Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Sep;87(18):7080–7084. doi: 10.1073/pnas.87.18.7080

GTP-binding proteins in rat liver nuclear envelopes.

J B Rubins 1, J O Benditt 1, B F Dickey 1, N Riedel 1
PMCID: PMC54687  PMID: 2119502

Abstract

Nuclear transport as well as reassembly of the nuclear envelope (NE) after completion of mitosis are processes that have been shown to require GTP and ATP. To study the presence and localization of GTP-binding proteins in the NE, we have combined complementary techniques of [alpha-32P]GTP binding to Western-blotted proteins and UV crosslinking of [alpha-32P]GTP with well-established procedures for NE subfractionation. GTP binding to blotted NE proteins revealed five low molecular mass GTP-binding proteins of 26, 25, 24.5, 24, and 23 kDa, and [alpha-32P]GTP photoaffinity labeling revealed major proteins with apparent molecular masses of 140, 53, 47, 33, and 31 kDa. All GTP-binding proteins appear to localize preferentially to the inner nuclear membrane, possibly to the interface between inner nuclear membrane and lamina. Despite the evolutionary conservation between the NE and the rough endoplasmic reticulum, the GTP-binding proteins identified differed between these two compartments. Most notably, the 68- and 30-kDa GTP-binding subunits of the signal recognition particle receptor, which photolabeled with [alpha-32P]GTP in the rough endoplasmic reticulum fraction, were totally excluded from the NE fraction. Conversely, a major 53-kDa photolabeled protein in the NE was absent from rough endoplasmic reticulum. Whereas Western-blotted NE proteins bound GTP specifically, all [alpha-32P]GTP photolabeled proteins could be blocked by competition with ATP, although with a competition profile that differed from that obtained with GTP. In comparative crosslinking studies with [alpha-32P]ATP, we have identified three specific ATP-binding proteins with molecular masses of 160, 78, and 74 kDa. The localization of GTP- and ATP-binding proteins within the NE appears appropriate for their involvement in nuclear transport and in the GTP-dependent fusion of nuclear membrane vesicles required for reassembly of the nucleus after mitosis.

