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Accurate assembly and maturation of human mitochondrial ribosomes is essential for
synthesis of the 13 polypeptides encoded by the mitochondrial genome. This process
requires the correct integration of 80 proteins, 1 mt (mitochondrial)-tRNA and 2 mt-rRNA
species, the latter being post-transcriptionally modified at many sites. Here, we report
that human ribosome-binding factor A (RBFA) is a mitochondrial RNA-binding protein
that exerts crucial roles in mitoribosome biogenesis. Unlike its bacterial orthologue, RBFA
associates mainly with helices 44 and 45 of the 12S rRNA in the mitoribosomal small
subunit to promote dimethylation of two highly conserved consecutive adenines.
Characterization of RBFA-depleted cells indicates that this dimethylation is not a pre-
requisite for assembly of the small ribosomal subunit. However, the RBFA-facilitated
modification is necessary for completing mt-rRNA maturation and regulating association
of the small and large subunits to form a functional monosome implicating RBFA in the
quality control of mitoribosome formation.

Introduction
Assembly and maturation of a fully functional ribosome is a demanding but fundamental feature of
cellular metabolism. Budding yeast, for example, can produce 2000 ribosomes per minute [1], reflect-
ing the demands of protein synthesis. Across almost all characterized species, the ribosome is com-
posed of 50 or more components that must be correctly assembled to generate a small (SSU) and a
large (LSU) ribosomal subunit, each with the appropriate modifications made to the component RNA
and polypeptides. Mammalian mitoribosomes are no exception but the process of translation is far
less well characterized. In most eukaryotes, mitochondria contain their own genome (mtDNA) and
synthesis of these mtDNA-encoded polypeptides takes place within the organelle. This process uses
mitoribosomes that contain 80 protein components that are nuclear-encoded, translated in the cytosol
and then imported into the organelle. Here, they associate with the mitochondrially encoded rRNAs
that are much reduced compared with their cytosolic counterparts and with one mtDNA-encoded
tRNA that has become integral to the mt-LSU structure [2,3]. Assembly and maturation processes
vary in different systems. Yeast cytosolic ribosomes, for example, require over 350 assembly factors,
many of which are responsible for splicing and maturing the rRNA [4,5]. In comparison, eubacterial
ribosome biogenesis appears to require relatively few factors, with GTPases being well represented
among the 20 or so proteins that are known to be required [6,7]. Mitochondrial ribosomes differ
between species [3,8–11] but for mammalian mitoribosome assembly, as with the eubacterial system,
the number of key assembly factors is likely to be few [12–17]. One approach to identify candidate
mitoribosome assembly factors has been by their similarity to bacterial factors. One such protein,
ribosome-binding factor A, RbfA, is necessary for processing the 50-terminus of the bacterial 17S
rRNA precursor, to form the mature 16S rRNA component of the SSU [18–21]. This cleavage event
appears to require the correct folding of helix (h) 1 of the rRNA [22], a claim supported by the crystal
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structure of RbfA alone, and by the cryoEM structure of the RbfA/Thermus thermophilus SSU complex [22].
The latter shows RbfA binding to the SSU neck region with its C-terminus close to h1 of the mature 16S
rRNA. A plant orthologue of RbfA, RBF1, has recently been identified, but it is targeted exclusively to chloro-
plasts [23]. Interestingly, despite both chloro-ribosomes and mitoribosomes having bacterial origins, no mito-
chondrial RBFA orthologue has been identified in these plants, or indeed in the yeast Saccharomyces cerevisiae.
The 12S and 16S rRNA components of the human mt-SSU and mt-LSU are encoded by mtDNA [24]. These

rRNA species are matured from a larger polycistronic RNA transcript [25]. Neither contains intronic
sequences, nor do they require editing, or removal of nucleotides at either the 30- or 50-terminus [26].
Importantly, since neither rRNA requires any further processing after excision from the polycistronic unit,
there is no apparent need for an RbfA orthologue in human mitochondria. However, a ‘ribosome-binding
factor A (putative)’ protein appears in many databases. Despite this annotation as an orthologue, human RBFA
bears little significant amino acid similarity to the Escherichia coli protein. Here, we present data that show
RBFA is found in human mitochondria and does indeed play a role, albeit a different role from that in eubac-
teria, in rRNA maturation and ribosome assembly.

