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Recently, a rigorous mathematical theory has been developed for
spatial games with weak selection, i.e., when the payoff differ-
ences between strategies are small. The key to the analysis is that
when space and time are suitably rescaled, the spatial model con-
verges to the solution of a partial differential equation (PDE). This
approach can be used to analyze all 2 × 2 games, but there are
a number of 3 × 3 games for which the behavior of the limit-
ing PDE is not known. In this paper, we give rules for determin-
ing the behavior of a large class of 3 × 3 games and check their
validity using simulation. In words, the effect of space is equiv-
alent to making changes in the payoff matrix, and once this is
done, the behavior of the spatial game can be predicted from the
behavior of the replicator equation for the modified game. We
say predicted here because in some cases the behavior of the spa-
tial game is different from that of the replicator equation for the
modified game. For example, if a rock–paper–scissors game has a
replicator equation that spirals out to the boundary, space stabi-
lizes the system and produces an equilibrium.

cancer modeling | public goods game | bone cancer | rock–paper–scissors

Evolutionary games are often studied by assuming that the
population is homogeneously mixing, i.e., each individual

interacts equally with all the others. In this case, the frequen-
cies of strategies evolve according to the replicator equation. See,
e.g., Hofbauer and Sigmund’s book (1). If ui is the frequency of
players using strategy i , then

dui

dt
= ui(Fi − F̄ ), [1]

where Fi =
∑

j Gi,juj is the fitness of strategy i , Gi,j is the pay-
off for playing strategy i against an opponent who plays strat-
egy j , and F̄ =

∑
i uiFi is the average fitness. The homogeneous

mixing assumption is not satisfied for the evolutionary games that
arise in ecology or modeling solid cancer tumors, so it is impor-
tant to understand how spatial structure changes the outcome of
games. The goal of this paper is to facilitate applications of spa-
tial evolutionary games by giving rules to determine the limiting
behavior of a large class of 3× 3 games.

Our spatial games will take place on the 3D integer lattice
Z3. The theory (2, 3) has been developed under the assump-
tion that the interactions between an individual and its neigh-
bors are given by an irreducible probability kernel p(x ) on
Z3 with p(0) = 0, that is finite range, symmetric p(x ) = p(−x ),
and has covariance matrix σ2I . Here we will restrict our atten-
tion to the nearest neighbor case, in which p(x ) = 1/6 for
x = (1, 0, 0), (−1, 0, 0), . . . (0, 0,−1).

To describe the dynamics we let ξt(x ) be the strategy used by
the individual at x at time t and let

ψt(x ) =
∑
y

G(ξt(x ), ξt(y))p(y − x )

be the fitness of x at time t . In birth–death dynamics, site x gives
birth at rate ψt(x ) and sends its offspring to replace the individ-
ual at y with probability p(y − x ). In death–birth dynamics, the
individual at x dies at rate 1 and is replaced by a copy of the one
at y with probability proportional to p(y − x )ψt(y). The theory
developed in ref. 3 can be applied to both cases. However, to save
space we will only consider the birth–death case.

To motivate our study of evolutionary games, we introduce two
examples that will be used to illustrate the theory that has been
developed.

Examples
A Public Goods Game in Pancreatic Cancer. In this system (4), some
cells (type 2’s) produce insulin-like growth factor-II, while other
cells (type 1’s) free-ride on the growth factors produced by
other cells. Since the 1’s do not have to spend metabolic energy
producing the growth factor, they have a higher growth rate. This
leads to the following very simple 2× 2 game.

1 2
1 0 λ
2 1 1

. [2]

In words, 2’s give birth at rate 1, independent of what is around
them, while 1’s give birth at rate equal to λ times the fraction
of neighbors that are of type 1. If λ> 1 there is a mixed strat-
egy equilibrium for the game ρ2 = 1/λ, ρ1 = 1 − 1/λ, which is
the limit of the solution to the replicator equation when 0<
u1< 1.

Multiple Myeloma. Normal bone remodeling is a consequence
of a dynamic balance between osteoclast (OC )-mediated bone
resorption and bone formation due to osteoblast (OB) activity.
Multiple myeloma (MM ) cells disrupt this balance in two ways.

(i) MM cells produce a variety of cytokines that stimulate the
growth of the OC population.

(ii) Secretion of DKK1 by MM cells inhibits OB activity.

OC cells produce osteoblast-activating factors that stimulate
the growth of MM cells, whereas MM cells are not affected by
the presence of OB cells. These considerations led Dingli et al.
(5) to the following game matrix. Here, a, b, c, d , e > 0.
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OC OB MM
OC 0 a b
OB e 0 −d
MM c 0 0

. [3]

There are many other systems to which our methods can be
applied. See, e.g., refs 6–10.