Full text

PDF
7080

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson R. P., Blobel G. On the attachment of the nuclear pore complex. J Cell Biol. 1974 Sep;62(3):746–754. doi: 10.1083/jcb.62.3.746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adam S. A., Lobl T. J., Mitchell M. A., Gerace L. Identification of specific binding proteins for a nuclear location sequence. Nature. 1989 Jan 19;337(6204):276–279. doi: 10.1038/337276a0. [DOI] [PubMed] [Google Scholar]
  3. Barrowman M. M., Cockcroft S., Gomperts B. D. Two roles for guanine nucleotides in the stimulus-secretion sequence of neutrophils. Nature. 1986 Feb 6;319(6053):504–507. doi: 10.1038/319504a0. [DOI] [PubMed] [Google Scholar]
  4. Beckers C. J., Balch W. E. Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus. J Cell Biol. 1989 Apr;108(4):1245–1256. doi: 10.1083/jcb.108.4.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benditt J. O., Meyer C., Fasold H., Barnard F. C., Riedel N. Interaction of a nuclear location signal with isolated nuclear envelopes and identification of signal-binding proteins by photoaffinity labeling. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9327–9331. doi: 10.1073/pnas.86.23.9327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bernd A., Schröder H. C., Zahn R. K., Müller W. E. Modulation of the nuclear-envelope nucleoside triphosphatase by poly(A)-rich mRNA and by microtubule protein. Eur J Biochem. 1982 Dec;129(1):43–49. doi: 10.1111/j.1432-1033.1982.tb07018.x. [DOI] [PubMed] [Google Scholar]
  7. Berrios M., Blobel G., Fisher P. A. Characterization of an ATPase/dATPase activity associated with the Drosophila nuclear matrix-pore complex-lamina fraction. Identification of the putative enzyme polypeptide by direct ultraviolet photoaffinity labeling. J Biol Chem. 1983 Apr 10;258(7):4548–4555. [PubMed] [Google Scholar]
  8. Bhullar R. P., Haslam R. J. Detection of 23-27 kDa GTP-binding proteins in platelets and other cells. Biochem J. 1987 Jul 15;245(2):617–620. doi: 10.1042/bj2450617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Blobel G., Potter V. R. Nuclei from rat liver: isolation method that combines purity with high yield. Science. 1966 Dec 30;154(3757):1662–1665. doi: 10.1126/science.154.3757.1662. [DOI] [PubMed] [Google Scholar]
  10. Burke B., Gerace L. A cell free system to study reassembly of the nuclear envelope at the end of mitosis. Cell. 1986 Feb 28;44(4):639–652. doi: 10.1016/0092-8674(86)90273-4. [DOI] [PubMed] [Google Scholar]
  11. Carey D. J., Hirschberg C. B. Kinetics of glycosylation and intracellular transport of sialoglycoproteins in mouse liver. J Biol Chem. 1980 May 10;255(9):4348–4354. [PubMed] [Google Scholar]
  12. Connolly T., Gilmore R. The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell. 1989 May 19;57(4):599–610. doi: 10.1016/0092-8674(89)90129-3. [DOI] [PubMed] [Google Scholar]
  13. Dingwall C., Sharnick S. V., Laskey R. A. A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell. 1982 Sep;30(2):449–458. doi: 10.1016/0092-8674(82)90242-2. [DOI] [PubMed] [Google Scholar]
  14. Dwyer N., Blobel G. A modified procedure for the isolation of a pore complex-lamina fraction from rat liver nuclei. J Cell Biol. 1976 Sep;70(3):581–591. doi: 10.1083/jcb.70.3.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Franke W. W., Scheer U., Krohne G., Jarasch E. D. The nuclear envelope and the architecture of the nuclear periphery. J Cell Biol. 1981 Dec;91(3 Pt 2):39s–50s. doi: 10.1083/jcb.91.3.39s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Freissmuth M., Casey P. J., Gilman A. G. G proteins control diverse pathways of transmembrane signaling. FASEB J. 1989 Aug;3(10):2125–2131. [PubMed] [Google Scholar]
  17. GURR M. I., FINEAN J. B., HAWTHORNE J. N. THE PHOSPHOLIPIDS OF LIVER-CELL FRACTIONS. I. THE PHOSPHOLIPID COMPOSITION OF THE LIVER-CELL NUCLEUS. Biochim Biophys Acta. 1963 Aug 27;70:406–416. doi: 10.1016/0006-3002(63)90770-4. [DOI] [PubMed] [Google Scholar]
  18. Jensen M., Cool R. H., Mortensen K. K., Clark B. F., Parmeggiani A. Structure-function relationships of elongation factor Tu. Isolation and activity of the guanine-nucleotide-binding domain. Eur J Biochem. 1989 Jun 15;182(2):247–255. doi: 10.1111/j.1432-1033.1989.tb14824.x. [DOI] [PubMed] [Google Scholar]
  19. Kondor-Koch C., Riedel N., Valentin R., Fasold H., Fischer H. Characterization of an ATPase on the inside of rat-liver nuclear envelopes by affinity labeling. Eur J Biochem. 1982 Oct;127(2):285–289. doi: 10.1111/j.1432-1033.1982.tb06868.x. [DOI] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lapetina E. G., Reep B. R. Specific binding of [alpha-32P]GTP to cytosolic and membrane-bound proteins of human platelets correlates with the activation of phospholipase C. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2261–2265. doi: 10.1073/pnas.84.8.2261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Linse K., Mandelkow E. M. The GTP-binding peptide of beta-tubulin. Localization by direct photoaffinity labeling and comparison with nucleotide-binding proteins. J Biol Chem. 1988 Oct 15;263(29):15205–15210. [PubMed] [Google Scholar]