Experimental procedures
Cell culture and siRNA transfection
All cell types were grown in DMEM (Sigma D6429) supplemented with 10% FCS, 1× NEAA and 50 mg/ml
uridine. Wild-type FLP-IN TRex 293 cells (Invitrogen: HEK293) were grown with 10 mg/ml BlasticidinS, and
FLP-IN TRex 293 transfected lines with inducible expression of FLAG-tagged genes of interest were routinely
treated with 100 mg/ml HygromycinB. The transfected lines used in the present study were generated as
described in ref. [14], except for RBFA that was created de novo using primers detailed in Supplementary
Information. Expression of FLAG-tagged proteins was induced with 1 mg/ml tetracycline or 1 ng/ml doxycyc-
line for RBFA-FLAG. Cells were cultured in humidified 5% CO2 at 37°C.
All custom and control non-targeting (OR-0030-NEG05) siRNA duplexes were from Eurogentec. Sequences

of custom-synthesized siRNA sequences are given in Supplementary Information. HEK293T cell lines were
reverse-transfected using Lipofectamine RNAiMAX (Invitrogen), Opti-MEM +Glutamax (Gibco) and a final
siRNA concentration of 33 nM (NT, ERAL1) or 50 nM (si-RBFA 2), unless otherwise specified. Cells were
re-transfected if required.

Isokinetic sucrose gradient analysis
Cell (700 mg) or mitochondrial (300 mg) lysate or immunoprecipitated eluate (eluted by 3× FLAG peptide as
per the Sigma FLAG IP protocol) was separated through linear sucrose gradients [10–30% (v/v) in 50 mM
Tris–HCl (pH 7.2), 10 mM MgOAC, 40 mM NH4Cl, 0.1 M KCl, 1 mM PMSF and 50 μg/ml chloramphenicol;
Beckman OptimaTLX bench ultracentrifuge, TLS55 rotor, 100 kg, 135 min, 4°C]. Fractions were collected and
analyzed by western blot as described below or by silver staining as outlined in ref. [14].

Cell lysate, mitochondrial, mitoplast preparation, SDS–PAGE and western
blotting
Lysate was prepared by homogenization of cells on ice in 50 mM Tris–HCl (pH 7.4), 150 mM NaCl, 10 mM
MgCl2, 1 mM EDTA, 1% (v/v) Triton X-100, 1× Roche protease inhibitor cocktail and 1 mM PMSF.
Aggregates were removed by centrifugation (400 g, 10 min at 4°C). Mitochondria were isolated by differential
centrifugation and proteinase K-treated (4 μg/100 μg protein) in isolation buffer [10 mM Tris–HCl (pH 7.4),
0.6 M mannitol, 1 mM EGTA and 0.1% BSA] lacking BSA, on ice for 30 min, followed by the addition of
5 mM PMSF. Washed mitochondria were resuspended in isolation buffer and, where necessary, were solubilized
with 1% (v/v) Triton X-100 or used to prepare mitoplasts, which required incubation on ice, in Tris–HCl (pH
7.4) in the presence of proteinase K, inactivated with 5 mM PMSF after 30 min. Mitoplasts were washed twice
with isolation buffer containing 1 mM PMSF and RNase inhibitor. For western blot analysis, samples (50 mg)
were separated by SDS–PAGE, transferred to Immobilon-P PVDF membrane (Millipore) and probed with rele-
vant antibodies as follows: anti-RBFA polyclonal antibody was custom-synthesized by Eurogentec from human
RBFA protein overexpressed in E. coli and purified following standard procedures: ERAL1 (11478-1-AP),
MRPS18B (16139-1-AP), MRPS25 (15277-AP), ICT1/mL62 (10403-1-AP) ProteinTech Group; DAP3
(ab11928), L3 (ab39268), L12 (ab58334) Abcam; FLAG (F1804), β-actin (A1978) Sigma; S6 Ribosomal Protein
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Figure 1. The human orthologue of bacterial RbfA associates with the mitoribosomal SSU. Part 1 of 2

(A) Amino acid alignment (ClustalW) of RBFA from human (NP_079081.2) and E. coli (P0A7G2) shows identities as (*), high

level of similarity by (:) and lower levels by (.). Boxed region indicates the predicted position of ‘ribosome-binding’ and

RNA-binding ‘KH’ domains. The basic residues (in bold) Arg7, Arg10, Arg45, Arg80, Lys85 and Arg90 in E. coli RbfA are

implicated in RNA binding [21]. Ala75 (orange) forms an inter-helical kink shown in B. A conserved sequence signature

(IRXXLXXXXXLRXVPXLXFXXD) is located in the C-terminal region of E. coli RbfA. Human RBFA shares most but not all of

these characteristics. (B) NMR-derived structures of E. coli RbfA (pink; PDB 1KKG, [21]) and the corresponding region of

human RBFA that excludes the N- and C-terminal extensions (H. sapiens, silver; PDB 2E7G, [53]) are depicted individually and

superposed using Coot [31]. Both exhibit type II KH domain folds (three helices and three β-strands). Human RBFA has an

additional short helix, underlined in the panel A alignment. The inter-helical kink, formed in E. coli by Ala75 (1KKG) and Ser159

