linked to vimentin depletion (Fig. S2 E and F) and
not related to total Jagged levels (Fig. 2A and Fig. S2B).
We next assessed the ability of Jagged to bind the extracellular

domain of Notch using a Jagged 1 fingerprint assay. VimWT and
VimKO MEFS were cultured on coverslips coated with peptides
corresponding to the extracellular domain of Notch (N1ECD). After
protein cross-linking, we extracted the cells in a harsh detergent and
the Jagged 1 cross-linked to N1ECD was detected by immunolab-
eling. More Jagged 1 was found bound to the coated N1ECD in
VimKO cells compared with VimWT cells in line with enhanced
surface accumulation of Jagged (Fig. 3D). The data demonstrated
that the Jagged ligands on the surface of VimKO cells efficiently
bound the Notch receptor. These data may explain the high binding
and internalization of N1ECDF demonstrated in Fig. 2B.

Vimentin Potentiates Jagged-Mediated Force-Dependent Notch-
Activating Endocytosis. Notch signaling is linear and tightly regu-
lated by the levels of receptors and ligands present on the surface
of the signal-receiving and signal-sending cell. However, our data
suggest that vimentin depletion reduces Jagged-mediated Notch
activation (Fig. 1E), despite enhancing Jagged surface levels (Fig. 3
B and C). We assessed the signal potential of VimKO and VimWT
MEFs expressing endogenous levels of Jagged, by coculturing the
cells with reporter cells. Despite elevated Jagged levels and en-
hanced receptor binding in VimKO MEFs, Notch activation in
reporter cells was not enhanced. On the contrary, when signal
activity was related to ligand levels, the Notch activation potential
was significantly reduced in VimKO. This effect could be rescued
by the reintroduction of vimentin (Fig. 3E). Vimentin-negative
SW13 cells also demonstrated reduced signaling potential com-
pared with vimentin-expressing SW13 cells (Fig. S2G). During
active signaling, Notch transendocytosis has been proposed to
create a force on the receptor, known as the “pulling force,” which
is thought to reveal the cleavage site and promote receptor acti-
vation (42). A recent publication demonstrated that ligand-
mediated NECD transendocytosis during signal activation is
mechanistically distinct from steady-state ligand endocytosis (55).
We attached a fluorescently labeled Notch1ECD to Protein A
beads (N1ECDPrtA) to resemble the mechanical strain raised
during receptor transendocytosis (42) and assessed internalization
of N1ECDPrtA by flow cytometry. N1ECPrtA internalization was
reduced in VimKO cells (Fig. 3F), in contrast to the enhanced
internalization of N1ECDF (Fig. 2B). Internalization of N1ECPrtA
was also decreased in vimentin-negative SW13 fibroblasts, a phe-
notype that was rescued by the reintroduction of vimentin (Fig.
S3A). On the contrary, basal endocytosis of Jagged as measured by
internalization of N1ECDF was enhanced in vimentin-negative
SW13 cells (Fig. S3B). Taken together, the data show that de-
spite increased surface levels of Jagged and efficient receptor
binding, the signal activation potential of Jagged is reduced in the
absence of vimentin.
IFs are phosphoproteins and phosphorylation of vimentin reg-

ulates organization of the IF network and vimentin–protein in-
teractions. Phamacological activation of the vimentin kinase PKC
enhanced Notch activation in cocultured reporter cells. (Fig. S4A).
We next tested whether phosphorylation on serines 4, 6, 7, 8, and
9, known PKC targeted sites in the N terminus of vimentin,
influenced Jagged interactions and signaling using phosphomutant
forms of vimentin. Immunoprecipitation assays demonstrated that
Jagged interacted with both wild-type vimentin and phosphomu-
tants, but the interaction with the phosphomimicking mutant was
slightly enhanced (Fig. S4B). Furthermore, both the signal acti-
vation potential (Fig. S4C) and receptor transendocytosis (Fig.
S4D) were enhanced by expression of the phosphomimicking
mutant, indicating that vimentin-mediated Jagged regulation is
dependent on the phosphorylation status of vimentin.
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Deletion of Vimentin Disrupts Sprouting Angiogenesis and Attenuates
Embryonic Angiogenesis. Our data indicate that vimentin binds to
Jagged and potentiates Jagged-mediated receptor transendocytosis
and Notch activation, but does not interact with Dll4. Dll4 and
Jagged ligands have opposite functions during angiogenesis, which
makes angiogenesis an interesting process for evaluating the
physiological effects of ligand-specific regulation. Blocking Dll4 or
inhibiting Notch signaling by γ-secretase inhibitors (GSIs) leads to
hyperbranching, whereas Jagged inhibition reduces branching and
attenuates angiogenesis (31, 38, 56). As vimentin is important
for efficient Jagged signaling, loss of vimentin could disturb the
equilibrium between proangiogenic Jagged and antiangiogenic
Dll4 signaling.
This notion was supported by the disrupted angiogenesis ob-