1. Review of Existing Theory
We will study the dynamics of spatial games under the assump-
tion of weak selection, i.e., when the game matrix

Ḡ(i , j ) = 1 + wGi,j ,

where 1 is a matrix of all 1’s and w is small. Since multiplying
a game matrix by a constant or adding a constant to all of the
entries in a column does not change the behavior of the replica-
tor equation, Ḡ and G are equivalent from that point of view.

Mathematical results for spatial games require that we take a
limit in which w→ 0. However, simulations will show that the
predictions are accurate in some cases when w = 1/2. Bozic et
al. (11) calculated that the actual selective advantage provided
by typical somatic mutations in human tumors is 0.004, so our
results can be applied to evolutionary games arising from the
study of cancer.

When w = 0, either version of the dynamics reduces to the
voter model, a system in which each site at rate 1 changes its state
to that of a randomly chosen neighbor. The key to our analysis is
that our spatial evolutionary game is a voter model perturbation
in the sense of Cox, Durrett, and Perkins (2). To make it easier
to compare with ref. 2 and the follow-up paper (3) that applied
the theory to evolutionary games, we will let w = ε2. Here, we
will simply state the facts that we will use. The reader can find
the details in ref. 3.

The key to the study of voter model perturbations is a result
that says when we scale space by ε and runtime at rate ε−2, then
the spatial model converges to the solution of a partial differ-
ential equation (PDE). In order to state the result, we need to
define the mode of convergence. Pick a small r > 0 and divide
space εZd into boxes with side εr . Given an x∈ Rd , let Bε(x ) be
the box that contains x , and let ūε

i (t , x ) be the fraction of sites
in state i in Bε(x ) at time tε−2. We say that the spatial model
converges to u(t , x ), if for any L

sup
x∈[−L,L]d

|ūε
i (t , x )− ui(t , x )| → 0 as ε→ 0.

Theorem 1. Suppose d ≥ 3. Let vi : Rd → [0, 1] be continuous with∑
i∈S vi = 1. If the initial conditions ξε0 → vi in the sense described

above then ξεε−2t converges to the solution of the system of partial
differential equations:

∂

∂t
ui(t , x ) =

σ2

2
∆ui(t , x ) + φi(u(t , x ))

with initial conditions ui(0, x ) = vi(x ).
The reaction term φi(u) in Theorem 1 is a constant times the

replicator equation for the modified game H =G + A, where

Ai,j = θ(Gi,i + Gi,j −Gj ,i −Gj ,j ).

Note that if we add ck to column k , the perturbation matrix A is
not changed.

Table 1. Simulation results for the public goods game

λ 4/3 3/2 3 3.5 4

Original game 0.11 0.25 0.75 0.83 0.89
w = 1/2 0.01 0.19 0.79 0.88 0.96
w = 1/10 0.00 0.16 0.82 0.92 0.98
w → 0 limit 0 0.17 0.83 0.93 1

Fig. 1. Simulation of the original public goods game G1 with λ= 3. Here
and in Figs. 4, 5, and 7, the picture gives the state of slice through a 100×
100× 100 grid. Visually there is very little spatial structure in equilibrium.
The correlation ρ11 = 0.006657.

The idea that the reaction term is the replicator equation for
a modified games is inspired by Ohtsuki and Nowak (12), who
found a similar result for the ordinary differential equation that
arises from the pair approximation. See section 5 of ref. 3 for
more on this connection. As in the work of Tarnita et al. (13, 14),
θ depends only on the spatial structure, and not on the entries
in the game matrix. In the 3D nearest-neighbor case it is known
that θ ≈ 0.5. See section 4 of ref. 3 for more details.

2. Public Goods Game
Since the behavior of the replicator equation and of the weak
selection limit for birth–death updating are not changed if we
subtract a constant from each column, so we can restrict our
attention to 2× 2 games of the form

1 2
1 0 b
2 c 0

. [4]

Let u denote the frequency of strategy 1. In a homogeneously
mixing population, u evolves according to the replicator equation
Eq. 1:

du

dt
= u{b(1− u)− ub(1− u)− (1− u)cu}

= u(1− u)[b − (b + c)u] ≡ φR(u). [5]

Note that φR(u) is a cubic with roots at 0 and at 1. If there is a
fixed point in (0, 1), it occurs at ρ= b/(b + c).

A method for analyzing all 2× 2 games is described in section
6 of ref. 3, so we will only consider the public goods game and
suppose that λ> 1. Subtracting 1 from the second column, the
game G becomes

G1 1 2
1 0 b = λ− 1
2 c = 1 0

.