  23. Lohka M. J., Masui Y. Roles of cytosol and cytoplasmic particles in nuclear envelope assembly and sperm pronuclear formation in cell-free preparations from amphibian eggs. J Cell Biol. 1984 Apr;98(4):1222–1230. doi: 10.1083/jcb.98.4.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maul G. G., Avdalović N. Nuclear envelope proteins from Spisula solidissima germinal vesicles. Exp Cell Res. 1980 Nov;130(1):229–240. doi: 10.1016/0014-4827(80)90059-2. [DOI] [PubMed] [Google Scholar]
  25. Maul G. G., Baglia F. Localization of a major nuclear envelope protein by differential solubilization. Exp Cell Res. 1983 May;145(2):285–292. doi: 10.1016/0014-4827(83)90007-1. [DOI] [PubMed] [Google Scholar]
  26. Mayorga L. S., Diaz R., Stahl P. D. Regulatory role for GTP-binding proteins in endocytosis. Science. 1989 Jun 23;244(4911):1475–1477. doi: 10.1126/science.2499930. [DOI] [PubMed] [Google Scholar]
  27. Melançon P., Glick B. S., Malhotra V., Weidman P. J., Serafini T., Gleason M. L., Orci L., Rothman J. E. Involvement of GTP-binding "G" proteins in transport through the Golgi stack. Cell. 1987 Dec 24;51(6):1053–1062. doi: 10.1016/0092-8674(87)90591-5. [DOI] [PubMed] [Google Scholar]
  28. Newmeyer D. D., Forbes D. J. Nuclear import can be separated into distinct steps in vitro: nuclear pore binding and translocation. Cell. 1988 Mar 11;52(5):641–653. doi: 10.1016/0092-8674(88)90402-3. [DOI] [PubMed] [Google Scholar]
  29. Newport J. Nuclear reconstitution in vitro: stages of assembly around protein-free DNA. Cell. 1987 Jan 30;48(2):205–217. doi: 10.1016/0092-8674(87)90424-7. [DOI] [PubMed] [Google Scholar]
  30. Orci L., Malhotra V., Amherdt M., Serafini T., Rothman J. E. Dissection of a single round of vesicular transport: sequential intermediates for intercisternal movement in the Golgi stack. Cell. 1989 Feb 10;56(3):357–368. doi: 10.1016/0092-8674(89)90239-0. [DOI] [PubMed] [Google Scholar]
  31. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  32. Prochnow D., Riedel N., Agutter P. S., Fasold H. Poly(A) binding proteins located at the inner surface of resealed nuclear envelopes. J Biol Chem. 1990 Apr 25;265(12):6536–6539. [PubMed] [Google Scholar]
  33. Richardson J. C., Agutter P. S. The relationship between the nuclear membranes and the endoplasmic reticulum in interphase cells. Biochem Soc Trans. 1980 Aug;8(4):459–465. doi: 10.1042/bst0080459. [DOI] [PubMed] [Google Scholar]
  34. Richardson W. D., Mills A. D., Dilworth S. M., Laskey R. A., Dingwall C. Nuclear protein migration involves two steps: rapid binding at the nuclear envelope followed by slower translocation through nuclear pores. Cell. 1988 Mar 11;52(5):655–664. doi: 10.1016/0092-8674(88)90403-5. [DOI] [PubMed] [Google Scholar]
  35. Riedel N., Fasold H. Nuclear-envelope vesicles as a model system to study nucleocytoplasmic transport. Specific uptake of nuclear proteins. Biochem J. 1987 Jan 1;241(1):213–219. doi: 10.1042/bj2410213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Riedel N., Fasold H. Preparation and characterization of nuclear-envelope vesicles from rat liver nuclei. Biochem J. 1987 Jan 1;241(1):203–212. doi: 10.1042/bj2410203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rubin E. J., Gill D. M., Boquet P., Popoff M. R. Functional modification of a 21-kilodalton G protein when ADP-ribosylated by exoenzyme C3 of Clostridium botulinum. Mol Cell Biol. 1988 Jan;8(1):418–426. doi: 10.1128/mcb.8.1.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. SEGAL H. L., BRENNER B. M. 5'-Nucleotidase of rat liver microsomes. J Biol Chem. 1960 Feb;235:471–474. [PubMed] [Google Scholar]
  39. Salminen A., Novick P. J. A ras-like protein is required for a post-Golgi event in yeast secretion. Cell. 1987 May 22;49(4):527–538. doi: 10.1016/0092-8674(87)90455-7. [DOI] [PubMed] [Google Scholar]
  40. Schröder H. C., Rottmann M., Bachmann M., Müller W. E. Purification and characterization of the major nucleoside triphosphatase from rat liver nuclear envelopes. J Biol Chem. 1986 Jan 15;261(2):663–668. [PubMed] [Google Scholar]
  41. Sheehan M. A., Mills A. D., Sleeman A. M., Laskey R. A., Blow J. J. Steps in the assembly of replication-competent nuclei in a cell-free system from Xenopus eggs. J Cell Biol. 1988 Jan;106(1):1–12. doi: 10.1083/jcb.106.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stuart S. E., Clawson G. A., Rottman F. M., Patterson R. J. RNA transport in isolated myeloma nuclei. Transport from membrane-denuded nuclei. J Cell Biol. 1977 Jan;72(1):57–66. doi: 10.1083/jcb.72.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Takeda S., Sugiyama H., Natori S., Sekimizu K. Nuclear GTP-binding proteins of Swiss 3T3 cells. FEBS Lett. 1989 Feb 27;244(2):469–472. doi: 10.1016/0014-5793(89)80585-x. [DOI] [PubMed] [Google Scholar]
  44. Yamasaki L., Kanda P., Lanford R. E. Identification of four nuclear transport signal-binding proteins that interact with diverse transport signals. Mol Cell Biol. 1989 Jul;9(7):3028–3036. doi: 10.1128/mcb.9.7.3028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yoneda Y., Imamoto-Sonobe N., Matsuoka Y., Iwamoto R., Kiho Y., Uchida T. Antibodies to Asp-Asp-Glu-Asp can inhibit transport of nuclear proteins into the nucleus. Science. 1988 Oct 14;242(4876):275–278. doi: 10.1126/science.3051382. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES