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Collective cell movement is critical to the emergent properties of
many multicellular systems, including microbial self-organization
in biofilms, embryogenesis, wound healing, and cancer metastasis.
However, even the best-studied systems lack a complete picture of
how diverse physical and chemical cues act upon individual cells to
ensure coordinated multicellular behavior. Known for its social
developmental cycle, the bacterium Myxococcus xanthus uses co-
ordinated movement to generate three-dimensional aggregates
called fruiting bodies. Despite extensive progress in identifying
genes controlling fruiting body development, cell behaviors and
cell–cell communication mechanisms that mediate aggregation are
largely unknown. We developed an approach to examine emer-
gent behaviors that couples fluorescent cell tracking with data-
driven models. A unique feature of this approach is the ability to
identify cell behaviors affecting the observed aggregation dynam-
ics without full knowledge of the underlying biological mecha-
nisms. The fluorescent cell tracking revealed large deviations in
the behavior of individual cells. Our modeling method indicated
that decreased cell motility inside the aggregates, a biased walk
toward aggregate centroids, and alignment among neighboring
cells in a radial direction to the nearest aggregate are behaviors
that enhance aggregation dynamics. Our modeling method also
revealed that aggregation is generally robust to perturbations in
these behaviors and identified possible compensatory mecha-
nisms. The resulting approach of directly combining behavior
quantification with data-driven simulations can be applied to
more complex systems of collective cell movement without prior
knowledge of the cellular machinery and behavioral cues.
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Collective cell migration is essential for many developmental
processes, including fruiting body development of myxobac-

teria (1) and Dictyostelium (2), embryonic gastrulation (3, 4), and
neural crest development (5). Conversely, cancer cell metastases
represent detrimental migratory events that disseminate dys-
functional cells (6). In all these processes, a population of cells
leaves its current location and migrates in a coordinated manner
to new locations where motility becomes reduced. Remarkable
progress has been made in studying the intracellular machinery
of these organisms (7). Much less is known about the system-
level coordination of cell migration. Cell movement in these
systems is a 3D, dynamic process coordinated by a combination
of diverse physical and chemical cues acting on the cells (3, 5, 8).
Recent developments in tracking individual cell movement in
vivo have provided unprecedented detail and revealed surprising
levels of heterogeneity (5, 7). Reverse engineering of how these
individual cell movements lead to collective migration patterns
has proved difficult. Whereas computational models are able to
test whether a given set of ad hoc assumptions lead to emergence
of observed patterns, these models usually ignore heterogeneity of
cell responses, overlook complex behavior dynamics, and rarely
perform quantitative comparisons with in vivo results (9–12).

Therefore, a data-driven modeling framework that integrates
multiple levels of experimental observation with quantitative
hypothesis testing is needed to uncover the interactions required
for emergent behavior. We explored this possibility, using a
simple bacterial model system.
Emergent behaviors are a central feature of the life cycle of

Myxococcus xanthus, which occurs within a biofilm many cell
layers thick. Cells inside the biofilm are capable of signaling (13)
and exchanging outer membrane material (14). Cells are flexible
rods that move along their long axis within the biofilm (15).
Periodic reversals in direction of movement and a high length-to-
diameter aspect ratio allow cells to align with neighbors, move in
groups, and follow paths taken by others (16–18). When faced
with amino acid limitation, cells self-organize into aggregates
much taller than the surrounding biofilm called fruiting bodies
(17, 19). Aggregation begins with a burst of cell motility during
which cells coalesce into unstable towers a few layers thicker
than the surrounding biofilm (20). Within 1 h, towers begin to
form spatially stable aggregation centers. Although some ag-
gregates mature into spore-filled fruiting bodies, many initially
stable aggregates disseminate back into the biofilm (21). Few
data exist on the cues and cell behaviors that lead to these
emergent behaviors. Cell-tracking experiments revealed that
motility increases outside aggregates (20, 22, 23) and decreases
inside (23, 24) whereas statistical image analysis revealed that
the area of the aggregate solely determines whether an aggregate
will disappear or mature into a fruiting body (19). On their own,
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these observations have been unsuccessful in explaining how
cells coalesce to form stable aggregates.
Biochemical and genetic experiments have identified systems

that could play a role in governing cell behavior during aggre-
gation. Cells chemotax toward specific lipids by suppressing re-
versals when moving up the chemical gradients (25), creating a
biased walk. Exopolysaccharides, a major component of the ex-
tracellular matrix, also inhibit cell reversals in a concentration-
dependent manner (26). However, inhibiting cellular production
of known lipid chemoattractants does not diminish aggregation
(27, 28), and it is unclear whether exopolysaccharides act as
chemoattractants. Induction of developmentally related genes
when cells are tightly packed and aligned, but not for randomly
positioned cells (29), suggests possible contact-based intercellu-
lar signaling. In agreement, cells at low cell densities decrease
reversal frequency as group size increases (30). However, this
reversal suppression does not directly scale to the cell densities
typically used in assays of development (22). Thus, whereas cells
undergo behavioral changes indicative of intercellular signaling,
conflicting results obscure what these signals are or how they
coordinate cell behaviors to drive aggregation. Computational
modeling has frequently been used to bypass the lack of specific
mechanistic details but has been largely unsuccessful in spanning
the realm between fact and fancy.
Although computational approaches have been extensively

used in hypothesizing models of aggregation (24, 31–36), the lack
of quantitative datasets describing cell movement during aggre-
gation has left the cell behaviors that drive the process conjec-
tural. As a result of these models, cell length-to-width ratio (35),
cell alignment (35, 37), active turning (36), density-dependent
speed reduction (37), physical jamming (31, 32, 34), and stream-
ing (32, 34) have been introduced as cell behaviors required to
generate aggregates in simulations. Quantitative comparisons
between simulations and experimental results are needed to
evaluate whether these simulations fully capture the characteris-
tics of aggregation, but such comparisons are rarely performed.
For example, Zhang et al.’s (21) analysis of the model in which
aggregation is driven by cell alignment and reduced cell speed
inside aggregates (24) revealed that the simulations fail to quan-
titatively capture the correct aggregation rate, aggregate distri-
bution, and aggregate count. Despite this wealth of work, neither
biological experiments nor mathematical models have so far
identified the cell behaviors that mediate aggregation.
Here, in the absence of knowledge about the mechanistic basis

of the cues directing cells, we identify motility parameters af-
fecting the emergence of aggregates. We developed an approach
that couples multilevel cell tracking (at the level of individual
cells within the biofilm and the level of the growing aggregates)
with simulations driven by the cell behavior data. Directly in-
cluding quantified cell behaviors in simulations, rather than av-
erages or artificially generated behavior distributions, allowed
full integration of heterogeneity and complex correlations in cell
responses. Hypotheses about the cell behaviors driving aggre-
gation were tested in increasingly complex simulations by
quantitatively comparing simulations with in vivo results. This
iterative process allowed us to identify cell behaviors that are
sufficient and necessary to match the observed aggregation dy-
namics and creates opportunities for more powerful comparisons
of mutant/parent behavioral differences in future studies.

Results
Cells Decrease Movement Inside Aggregates.To quantify cell behavior
during development, we used time-lapse microcinematography to
measure biofilm cell density, determine aggregate boundaries using
a cell-density threshold, and follow individual cells within the bio-
film (Fig. S1). Under our conditions, aggregation begins 11–12 h
after spotting the cells on starvation media. We selected an ∼5-h
window that began just before the initiation of aggregation through

the period when stable aggregates form (Fig. S1A). The beginning
of this window was designated time-point zero. About 1 h into this
time span aggregation becomes evident. Stable aggregates appear
by 1.5 h with a few of the smaller aggregates disappearing by 5 h.
Aggregation was not compromised by the use of strains expressing
fluorescent proteins or prolonged fluorescent imaging (Fig. S1 D
and E).
Cell-tracking algorithms were developed to track individual

fluorescent cells over the 5-h window (Fig. S1B). Cell trajectories
were subdivided into three movement states: persistent forward,
persistent backward, or nonpersistent. A persistent state was
assigned to trajectory segments in which cells were actively moving
along their long axis. To account for cell reversals, persistent
movements were then further classified as backward or forward
relative to the direction observed at beginning of the trajectory.
The nonpersistent state was assigned when we encountered a
velocity too small (less than ∼1 μm/min) or reversal period too
high (greater than ∼1 reversal per minute) to accurately detect
persistent movement at the spatial and temporal resolution of the
time-lapse images. The resulting assignments divide a trajectory
into segments. The vector from the beginning of one segment to
the next was defined as a run vector (Fig. S1C). As such, a new
run begins each time a cell changes its movement state. In what
follows, we use run vectors to quantify cell motility behavior and
to define the behavior of agents in agent-based simulations.
To determine how aggregates affect cell behavior, runs were

binned as starting inside or outside the aggregates. In both bins,
the speed, duration, and distance of the runs are highly variable
(Fig. 1 A–C). Within aggregates, cells move with only a modest
average speed decrease of 1.1-fold relative to outside the ag-
gregates (Fig. 1A, blue asterisks). However, the probability for a
cell to transition to a nonpersistent state at the end of the run
increases 1.8-fold (Fig. 1D). Moreover, the average duration of
nonpersistent runs doubles inside the aggregates (Fig. 1B, red
asterisks). Average persistent run duration also decreases inside
aggregates by ∼1.5-fold (Fig. 1B, blue asterisks). These effects
lead to a combined (persistent and nonpersistent) 2-fold de-
crease in average run distance inside the aggregates vs. outside
(Fig. 1C, magenta circles). These results are in agreement with
other work suggesting that cells reduce movement inside aggre-
gates (24) and provide much more quantitative detail.
Previous observations indicated that cells increase their

movement when aggregation initiates (20, 22, 23). To quantify
these effects, the mean and 95% confidence intervals for distance,
duration, and speed of persistent state runs were calculated in a
20-min sliding window over the length of the experiment (Fig. 1
E–G). Early in aggregation (ca. 0–1.5 h), the mean persistent run
duration outside the aggregates increases ∼1.8-fold (Fig. 1F, blue
lines), causing an increase in run distance (Fig. 1G, blue lines). At
∼1.5 h, run duration transiently returns to levels seen before the
onset of aggregation. Soon after, a second transitory increase in
run duration occurs. As aggregates mature, run duration gradually
decreases back to preaggregation levels. Inside the aggregates,
speed and duration remain constant (Fig. 1 E–G, black lines).
Nonpersistent run behaviors are also relatively constant, with run
distance varying less than 1.5 μm over the length of the experiment
(Fig. S2 A–C). The probability of transitioning to a nonpersistent
state remains about the same, with the exception of a transitory
increase outside the aggregates coinciding with the first peak in
run duration (Fig. 1H). Again, our measurements not only confirm
earlier observations but also provide greater quantitative detail to
facilitate mathematical modeling.

Density-Dependent Motility Decrease Is Not Sufficient for Aggregation.
To identify the cell behaviors most important to timely and
complete aggregation, we developed a data-driven, agent-based
simulation technique that couples individual agent behavior with
experimentally recorded cell-tracking statistics and biofilm-level
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dynamics. Agents move in a series of straight lines with prop-
erties (persistent vs. nonpersistent, with duration, speed, and
turning angle relative to the previous run) sampled from the
experimentally measured run distributions. Given that run speed
and duration were correlated (Spearman’s ρ= 0.2 for persistent
runs, ρ=−0.5 for nonpersistent runs), they were sampled as a
pair from a joint distribution containing the values from each
experimental run. In the simplest model form, agents choose
their run states, speeds, durations, and turning angles randomly
from a distribution of all experimentally measured run behaviors
independent of their location, cell density, or other factors. Be-
cause motility of the agents in this model is uncorrelated with
their environment, the model does not generate any aggregates.
Cells instead approach a steady state of uniform density (Fig.
S3A). For aggregates to form, cells must coordinate their be-
havior through external cues.
To model behavior dependent on external cues, agent be-