In the three-dimensional nearest-neighbor case, the trans-
formed game is given by H :

H1 1 2
1 0 b̄ = (3/2)λ− 2
2 c̄ = 2− λ/2 0

.
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Fig. 2. Frequencies of the three strategies versus time in stable rock–
paper–scissors game 1 + 0.2G2.

• If λ< 4/3, then b̄< 0, so strategy 2 domiinates strategy 1,
2� 1, and 2’s take over the system.

• If λ> 4, then c̄< 0, so 1� 2, and 1’s take over the system.
• If 4/3<λ< 4, then ρ= c̄/(b̄ + c̄)∈ (0, 1) is an attracting fixed

point and there is coexistence in the spatial model.

Note that in contrast to ref. 4, one does not need the growth
rate of 1’s to be a nonlinear function of the fraction of 2’s to
maintain coexistence.

To check the theoretical prediction, we turn to simulation.
Simulations were done using a standard algorithm for simulating
continuous-time Markov chains. Details can be found in a 1994
survey paper by Durrett and Levin (16). The method is described
in SI Appendix, Section 1.

Table 1 gives the equilibrium frequencies of strategy 1 for var-
ious values of λ and w . Note that the agreement with the limiting
result is very good when w = 1/10 and good when w = 1/2. Fig.
1 gives the final configuration of the simulation when λ= 3. Here
and in later figures, we will quantify the spatial structure by com-
puting the nearest-neighbor correlation

ρij =
fij − fi fj
σiσj

,

where fij is the fraction of nearest neighbor pairs with states i ,
and j , fi is the frequency of type i and σi =

√
fi(1− fi) is the SD.

3. Three-Strategy Games
We will suppose that the game is written in the form

G =

1 2 3
1 0 α3 β2
2 β3 0 α1

3 α2 β1 0

. [6]

The subscripts indicate the strategy that has been left out in
the various 2× 2 subgames.

In the 2× 2 case, there are only four possibilities: 1 dominates
2, 2 dominates 1, stable mixed strategy fixed point, and unstable
mixed strategy fixed point. Bomze (15, 17) lists more than 40 pos-
sibilities for the 3× 3 case. Here, we do not consider games with
unstable edge fixed points and only consider generic examples
in which the six off-diagonal entries are nonzero and distinct, so
we end up with 11 cases described in SI Appendix, Section S2.
In the next three sections, we consider games with “rock–paper–
scissors” relationships between the strategies and two examples
in which the replicator equation has two locally attracting fixed
points (bistability).

4. Rock–Paper–Scissors
Suppose that the βi > 0 and the αi < 0 in Eq. 6. In this situation,
there is an interior fixed point with all coordinates positive. Theo-
rem 7.7.2 in Hofbauer and Sigmund (1) describes the asymptotic
behavior of the replicator equations for these games.

Theorem 2. Let ∆ =β1β2β3 + α1α2α3. If ∆> 0, solutions con-
verge to the fixed point (stable spiral). If ∆< 0, their distance from
the boundary tends to 0 (unstable spiral). If ∆ = 0, there is a one-
parameter family of periodic orbits.

In ref. 3, the following result is proved, which covers some sit-
uations with stable spirals.

Theorem 3. Suppose that the modified three-strategy game H has
(i) zeros on the diagonal, (ii) an interior equilibrium ρ, and that
H is almost constant sum: Hij +Hji = γ + ηij with γ > 0 and
maxi,j |ηi,j |<γ/2. Then there is coexistence and furthermore for
any δ > 0 if ε< ε0(δ) and µ is any stationary distribution con-
centrating on configurations with infinitely many 1’s, 2’s, and 3’s
we have

sup
x
|µ(ξ(x ) = i)− ρi | < δ.

In words, the equilibrium frequencies are close to those of the
replicator equation for the modified game.

Turning to simulation, we first consider the constant sum game
(which is covered by Theorem 3).

G2 1 2 3
1 0 4 −3
2 −1 0 5
3 6 −2 0

H2 1 2 3
1 0 6.5 −7.5
2 −3.5 0 8.5
3 10.5 −5.5 0

.

Note that H2 is again constant sum. It has ∆> 0, so the replica-
tor equation spirals in to the fixed point, and Theorem 3 implies
there is coexistence in the spatial game with weak selection. The
simulation of the spatial game 1 + 0.2G given in Fig. 2 confirms
this. Note that the observed densities of the three strategies are
close to the theoretical prediction from the replicator equation
for H2. (0.31, 0.43, 0.25).