served in chorioallantoic membranes of fertilized chicken embryos
observed upon treatment with the vimentin-targeting drug With-
aferin A (WFA). WFA inhibited branching and microvessel for-
mation (Fig. 4 A and B). The effect of WFA was counteracted by
Notch inhibition by the GSI DAPT (N-[N-(3,5-difluorophenacetyl)-

L-alanyl]-S-phenylglycine t-butyl ester) (Fig. 4 A and B) (35), in-
dicating that the effect of WFA treatment was overridden by
blockage of Dll4 activity.
The influence of vimentin on angiogenesis was next assessed by

analyses of the developing vasculature in the placental tissue and
in embryos of VimWT and VimKO mice by whole-mount
immunostaining for PECAM-1. The placental tissue of VimKO
at embryonic day 11.5 (E11.5) displayed disturbed vascular pat-
terning (Fig. 4C). By E12.5 the VimKO embryos showed a less
developed and a less intricate vasculature with fewer blood vessels
and less branching compared with WT embryos (Fig. 4D). The
difference in vascular branching was particularly noticeable in the
head region and the upper parts of the embryo (Fig. 4D).
We then assessed sprouting angiogenesis in VimKO and WT

mice using an aortic ring assay. Aortic rings from VimKO and WT
mice were excised and embedded in collagen containing growth
factors to induce sprouting (57). The assay was optimized using
different growth factor supplements to ensure appropriate con-
ditions for endothelial outgrowth of endothelial-lined tubes (Fig.
S5). Endothelial sprouting in response to VEGF stimulation was
significantly reduced in VimKO aortic rings compared with WT
(Fig. 5 A and C). Both the length of the sprouts and sprout
number was affected (Fig. 5B). Endothelial outgrowths can be
identified by V-Cad and PECAM. VimKO aortic rings did not
produce these sprouts in the same manner as in VimWT (Fig. 5C).
Aortic rings from heterozygous (VimHZ) mice displayed an in-
termediate phenotype, indicating that vimentin levels are critical
in this system (Fig. 5 A and B).
Taken together the data above demonstrated that loss of

vimentin disrupts sprouting angiogenesis and delays embryonic
vascular development in line with disrupted balance between
Jagged and Dll4 signaling.

Defective Sprouting of VimKO Endothelial Cells Can Be Rescued by
Transactivation with Recombinant Jagged 1 Ligands. To further as-
sess the effect of vimentin depletion on Notch signaling in endo-
thelial cells, we down-regulated vimentin by shRNA (VimKD).
Immunostaining of Dll4 and Jagged 1 (Fig. 6A) revealed that
Dll4 and Jagged 1 were localized in distinct intracellular vesicles in
endothelial cells, supporting the notion of selective regulation of
Notch ligand endocytosis. Immunoblotting of control and VimKD
cells revealed increased levels of the active form of Notch, NICD
and, intriguingly increased levels of Fringe proteins in VimKD
endothelial cells, whereas levels of Dll4 were unaffected (Fig. 6B).
Increased levels of NICD and Fringe proteins were also observed
in endothelial cells isolated from VimKO mice, whereas levels of
Jagged 1 were unaffected (Fig. 6C). Fringe glycosyltransferases
modify Notch receptors and enhance transactivation from Dll li-
gands. Increased expression of Fringe mRNA in vimentin-
depleted cells was further verified by qPCR (Fig. 6D). In line
with increased expression of Fringes, the expression of the Notch
target gene Hes1 is increased in VimKO cells compared with
VimWT cells upon activation of Notch by immobilized Dll ligands
(Fig. S6A). No effects on surface levels of the Notch receptor (Fig.
S6B) or NICD stability were observed (Fig. S6C).
Taken together, our data indicate that in the absence of