havior was chosen conditional on the cell density at their location
measured in the fluorescent cell microcinematography experi-
ments. As a consequence, agents behave as if they are within the
density profiles from the tracking experiments. This technique
facilitates directly comparing different cell-behavior dependencies
to the experimental results. Varying the enforced run behavior
conditions in simulations can then test different hypotheses on the
cues coordinating cell behavior. If the correct cell behavior de-
pendencies are included in the simulations, aggregates should
appear at the same locations, at the same rate, and to the same
extent as the respective movie. We call this simulation type “open
loop” to denote that agent behavior is defined solely by the ex-
ternal density profile extracted from a microcinematography
experiment (Fig. 2A, blue box).
Previous hypotheses of the mechanistic basis for aggregation

predicted that decreased cell movement inside aggregates was
the major driver of aggregate growth (21, 24, 31, 32, 38). We
tested the hypothesis that the observed decrease in cell movement

at the higher cell densities inside aggregates is sufficient to drive
aggregation by incorporating density dependence into the simu-
lations. Agents choose their run state, speed, and duration con-
ditional on the experimentally measured local cell density at the
beginning of their run. With the addition of this conditionality,
agents exhibit a relationship between average run distance and
local cell density similar to that of experimental runs (Fig. S3B). In
the resulting simulations, aggregates appear at nearly all expected
locations (Fig. 2B, Right). However, the fraction of cells within the
aggregate boundaries by the end of the 5-h window is threefold
smaller in simulations compared with experimental results (Fig.
2B, Left). Addition of time dependence when choosing the state,
speed, and duration (Fig. 1 E–H) does not improve the rate or
completeness of aggregation in simulations (Fig. S3 C and D).
These results are in agreement with another report indicating that
simulations driven solely by local cell density fail to correctly re-
produce the number, growth rate, and size of aggregates (21).

Cells Perform a Biased Walk Toward the Aggregate Center. Biased
walks are found in many types of cell patterning (8, 39, 40).
Although chemotaxis has not been implicated in M. xanthus
aggregation, M. xanthus can perform biased walks up specific
lipid gradients (25). Bias is created by increasing average run
duration when moving up the chemoattractant gradient; con-
versely, cells decrease average run duration when moving down the
gradient. We tested whether cells change their behavior, depending
on their direction of movement relative to nearby aggregates. Run
vectors were quantified with respect to the direction of moment
and distance to the nearest stable aggregate (Fig. S1A, green ovals).
The results show that persistent runs moving toward the aggregate
centroid are longer than runs moving away from it (Fig. 3A). This
bias is due to an increase in run duration rather than run speed
(Fig. 3 B and C). The probability of transitioning to a nonpersistent
state at the end of the run also depends on the run orientation
relative to the nearest aggregate (Fig. 3D). Inside the aggregates,

Fig. 1. Run behaviors are dynamic in time and space. (A–C) Time-integrated distributions of persistent (blue) and nonpersistent (red) run speed (A), duration
(B), and distance (C) inside (In) and outside (Out) of the aggregates. Horizontal lines inside the boxes indicate distribution median. Tops and bottoms of each
box indicate 75th (q3) and 25th (q1) percentiles, respectively. Whiskers extend to the highest and lowest points or q3 + 1.5(q3 − q1) and q1 − 1.5(q3 − q1),
whichever is closer to the median. Asterisks indicate average. Circles indicate combined (persistent and nonpersistent) average. (D) Time-integrated prob-
ability of choosing a nonpersistent run after a persistent run inside (In) or outside (Out) of the aggregates. (E and F) Mean (solid lines) and bootstrapped 95%
confidence intervals (dashed lines) for run speed (E), duration (F), distance (G), and probability of choosing a nonpersistent run after a persistent run
(H) calculated in a 20-min sliding window. Blue lines indicate runs starting outside the aggregates, and black lines, runs inside the aggregates.
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nonpersistent run durations are 1.5 times longer when moving away
from the aggregate centroid (Fig. 3 E and F). In contrast to a
previous report of tangential cell movement inside the aggregates
(41), our run durations are longest when pointed toward the ag-
gregate centroid (Fig. S4A).

A Biased Walk Toward Aggregates Aids in Aggregation. To test the
importance of the biased walk in aggregation, simulations were
performed in which agent’s run state, duration, and speed were
chosen conditional on the orientation and distance of the agent
to the nearest aggregate at the beginning of the run in addition to
the local cell density. To account for observed time dependence
in the biased walk (Fig. S4 B–D), run state, speed, and duration
were also chosen conditional on time since the beginning of the
experiment. As a result, run duration dynamics relative to ag-
gregate location in the simulation matched those in experiments
(Figs. S3E). The inclusion of the biased walk increases aggregation
rate and completeness, leading to a twofold increase in the frac-
tion of agents inside aggregates (Fig. 4A). Aggregate density (Fig.
4B) and size (Fig. 4C) in simulations were close to the experi-
mental values. In models with the biased walk, elimination of time

dependence in run properties marginally decreases aggregation
(Fig. S3F). In these simulations, it is necessary for agents to choose
their next behavior conditional on the orientation and distance to
the nearest aggregate when up to 100 μm away to achieve full
aggregation (Fig. S3G).

Closed-Loop Model of Aggregation. The open-loop simulations iden-
tified behaviors that achieve aggregation comparable to that of
experimental results. By nature of the technique, aggregate initi-
ation and growth in these simulations were enforced through the
continued input of measured cell density profiles. To more strin-
gently test the effect of cell behaviors on aggregation, we closed
the loop between agent behavior and the density profile. In con-
trast to the open-loop simulation’s dependence on experimental
cell density profile as input, the closed-loop simulations (Fig. 2A,
red box) estimate the density profile from the agent positions by
kernel density estimation (KDE) (42). Aggregates were then de-
tected from the agent density profile using the same density cutoff
as in experiments. The resulting density profile and aggregate

Fig. 2. Reduced movement inside aggregates is not sufficient to fully rep-
licate aggregation in open-loop simulations. (A) Overview of open-loop
(blue) and closed-loop (red) simulations. The extra path in the closed-loop
model is in boldface type to highlight that the agent’s positions feed back
into the density profile of the biofilm, closing the loop between individual-
and population-level behaviors. (B) Comparison of experimental results with
open-loop simulations in which agents reduce average movement pro-
portional to cell density. (B, Left) Average (solid lines) and SDs (dashed lines)
of the percentage of cells inside experimentally observed aggregate
boundaries for experiment (red) and simulation (blue). (B, Right) Compari-
son of last frame of representative experientially observed (Observed) cell
density with that observed in a simulation.

Fig. 3. Cells perform a biased walk toward aggregates. (A–F) Average (solid
lines) and bootstrapped 95% confidence intervals (dashed lines) of persistent
run distance (A), duration (B), speed (C), probability of choosing a non-
persistent run (D), nonpersistent duration (E), and distance (F) in a 10-μm
sliding window from the beginning of the run. Runs are binned into either
pointing toward [cos(βn) > 0 in A–C, E, and F or cos(ϕn-1) > 0 in D; Fig. S1C] the
nearest aggregate centroid (purple lines) or pointed away [cos(βn) < 0 in A–C,
E, and F or cos(ϕn−1) < 0 in D] from the nearest aggregate centroid (green
lines). Negative distances indicate that the run began inside the aggregate.
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boundaries were used to choose the agent run characteristics,
closing the feedback loop between agent behavior and their den-
sity profile (Fig. 2A, boldface line). Except for the change in
density estimation, the closed-loop model is identical in design to
the open-loop model. That is, agents choose their run state, speed,
and duration conditional on the local agent density, distance, and
orientation to the nearest aggregate and time since the beginning
of the experiment. Closed-loop simulations thereby provide a
more realistic simulation environment by allowing agents’
positions to modify the surrounding density profile.
The resulting closed-loop simulations lead to aggregate for-

mation but, compared with experimental results and open-loop
simulations, the fraction of cells in aggregates decreased about
twofold (Fig. 5A). Although the resulting average cell density
inside the aggregates agrees with experiments (Fig. S5A), the
aggregate area is smaller than in experimental results (Fig. S5B).
Therefore, we hypothesized that additional run properties need
to be included to facilitate complete aggregation.

Cell Trajectories Are Aligned Within the Biofilm. In agreement with
other experimental observations (16–18, 23, 24), visual inspec-
tion of cell trajectories indicates alignment between neighboring
paths (Fig. S6A, solid boxes). The presence of this alignment has
previously been proposed to play a role in aggregation, but has
not been experimentally quantified in the high cell densities used
in developmental assays. To quantify alignment, we followed ref.
16 by calculating nematic alignment strength as the correlation
of run orientations modulo 180° (with cells moving in the opposite
directions still considered aligned) among runs that start within a
15-μm radius and ±5 min of one another. In agreement with visual
observations, quantification indicates a correlation in neighboring
run orientations (Fig. 5B). Furthermore, observations (Fig. S6,

dashed boxes) and quantification of the mean run orientation
relative to the nearest aggregate (hcosð2βni, Fig. S1C) indicate
that run vectors outside the aggregate preferentially orient in a
direction radial to the nearest aggregate (Fig. 5D). Inside the
aggregates, runs are biased toward a more tangential orientation.
The orientation of cells relative to the aggregates changes with
time, with a radial run orientation prevalent at the onset of ag-
gregation and becoming less pronounced as the aggregates ma-
ture. In contrast, run orientation inside the aggregates is random
early in aggregation and becomes more tangential to the aggre-
gate boundary as the aggregates mature (Fig. S6B).

Cell Alignment Aids in Aggregate Initiation. The hypothesis that cell
alignment improves aggregation was tested in a closed-loop model.
Cell alignment was included in simulations by choosing agent
turning angles conditional on both the average nematic orientation
of neighboring agent runs and the time since the beginning of the
experiment. To allow agents time to align before the onset of ag-
gregation, the simulation was run for 1.5 h of simulation time, using
the behavior distribution and turning angles from the first 10 min
of the experimental results. During this time, agent alignment ap-
proaches that seen in the experimental results (Fig. S7A). After the
1.5-h prerun, the simulation was started using agent positions and
orientations from the end of the prerun. Addition of neighbor
alignment increases aggregation to levels comparable to those of
the open-loop model (Fig. 5C). As a control, adding a prerun to
simulations without neighbor alignment did not affect aggregation
(Fig. S7B), confirming that addition of the prerun does not affect
aggregation beyond that of aligning the agents.
The addition of neighbor alignment in simulations does not

cause cells to orient radially with the nearest aggregate (Fig. S7C).
To include orientation in the simulations, distance to the nearest
aggregate boundary and angle to the nearest aggregate centroid
were added as dependences on choosing the next turning angle. As
a result, the closed-loop model displayed aggregation rates com-
parable to those of the experimental results (Fig. 5E). Furthermore,
aggregate cell density (Fig. 5F), area (Fig. 5G), and aggregate count
(Fig. 5H) agree with the experimental results. Thus, the closed-loop
model revealed one additional feature not discovered in the open-
loop model, a requirement for cell alignment. It now becomes
possible to perturb the cell behavior dependences included in
the closed-loop model to gauge their relative importance.