For our second example, we consider a game G3 for which
the modified game H3 has ∆< 0, and hence the solution to the
replicator equation spirals out to the boundary.
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Fig. 3. Frequencies of the three strategies versus time in the unstable rock–
paper–scissors game 1 + 0.2G3.
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Fig. 4. Final state in the simulation in Fig. 3. Note that there is significant
spatial correlation in contrast to the simulation of the public goods game in
Fig. 1. Here, ρ11 = 0.1775, ρ22 = 0.2256 and ρ33 = 0.2031.

G3 1 2 3
1 0 1 −2
2 −3 0 2
3 3 −2 0

H3 1 2 3
1 0 3 −4.5
2 −5 0 4
3 5.5 −4 0

.

Fig. 3 shows that spatial structure stabilizes the unstable rock–
paper–scissors example, i.e., the densities stay bounded away
from 0. The apparent periodic behavior will disappear when a
large enough system is simulated. For a discussion of this, see
section 5 of a 1998 paper by Durrett and Levin (18). As explained
in SI Appendix, Section S3, sufficiently large means that the side
of the cube is much larger than the correlation length. Fig. 4
shows a picture of the final state in the simulation run that pro-
duced Fig. 3.

5. Stag Hunt
To prepare for the discussion of bistable 3 × 3 games, we begin
with a 2× 2 example.

Stag Hare
Stag 4 0
Hare 2 1

.

To explain the matrix: You can go hunt Stag (a large male deer),
but if you go alone, then you have no chance to get one. If you
hunt Hare and the other player hunts Stag, you get to keep all
the rabbits. If you hunt Hare and the other player does also, then
you split the kill.

If we transform so that there are 0’s on the diagonal and
replace the strategy names by numbers, the game becomes G .
The modified game is H .

G 1 2
1 0 −1
2 −2 0

H 1 2
1 0 −0.5
2 −2.5 0

.

In H , (ρ1, ρ2) = (1/6, 5/6) is an unstable equilibrium. If
u1> 1/6, the first strategy becomes more attractive and increases
further.

It was shown in section 6 of ref. 3 that if ρ1< 1/2, then the 1’s
take over the system. This is proved by considering the limiting
PDE for the local density of strategy 1, which is

du

dt
= σ2u ′′/2 + φ(u) with φ(u) = u(1− u)[b − (b + c)u],

where b =−0.5, c =−2.5. When b, c< 0, this equation has a
traveling wave solution that moves with velocity v

u(t , x ) = w(x − vt), u(−∞) = 1, u(∞) = 0.

The 1’s take over if and only if v > 0, which is equivalent to∫ 1

0
φ(x ) dx > 0. Since φ is a cubic with zeros at 0 and 1, this holds

if and only if the interior equilibrium ρ= b/(b + c)< 1/2.
Fig. 5 gives a visual explanation of the difference between

interfaces in the public goods and stag hunt games. For an
explanation of the relevance of the behavior of interfaces to
properties of stochastic spatial models, see the 1999 paper by
Molofsky et al. (19).

6. Multiple Myeloma
The original matrix, which we will call G4, is given in Eq. 3. The
modified game has entries

H4 1 2 3
1 0 A B
2 E 0 −D
3 C F 0

,

where A= (1 + θ)a − θe , E = (1 + θ)e − θa B = (1 + θ)b − θc,
C = (1 + θ)c − θb D = (1 + θ)d , and F = θd . The modifica-
tion of the game does not change the sign of D , but it puts a
positive entry F in G3,2. It may also change the signs of one
or two of the other four nonzero entries. Noting that A< 0 if
e > (1 + θ)a/θ while E < 0 if e <θa/(1 + θ), we see that if
one of these two entries is negative, the other one is positive.
The same holds for B and C , so there are nine possibilities for
the signs of A,B ,C ,E and a wide variety of possible behav-
iors for the spatial game that are not found in the replicator
equation. In particular it is possible for all three strategies to
coexist in the spatial model, but not in the replicator equation.
These possibilities were systematically considered in section 9.1

Fig. 5. The simulations were started with a strip of one strategy in between
two strips of the opposite type. In the public goods game, on the left the
interface melts down, and we have coexistence. In the Stag Hunt, on the
right, the interface stays tight.
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Fig. 6. Frequencies versus time in a 100×100×100 simulation of the weak
selection multiple myeloma game 1 + (1/3)G4, with a = e = 2, d = 1, and
b = c = 1.25. Note that the frequencies first get close to the unstable fixed
point at (0.531, 0.306, 0.1633) and then start heading toward the boundary
equilibrium.

of ref. 3. The dramatic differences between the properties of
the spatial game and the replicator equation cast doubt on the
proposed insights into therapy that emerge from the analysis
of Dingli et al. (see the discussion that begins on page 1,134
of ref. 5).