vimentin, Jagged function is compromised and cells express en-
hanced levels of Fringe proteins. This may shift the balance
between Jagged and Dll4 signaling toward Dll4 signaling, giving
rise to the antiangiogenic phenotype. To explore this hypothesis,
we reactivated Jagged-mediated Notch signaling in aortic rings
from VimKO mice and in an in vitro 3DMatrigel sprouting assay
using recombinant ligands. Activation of Notch signaling using
immobilized Jagged 1 (58) significantly enhanced the sprouting
from VimKO aortic rings (Fig. 6 E and G). By contrast, sprout
length was not affected by activation of Notch signaling by Jag-
ged 1 (Fig. 6F). An in vitro 3D angiogenesis assay with human
umbilical vein endothelial cells (HUVECs) showed similar results.
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Vimentin knockdown in HUVECs prevented sprouting in 3D, an
effect rescued by Jagged 1 (Fig. 6H).

Discussion
We show that VimKO mice display disturbed Notch signaling and
vascular patterning during embryogenesis. Depletion of vimentin
restricts Jagged-mediated transactivation and enhances expression
of Fringe proteins and disrupts sprouting angiogenesis. Aortic
rings from mice lacking vimentin produce fewer sprouts compared
with WT mice and sprouting is rescued by reactivating Jagged-
mediated Notch signaling by recombinant ligands immobilized
within the collagen matrix in which the aortic rings are embedded.
These results add to the current view of the effect of these ligands
on angiogenesis (31, 59). Jagged has been suggested to counteract
Dll4 signaling through cis-inhibition by direct binding to the Notch
receptors and inhibition of Dll4-mediated activation in the signal
receiving cell (35, 60, 61). By contrast, our data show that the
phenotype can be rescued by externally presented recombinant

Jagged ligands, which support the existence of transsignaling mech-
anisms in the proangiogenic functions of Jagged.
There is mounting evidence that the vimentin filaments form a

dynamic protein scaffold to integrate cellular processes during
stages when tissues are undergoing development or remodeling. We
have previously shown that vimentin promotes endothelial cell in-
vasion by reinforcing a complex between RACK1 and focal adhe-
sion kinase (FAK) to control FAK activity (62). Further, vimentin
promotes endothelial invasion of 3D collagen matrices by com-
plexing with and promoting membrane translocation of the metal-
loproteinase MT1-MMP, which is required for successful sprouting
responses (2). Like Notch receptors, MT1-MMP is a transmem-
brane receptor that can be internalized to the endolysosomal
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(A) Representative images showing endothelial sprouting in aortic rings
from VimWT, VimHZ, and VimKO mice. (B) Quantification of endothelial
sprout length and sprout number. Sprout length was quantified as the dis-
tance (in micrometers) from the edge of the ring to the tip of invading
endothelial structure. Data represent the average number of endothelial
sprouts per ring in a single plane. Error bars represent SEM. Statistical sig-
nificance was determined using one-way ANOVA and Bonferroni post hoc
test, P < 0.05. (C) Immunofluorescence staining was performed to determine
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with VE-cadherin and phalloidin-FITC (Upper) or PECAM-1 and phalloidin-
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vimentin null aortic rings. Representative images show endothelial sprouting
in aortic rings from VimKO mice in the presence of immobilized Notch li-
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ring in a single plane. Values represent means ± SEM. Statistical significance
was determined using Student’s t test, P < 0.05. (H) Representative images of
an in vitro 3D angiogenesis assay with HUVECs transfected with shRNA
against vimentin. Endothelial sprouting was analyzed in the presence of IgG
or immobilized Notch ligands Dll4 and Jagged 1. (I) Expression of vimentin in
control or vimentin knockdown HUVECs as determined by immunoblotting.
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compartment (63), raising the possibility that loss of vimentin also
negatively regulates MT1-MMP stability and endothelial sprouting
through enhanced lysosomal degradation. Here, we demonstrate an
important role of vimentin in balancing Notch signaling in sprouting
angiogenesis, indicating that vimentin performs several vital func-
tions to promote the various steps of angiogenesis.
The signal sending capacity of Jagged is impaired in the absence