Behaviors Shaping Aggregation Dynamics.By performing simulations
in which the behaviors suggested to be required for aggregation
are removed or modified, it is possible to predict phenotypes. To
this end, closed-loop simulations were performed in which be-
haviors identified as necessary to match observed aggregation
dynamics were systematically modified (Fig. 6). Time dependence
of the agent’s turning angles was not included to enable running
simulations for times longer than the available experimental data
time window. Simulations indicate that this change does not affect
aggregation dynamics (Fig. S7E). As in open-loop simulations
(Fig. 2B), removing the biased walk slows the aggregation rate
(Fig. 6B). However, by removing the time dependencies, closed-
loop simulations can be run beyond the length of the of the time-
lapse movies. When simulations were continued for another 5 h,
agents continue to aggregate, approaching a steady state by 10 h.
Even after 10 h, the fraction of cells inside the aggregates and
aggregate density are ∼30% lower than in experimental results
and aggregate boundaries appear less well defined.
The two transient increases in run duration at the onset of

aggregation (ca. 0.5–1.25 h, Fig. 1F) and during rapid aggregate
growth (ca. 2.5–3.4 h) suggest a possible role for time-dependent
run duration. Outside the aggregates, this increase in duration
leads to a combined (persistent and nonpersistent) average run
distance in the earlier time window that is 1.3 times longer than
in the latter (Fig. S7F). Inside the aggregates, run distances are

Fig. 4. A biased walk toward aggregates contributes to aggregation in
open-loop simulations. (A–C) Comparison of experimental results (red) with
simulations (blue) in which agents reduce movement proportional to cell
density and perform a biased walk toward aggregates. (A, Left) Formatted
as in Fig. 2B. (A, Right) Representative time courses of experientially observed
and simulation cell densities over the course of the experimental timewindow.
Grayscale is proportional to cell density as in Fig. 2B. (B) Distribution of average
cell density inside aggregates. (C) Distribution of aggregate area. Box plots are
formatted as in Fig. 1A. Line plots indicate mean. (Scale bars, 100 μm.)
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about the same in both time windows (Fig. S7F). To determine
the role of these changes in aggregation dynamics, we used
closed-loop models in which run data only from the 1.5- to 2-h or
only from the 2.5- to 3.4-h window were used to drive agents’
behavior for the whole simulation duration. Models based on the
short run duration window (1.5–2 h) produced aggregates at a
rate and completeness equivalent to those of the experimental
results (Fig. 6C). In contrast, agents in simulations using the
longer run durations (2.5–3.4 h) aggregate at a faster rate and to
a higher level of completeness than in experimental results (Fig.
6D). We wondered whether extending the window of longer re-
versal durations could overcome the need for a biased cell walk. To
test this hypothesis, simulations were run using the time windows
but without a biased walk toward aggregates. Using the window
with longer run durations, agents formed aggregates comparable to
those in experimental results in rate, size, and cell density (compare

Fig. 6A with 6E). The short run duration window caused agents to
aggregate at a rate and completeness comparable to simulations in
which behaviors were chosen from the entire movie but without the
biased walk (compare Fig. 6B with 6F). Removing both alignment
and the biased walk all but abolished aggregation, even when using
the longer run duration window (Fig. 6G).

Discussion
Identifying cell behaviors that mediate self-organization without
a full understanding of the underlying signaling network and
motility control mechanisms is a daunting task. Here we de-
veloped a framework that integrates datasets of quantified cell
behaviors with computer simulations driven by these datasets to
reverse engineer the self-organization process. This approach
revealed a set of behaviors that appear to mediate complete
aggregation in M. xanthus. Our results suggest that cells use a

Fig. 5. Closed-loop simulations reproduce wild-type–like aggregation with the addition of cell alignment. (A) Simulation results in which agents reduce
movement proportional to cell density and perform a biased walk toward aggregates. (A, Left) Average (solid lines) and SD (dashed lines) of the percentage
of cells inside detected aggregates for experimental (red) and simulation (blue) replicates. (A, Right) Comparison of the last frame of a representative ex-
perientially observed (Observed) cell density with a simulation (Simulated). (B) Average (solid lines) and 95% confidence intervals (dashed lines) of run vector
alignment strength (blue lines) with neighboring run vectors that occurred within ±5 min and 15 μm. Black lines indicate alignment strength with randomly
chosen runs. Values may span (−1,1) where 1 indicates all runs are parallel. Likewise, −1 indicates all runs are perpendicular. (C) Same as A with the addition
that agents in the simulations align their orientation with neighboring agents. (D) Alignment strength of run vectors (blue lines) with vector pointing toward
nearest aggregate centroid. Black lines indicate alignment strength after randomly shuffling each run’s distance to the nearest aggregate. Negative distances
indicate that the run began inside an aggregate. Values may span (−1,1) as in B. (E–H) In addition to the agent behaviors from simulations in A and C, agents orient
toward the nearest aggregate centroid. (E, Left) Percentage of cells inside aggregates as in A. (E, Right) Comparison of representative experientially observed cell
density time progression with that observed in the closed-loop simulation. Grayscale is proportional to cell density as in A. (F) Average cell density inside ag-
gregates. (G) Average aggregate area. (H) Aggregate count in each replicate. Box plots are formatted as in Fig. 1A. Lines indicate mean. (Scale bars, 100 μm.)
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Fig. 6. Probing interactions shaping aggregation dynamics in closed-loop simulations. (A–G) Percentage of cells inside aggregates, aggregate area, cell
density inside aggregates, and aggregate count from the last time point in simulations (blue) and experimental (red) results. Aggregate density and area box
plots are formatted as in Fig. 1. Aggregate count box plots indicate the SD of the replicate counts, white bar indicates the mean count, and each gray dot
indicates the count from one replicate. A visual image of the last frame of the simulation was created using a KDE; shading is the same as in Fig. 5A. (Scale bar,
100 μm.) (A) Same simulation as in Fig. 5 E–H. (B) Simulations with run behaviors from the entire experimental time span, alignment to neighboring cells and
to the nearest aggregate centroid, and without a biased walk toward aggregates. (C) Simulations with a biased walk, alignment, and run behaviors chosen
from a time window (1.5–2 h; Fig. 1F) containing short run durations outside of aggregates. (D) Simulations as in C except run behaviors from a time window
(2.5–3.5 h) containing longer run durations outside aggregates. (E) Same as D, minus the biased walk. (F) Same as C, minus the biased walk. (G) Same as E,
minus alignment to neighboring runs and the nearest aggregate centroid.
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combination of previously proposed behaviors, such as reduced
cell movement inside aggregates, and previously unknown be-
haviors, including a biased walk toward the aggregate centroid.
Remarkably, despite the large heterogeneity observed in indi-
vidual cell behavior (Fig. 1 A–C), we found that relatively small
changes in average cell behavior, such as a 15% increase in av-
erage run duration when moving toward aggregates (Fig. 3B),
dramatically improved aggregation. At the level of millions of
cells, the population can tolerate occasional eccentric behavior
provided the average cell behavior engages in the common ac-
tivity. Live imaging has revealed unexpected heterogeneity and
plasticity in stem cell biology (7), suggesting that heterogeneity
may be more widespread than currently appreciated in de-
velopmental biology. Large deviation occurs at the expense of
resource depletion and would be expected to persist only if it
provides an evolutionary benefit. The importance of small
changes in average behavior in the face of large deviations from
the mean also highlights the utility of large experimental datasets
and data-driven simulations to confidently distinguish important
cell behaviors from background noise.
To uncover the role of each cell behavior in a dataset with

multiple correlated and noisy variables, the framework uses two
simulation environments (Fig. 2A). The open-loop simulation
environment assesses the importance of specific cell behaviors by
directly overlaying the simulation agents over experimentally
measured environments. This overlay provides a structured way
to assess the role of each cell behavior individually. Once the
behaviors required to achieve quantitative agreement between
open-loop simulations and experimental patterns are identified,
closed-loop simulations in which the simulation agents define
and modify their environment are used to study how individual cell
behavior shapes the behavior of the population. Through system-
ically adding and removing dependencies driving cell behavior,
simulation results predict essentiality of various cell behaviors.
We believe the framework is generally applicable to many types

of cell-tracking experiments. The framework can be further gen-
eralized to include any additional data on the cell state (e.g.,
fluorescent gene reporters) or the surrounding environment (e.g.,
neighboring cells, landmarks, or boundaries) that could be cor-
related with cell behavior. For example, studies aiming to un-
derstand metastatic cancer cell invasion face challenges similar to
M. xanthus development. Tumor cell state and migration dynamics
are correlated with the local microenvironment, cell genetics, and
signaling cues (43). As in M. xanthus development, correlations
between these cues and heterogeneity in cell response obscure the
relationships between the microenvironment, cell state, and mi-
gration. Techniques for individual cell imaging and tracking in
tumor models are more complex, but the resulting datasets are
similar to that used here. For example, multiphoton microscopy
enables tracking of individual cells in vivo and the second and
third harmonic generation signals from the technique allow im-
aging of the environment, including collagen type I fibers, lipids,
and lipid bodies, in the same image. Addition of fluorescent dyes,
antibodies, and proteins can further enrich the dataset by con-
currently providing information about individual cell state, in
some cases down to individual signaling pathways (44). Combining
the microscopy and cell-tracking data with simulations in which
the local microenvironments are defined a priori could be used to
identify microenvironment cues of cell behavior that would be
analogous to the open-loop simulations described here. In cases
where datasets contain a large number of independent variables,
or if no clear hypotheses exist, statistical techniques such as cor-
relation analysis, mutual information, or granger causality (45, 46)
could be used to generate an initial hypothesis to test in simula-
tions. In systems that have incomplete datasets, hypothesized
distributions can be integrated into the agent’s behavior. Modifi-
cation of what defines an agent in the simulation will be specific to
each case, but is straightforward.

Application of the framework to development of M. xanthus
identified decreased cell motility inside the aggregates, a biased
walk toward aggregate centroids, alignment with neighboring
cells, and cell orientation changes with respect to the aggregate
boundaries as behaviors contributing to aggregation. Surprisingly,
longer run durations outside of aggregates can compensate for
lack of a biased walk toward aggregates (Fig. 6E). This observa-
tion highlights a possible compensatory mechanism that could
make M. xanthus development especially robust. Such compen-
satory behaviors could mask phenotypes in traditional gene
knockout experiments, particularly when relying on visual dis-
criminators such as aggregate area or count at the end of the
development. Compensation by modulating run durations is a
particularly enticing mechanism because M. xanthus contains
21 chemoreceptors, of which 13 create altered developmental
phenotypes when deleted (47), and 2 are thoroughly implicated in
both development and reversal control (25, 48, 49). Furthermore,
these cell-reversal control pathways can react in timescales of
minutes (25) instead of the longer timescales required for protein-
level changes. The active role of chemoreceptors in development
also suggests the ability to sense chemical gradients, which agrees
well with the identification of a biased walk toward aggregates.
However, given that no developmental signals have been found
yet to guide aggregation, and considering the evidence of contact-
mediated reversal control, further studies are needed to unmask
the biological mechanisms of the salient cell behaviors.
This approach could speed up physiological analyses of strains

containing genetic deficiencies by applying the same framework to
analyze the behavior of fluorescently labeled mutant cells. Open-
and closed-loop simulations can then be used to test whether
behavioral differences observed in mutant cells affect aggregation
and predict whether these differences compensate for the lack of
another behavior. This approach creates a clear path of combining
data acquisition with simulations to formulate hypotheses for fu-
ture rounds of experiments. In this way, the framework can be
used to move from a coarse-grained understanding of the behav-
iors to a mechanistic understanding of how cellular machinery,
signals, and physical integrations guide emergent cell behaviors.

Methods
Bacterial Strains, Plasmids, and Growth Conditions. All strains and plasmids
used in this study are listed in Table S1.M. xanthus strains were grown in CYE
broth [1% Bacto casitone (Difco), 0.5% yeast extract (Difco), 10 mM
4-morpholinepropanesulfonic acid (Mops) (pH 7.6), and 0.1% MgSO4] at
32 °C with vigorous shaking. Development was induced on 10 mL TPM agar
[10 mM Tris·HCl (pH 7.6), 1 mM KH(H2)PO4 (pH 7.6), 10 mM MgSO4, 1.5%
agar (Difco)] containing 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG)
and 100 μM vanillate in 100-mm diameter Petri dishes. pLJS145 was con-
structed by PCR cloning tdTomato from ptdTomato with primers containing
3′-XbaI and 5′-KpnI restriction sites and ligated into pMR3487 (50).
pCRC36 was constructed by PCR cloning the eYFP from pEYFP with primers
containing 3′-NdeI and 5′-NheI restriction sites and ligated into pMR3629
(50). Strains LS3629 and LS3908 were constructed by electroporation (51) of
plasmids pCRC36 and pLJS145, respectively. Following electroporation,
transformants were selected on CYE 1.5% agar plates containing 50 μg/mL
kanamycin for pCRC36 or 15 μg/mL oxytetracycline for pLJS145.