Here, our interest in this model is as an example with bista-
bility. Suppose that A,B ,C ,E > 0 and DC/BE >F/A, which
holds for the original game entries. Results from ref. 3, which are
described in SI Appendix, Section S4, show that there are three
cases:

Case 1. C/E > 1 − F/A. The replicator equation converges to
the 1,3 equilibrium.

Case 2. 1−F/A>C/E > 1−DC/BE . There is an interior fixed
point that is a saddle point, and the replicator equation exhibits
bistability.

Case 3. 1 − DC/BE >C/E . The replicator equation converges
to the 1,2 equilibrium.

In our simulation of case 2 we take a = e = 2, d = 1, and vary
b = c. The perturbed game is very simple in this case: A=
E = a = e , B =C = b = c, D = 1.5, F = 0.5. Since B =C = c
the condition for case 2 is

1− 0.5

2
>

c

2
> 1− 1.5

2
,

or 1.5> c> 0.5. When c = 1.5, the 1,3 equilibrium wins. When
c = 1, the 1,2 equilibrium wins. In principle we could find the
value of c where the limiting equilibrium changes by showing that
the limiting system of PDE has traveling wave solutions and find-
ing the parameter value where the velocity changes sign, but this
seems to be difficult mathematical problem.

When c = 1.25, the 1,2 equilibrium wins (Fig. 6), but takes a
long time to do so, suggesting that this value is near the point
where the limiting state changes. Fig. 7, which shows the final
state of the simulation, shows that we get separation into regions
that look like the two possible equilibria, and then the 1,2 regions
grow and take over.

7. Summary
In this paper, we have used simulation and heuristic arguments
to make predictions about the behavior of games that cannot be

analyzed rigorously using the methods of ref. 3. The main con-
tribution is to describe a procedure for determining the behav-
ior of spatial three-strategy games with weak selection, when the
game matrix G has no unstable edge fixed points. One first forms
the modified game Hij = (1 + θ)Gij − θGj ,i , where θ is a con-
stant that depends on the spatial structure, but not on the entries
in the game matrix. θ≈ 1/2 in the three-dimensional nearest-
neighbor case. The behavior of the spatial game with matrix G
can then be predicted from that of the replicator equation for
H . We say predicted because in some cases the behavior is not
the same.

For three-strategy games without unstable edge fixed points,
there are four major types:

1. When there are 1, 2, or 3 stable edge fixed points and they
can all be invaded, there is coexistence in the spatial evo-
lutionary game when selection is small. This was proved in
ref. 3

2. As first observed by Durrett and Levin (20), when the replica-
tor equation is bistable, i.e., the limit depends on the start-
ing point, the spatial game has a stronger equilibrium that
is the limit for generic initial conditions. In two strategy
games, the victorious strategy is determined by the direc-
tion of movement of the traveling wave solution of the
PDE. For three-strategy games, we do not know how to
prove the existence of such traveling waves or compute
their speeds, but simulations suggest that the same result
holds.

3. In the case of rock–paper–scissors games, there is coexistence
when the replicator equation converges to the interior fixed
point. This was proved in ref. 3 when the game is “almost
constant sum.” It is somewhat surprising that when the repli-
cator equation trajectories that spiral out to the boundary,
space exerts a stabilizing effect and the three strategies coex-
ist. This result has also been found recently by Ryser and
Murgas (10).

4. Last, and least interesting, is the situation in which the replica-
tor equation converges to a boundary fixed point. Simulations
show (SI Appendix, Section S5) that the same behavior occurs
in the spatial evolutionary game.

Fig. 7. Picture of final configuration for the simulation in Fig. 6. Note that
the blues (1’s) are spread throughout the space, while the reds (2’s) and
whites (3’s) are segregated. The correlations ρ11 = 0.1342, ρ22 = 0.1600, and
ρ33 = 0.1497 are smaller than those in Fig. 4.
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Work remains to be done on three-strategy games with unsta-
ble boundary fixed points; however, the work presented here can
be used to analyze all of the games in all the papers we have
cited except for one example in ref. 10. In many cases the behav-
ior of the spatial game differs from that of the replicator equa-
tion, so it is important to consider the impact of spatial structure
in order to obtain correct conclusions. The results we have pre-
sented here are derived in the limit that the selection w→ 0, but

simulations show that in many cases the conclusions are accurate
when w = 0.1 or even 0.25.
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