of vimentin. Ligand-mediated transendocytosis of the receptor
produce a strain on the receptor, a process that requires assembly
of actin filaments at the membrane (42). Vimentin binds actin
(64), while also regulating cytoskeletal tension (65) and actin fil-
ament contractility at the membrane (60). Hence, vimentin might
link Jagged to the actin cytoskeleton. In this respect, it is attractive
to speculate that the interaction between Notch and vimentin
would serve as a hub to coordinate cytoskeletal and develop-
mental signaling in the regulation of angiogenesis. Vimentin is
required for efficient Jagged-Notch signaling and provides dy-
namic control of the strength of signal activity as cellular effects of
Notch signaling are highly dose sensitive (36, 53, 66). Such control
is important, because Jagged recycling and surface accumulation is
enhanced, but Jagged surface levels are decoupled from signaling
strength in vimentin-depleted cells. The data imply that the mat-
uration model and the pulling force model might not be mutually
exclusive but rather coexist, maybe to produce different Notch
activity levels with different cellular outcomes.
Our data demonstrate that vimentin interacts with Jagged. In-

triguingly swapping the ICD and ECD of Jagged and Dll4 indicates
that the Jagged ICD is a more potent signal activator, and vimentin
enhances signaling. The ECD of Dll4 has a high affinity for
Notch receptors (67) and may be a more important determinant
of Dll4 signaling strength. Ligand-specific control of signaling
strength may be obtained by posttranslational modifications (68),
protein clustering, and localization (69). It was recently demon-
strated that different force requirements are needed to activate
Notch signaling by different ligands and the authors suggest that
this may be a mechanism for Notch-expressing cells to tune their
sensitivity to discriminate between different ligands (70). It is
possible that a binding between Jagged and vimentin acts as a
force-generating mechanism to ensure efficient Jagged-Notch ac-
tivation. Taken together, our data reveal that Dll4 and Jagged li-
gands are differently regulated and vimentin contributes to Jagged
signaling strength. The molecular basis requires further investiga-
tion but might involve specific sets of interacting proteins. Al-
though the Jagged and Dll interactomes remain to be elucidated,
the different ligands may have distinct links to the cytoskeleton
(51, 71). Vimentin interacts with membrane tethered proteins
through PDZ motifs (48) and Jagged and Dll ligands carry distinct
PDZ sequences in their intracellular domains (49–51). Clathrin-
mediated endocytosis (CME) of Dll depends on Epsin 1 and 2,
together with the alternative adaptor protein clathrin assembly

lymphoid myeloid leukemia protein (CALM), rather than AP2,
which is central to CME of most proteins (42). Vimentin interacts
with the AP adaptor complexes to regulate endocytosis (18, 72)
and therefore might not affect Dll signaling. The view that
vimentin potentiates Jagged function is corroborated by the data
showing that Jagged expression correlates with vimentin expres-
sion in several tissues and in cancer, in particular. Elevated ex-
pression of both vimentin and Jagged has been implicated in
tumor progression (6, 8, 10, 16, 73–76). Furthermore, observations
in vimentin knockout mice links vimentin to defects in wound
healing, fibrosis, inflammation, epidermal aging, and epithelial
mesenchymal transition in cancer (4, 7, 8). These are all processes
critically regulated by Jagged (77).
Vimentin may also specify ligand-specific signaling by modu-

lating expression of Fringe proteins (31), as vimentin depletion
increased Fringe gene expression. At present, we do not know the
exact mechanisms through which vimentin regulates Fringe tran-
scription. However, vimentin has been shown to affect gene ex-
pression (16), and increasing evidence points to a role for vimentin
as a signaling hub (10, 74) and thus loss of vimentin may affect
specific signaling pathways regulating expression.
Taken together, our data show that vimentin balances Notch

signaling activities and they implicate a complex but distinct role
for Jagged in angiogenesis, which relates to the control of signaling
strength. Vimentin selectively promotes Jagged activity. There-
fore, understanding the regulation of the vimentin–Jagged axis in
angiogenesis may unravel new strategies to target the Notch
pathway in angiogenesis, but also it has implications for the im-
portance of this pathway in other cell systems known to coexpress
these molecules, including differentiating stem cells and cancer.
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