Fluorescence Time-Lapse Image Capture. Strains LS3908 and LS3629 were
grown to exponential phase, mixed 1:2,500 (resulting in ∼500 individually
trackable tdTomato cells within the field of view), concentrated to 1.7 × 109

cells/mL, and 35 μL of the cell mixture was spotted onto TPM agar and then
dried uncovered in a 32 °C incubator. Once dry, the plates were covered,
wrapped with parafilm (Bemis Inc.), and incubated in a heated room. Room
temperature varied between 27 °C and 29 °C, averaging 28 °C. Time-lapse
images of the spots were acquired using a Leica DM5500B microscope (Leica
Microsystems) in the same heated room beginning at the indicated times in
the TRITC channel at 200× magnification every 30 s, a short enough time
frame that cells do not move more than one cell length between images.
Data capture was performed using a Flash2.8 (Hamamatsu Photonics) cam-
era, a Phoenix-D48CL frame grabber (Active Silicon), and the μManager
software (52). The fluorescence intensity was set to 55%, camera gain was
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set to 255, and exposure time was 600 ms. The mercury lamp was shuttered
when not acquiring an image. Imaging was carried out for ∼6 h. The time
point at which aggregation began varied by up to 1 h between replicates.
Replicate movies were truncated to synchronize the onset of aggregation
and equalize movie length as described in SI Methods, resulting in final
movie length of 5 h. Three replicate movies were created and analyzed in
parallel as described below.

Cell Density Estimation. To account for uneven illumination from the mi-
croscope’s mercury bulb and optics, acquired fluorescent images were nor-
malized to the intensity of the first frame. Images were then Gaussian
smoothed to filter the contribution from the individual labeled LS3908 cells
and the images were normalized for diminishing fluorescence over the
length of the movie by subtracting the mean intensity of each frame. To
estimate cell density, the detected cell positions (as described in Cell Track-
ing) in the last image from each experimental replicate were used to esti-
mate the cell density, using a kernel density estimator. Comparing the
computed cell density with fluorescence intensity values from the last frame
indicated a nonlinear correlation between the two (Fig. S8A). To relate these
two estimates of cell density (kernel density and fluorescence-intensity
density), a third-degree polynomial was fitted to the data pooled from all
three movies, using MATLAB’s fit function with the robust option set to
Bisquare (Fig. S8A, red line). The fitted polynomial was used to convert
fluorescence-density values to cell densities for all images. Further details for
the filters and chosen parameters used are provided in SI Methods.

Cell Tracking. To reduce camera sensor noise and fluorescence from the
growing aggregates, time-lapse images were band-pass filtered as described
in SI Methods. Thereafter, the MATLAB function regionprops was used to
identify the centroid and orientation of each cell. The segmentation
threshold value was chosen by running the segmentation and detection on
the first image with threshold values between 10 and 50 in 1-unit incre-
ments. Plotting the threshold values vs. the number of cells detected (Fig.
S8B) indicated that the cell count approaches a constant value as the
threshold rises above the noise caused by background fluorescence. Visual
inspection of the cell detections indicated a threshold value on the edge of
the “elbow” (Fig. S8B, arrow) provided a good tradeoff between detection
of all of the cells and little identification of background noise as cells.

To track cell motility between images, we followed procedures established
in ref. 53. This technique solves the problem of image-to-image linking of
detected cells into trajectories by treating the assignments as a linear as-
signment problem (LAP). In this method, cells are assumed to move, disap-
pear, or appear between two consecutive images. In the move case, a cell
will move to a new position in the time between images. Therefore, its
positions in the two images should be linked into the same trajectory. If a
cell disappears due to leaving the field of view, misdetection, or overlapping
with another cell, it should not be linked to a cell in the later image. In a
similar fashion, a cell that appears in the later image should constitute a new
trajectory. The LAP involves calculating a cost to assigning each of these
actions for every cell in the two images. The resulting costs are then used to
find an optimal assignment for each cell by minimizing the total cost of
assigning all cells to one of the three options. The process is then repeated
consecutively for each image from the time-lapse acquisition. We used the
Jonker–Volgenant algorithm (54) implemented in MATLAB by the authors of
ref. 53 to solve the LAP (see figure 1 of ref. 53 for an overview of this
process). As in ref. 53, a second LAP was then performed to relink broken
trajectories. A full definition of the cost functions used for linking cells based
on the properties of M. xanthus motility is described in SI Methods.

Cell-State Detection. Confidently detecting whether a cell is actively moving,
stopped, or reversing direction is complicated by noise in the cell trajectories.
This noise arises from inaccuracies in detecting the cell position due to the low
acquisition magnification and the biological processes that lead to cell
movement.We observed that this variability created cell trajectories too noisy
for one-dimensional detection techniques (e.g., using tangential speed to
detect reversals or a speed cutoff to detect nonmoving cells). To detect
movement characteristics of the cell reliably, a cell-state filter was developed
that employs extended Kalman filters (EKF) to estimate the most probable
motion model used by the cell between images.

We assume cells use the same movement models as described for cell
tracking: persistent forward (i= 1), persistent backward (i= 2), and non-
persistent (i=3). The EKF estimates state vector st = ½xt , yt , vt, θt � consisting of
the position ðx, yÞ, orientation along the long axis (θ), and speed (v) of the
cell in image t, using the t − 1 state vector and one of the three movement
models (f1–f3 in Table S2). The EKF then uses the deviation between the

predicted ðstÞ state and the true cell state in image t to calculate the likeli-
hood that each movement was executed by the cell. The model with the
maximum likelihood was then assigned as the movement between the two
images. A detailed description of the movement models and EKF algorithm
is provided in SI Methods.

Aggregate Detection and Tracking. A cell density cutoff of 2.32 cells/μm2 was
chosen by visual inspection of aggregate boundaries in the last image of
each movie. Aggregates were detected in each frame as areas where cell
density exceeded the cutoff. Aggregate boundaries were approximated as
ellipsoids with a centroid, major axis, and minor axis calculated using
MATLAB’s regionprops function. To track aggregate positions from image to
image, a LAP was set up similar to that used for cell tracking. Adaptions
made to track aggregates are provided in SI Methods.

Run Vectors. Trajectories were divided into runs, which start at the beginning
of one contiguous movement state (persistent forward, persistent backward,
nonpersistent) and end with the next change of state. Trajectory data before
the first reversal and after the last reversal were discarded. The average speed
ðvÞ, period ðτÞ, distance (δ), angle to the nearest aggregate centroid ðϕÞ,
distance to the nearest aggregate boundary ðDÞ, ambient cell density ðρÞ,
turning angle (θ), average nematic orientation (explained below) of neigh-
boring runs (γ), and time since the beginning of the experiment (T) were
calculated for each run vector (Fig. S1C).

Average nematic alignment strength was used to quantify trajectory
alignment (Fig. S6A, solid boxes) at the level of a run. The average nematic
alignment strength, denoted as <Ωn > , is calculated as the average cosine
difference between the orientation of run n and all runs within a window
size of ±5 min and 15-μm radius around the start of run n:

<Ωn > =
1
N

X

i∈window

cosð2ðχn − χ iÞÞ. [1]

In Eq. 1, N is the number of runs within the window and χ is the angle of the
run relative to the x axis. Due to the lack of motility polarity, the run bearing
χ is in the interval [−π, π), where −π = π. Choosing the window size required
balancing an N large enough to reliably evaluate Eq. 1 while avoiding
smoothing out local alignment characteristics. Visual inspection of the tra-
jectories indicated that alignment was stable in time (Fig. S6A), allowing the
window to be extended in the time dimension to increase N while keeping
the spatial search radius around the cell small. The search radius and time-
window length were chosen by searching the parameter space of possible
values and choosing the combination of values that provided the greatest
average alignment strength (Fig. S9 A and B).

Bootstrapping Statistics. Where indicated, 95% confidence intervals were
calculated by pooling the data from all three replicate movies and boot-
strapping parameters using the adjusted percentile method (55) with 1,000
bootstrap samples.

Data-Driven Agent-Based Model. An agent-based model consisting of 10,000
agents on a rectangular domain of 986  μm× 740  μm, equal to the micro-
scope field of view, with periodic boundary conditions on each end, was
implemented in MATLAB. Each agent represents a single cell sampled from a
biofilm of the same average density as in experiments (1.1 cells/μm2), similar
to sampling cell behaviors in the biofilm using a small number of fluo-
rescently labeled cells. The random trajectory of a single agent consists of
the sequence of reversal locations ðxi , yiÞ and bearing angles, χi , connected
by run vectors ðΔxi ,ΔyiÞ and turning angles θi , beginning at time points Ti .
The run vector ðΔxi ,ΔyiÞ is constructed from χi , a run speed vi , and a run
duration τi . Because fluorescent images for cell tracking were taken at 30-s
intervals, we have adopted the same time discretization in the simulations
with agents’ positions along their current run vector updated every
ðΔt = 30sÞ. The agents’ run variables ðθi , vi , τiÞ, along with an auxiliary
binary variable denoting whether the run is persistent or nonpersistent,
si , are drawn from the reversal probability density function (PDF),
Pðθi , vi , τi , si jTi ,Di , ρi ,ϕi−1, γiÞ, where Ti is the time since the beginning of
the experiment, ρi is the local cell density, γi is the angle between the cell
orientation and the average bearing angle of neighboring runs, and Di

and ϕi−1 are defined in Fig. S1C. We used nearest-neighbor methods (56),
to estimate P by drawing θi , a paired (vi ,τi), and si from experimentally
observed runs conditional on ðTi ,Di , ρi ,ϕi−1, γiÞ as described in SI Methods. This
approach incorporates directly from the experimental run database all of the
information available about P without relying on an explicit reconstruction
of P on a high-dimensional variable space.
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We implemented two alternative modeling approaches, referred to as the
open-loop model and the closed-loop model, which differ in how the local
cell density (ρi) at location ðxt , ytÞ and time t was modeled. In the open-loop
approach, we used the observed density profile and aggregate locations
extracted from each of the three fluorescent and trajectory imaging datasets
(movies), as described in Cell Density Estimation. In the closed-loop ap-
proach, agent positions were initialized from a uniform random distribution.
Each time step, ρi was extracted from the current agent positions with a KDE
bandwidth of 14 μm. A 14-μm bandwidth provided good agreement be-
tween the starting density distributions of the agents and that measured
from experimental results (Fig. S10). Aggregate boundaries and centroids
were then calculated from the estimated density profiles, ρi , in the same
manner as for the experimental imaging density data.

The database of experimentally observed runs used to estimate P can be
composed of the composite of all runs extracted from all trajectories tracked
across all three microcinematography experiments (three movies) reported

here, with NO = 102,972, or else the database may consist only of the runs
from all trajectories tracked in each microcinematography movie, with NO =
36,019, 36,303, or 30,650, respectively. The composite database was used
only for the closed-loop simulations. Each open-loop simulation used only
the single-experiment database for the imaging experiment from which also
the input cell density profile was extracted.

In open-loop simulations, three independent open-loop simulations were
performed for each experimental movie. In the closed loop, three simulations
were performed. Each simulation started from a different random initial
configuration of agents. The results from the replicate simulations were then
pooled for the subsequent data analyses.
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