(2E7G) in human, is shown in orange. (C) Lysate (50 mg, lane 1) and mitochondria (10 mg, lanes 2–4) were prepared from

HEK293 cells. Isolated mitochondria were treated with proteinase K in the absence (lane 3) or presence (lane 4) of 1% Triton

X-100. Western blots detected RBFA, mitochondrial matrix markers (mitoribosomal subunits mS40 and mS25) and a cytosolic

marker (cytosolic ribosomal subunit eS6). (D) HEK293 cell lysate (700 μg) was separated through a 10–30% sucrose gradient.

Fractions were analyzed by western blot, using antibodies against mt-SSU (mS29 and mS40) and mt-LSU (uL3m and bL12m)

components. The positions of the mt-SSU (28S), mt-LSU (39S) and the monosome (55S) are indicated. RBFA distribution was
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(2317S) Cell Signalling; Porin (A31855) Molecular Probes; SDHA (MS204) Mitosciences; NDUFB8 (A31857),
COX2 (A6404) Invitrogen.

Immunoprecipitation of FLAG-tagged proteins
Immunoprecipitations via the FLAG moiety of tagged mL62, mS27, ERAL1 and RBFA were performed with
the FLAG IP Kit (Sigma) as per the Sigma protocol with a minor buffer modification as described in ref. [14].
Sigma lysis and wash buffers were adjusted with Roche EDTA-free Protease Inhibitor Cocktail, 1 mM PMSF,
10 mM MgCl2 and 3 ml SUPERase In™ RNase Inhibitor (Ambion)/500 ml of buffer. For western blot analysis,
co-immunoprecipitants were released from the resin with Laemlli sample buffer. RNA was extracted from the
resin as per the supplier’s protocol (TRIzol Invitrogen).

Primer extension assay
Primer extension assays based on ref. [27] determined the relative amounts of methyl modification on 12S
rRNA bases A936, A937 of h45. Primer (50-GGTTCGTCCAAGTG-30) was [γ32P]-ATP-labelled and purified on
Illustra MicroSpin G-25 columns (GE Healthcare). Labelled primer was annealed to 4 mg of total RNA or
800 ng extracted after FLAG-mediated immunoprecipitation of tagged proteins. Unmethylated in vitro synthe-
sized RNA acted as a negative control in parallel reverse transcription reactions containing MMLV Reverse
Transcriptase (48 U Promega) and dNTP mix lacking dGTP (each at 40 mM final concentration). The reactions
were incubated at 37°C for 45 min and quenched with loading buffer [80% (v/v) formamide, 1 mM EDTA, 0.1%
(w/v) BPB and 0.1% (w/v) XCFF] including a primer alone control. Samples (3–5 ml) were separated on 10%
polyacrylamide/8 M urea sequencing gels in 1× TBE buffer at 50 W. Signals were detected with the Typhoon
FLA9000 and ImageQuant software (Molecular Dynamics, GE Healthcare). The amount of modified RNA was
quantified as a percentage of the total extended primer (stop m6

2A/[stop m6
2A + fully extended] × 100).

In vivo mitochondrial protein synthesis
Analysis of mitochondrial protein synthesis in cultured cells was performed as described previously [28]. After
the addition of emetine, cells were pulsed with [35S]met/cys for 15 min. Samples (30–50 μg) were separated by
15% SDS–PAGE. Signals were visualized as above and gels were subsequently stained with Coomassie blue to
confirm equal loading.

Cross-linking immunoprecipitation
Cross-linking immunoprecipitation (CLIP) assays were as described in Ule et al. [29]. Briefly, cells or isolated
mitoplasts were UV-irradiated on ice, harvested and lysed in Sigma FLAG lysis buffer adjusted with 0.1% SDS
(v/v), Roche EDTA-free Protease Inhibitor Cocktail and Promega RNaseIn. Specific RNP complexes were
immunoprecipitated. RNA species bound to the protein of interest were dephosphorylated, ligated to the
30-RNA linker and end-labelled with γ32P. Protein–RNA complexes were resolved on SDS–PAGE, transferred
to nitrocellulose (BA-85 Whatman) and subjected to autoradiography. Appropriately sized RNP complexes
were excised and proteinase K-treated. Following ligation of a 50 RNA linker RNA, CLIP tags were amplified by
RT-PCR, and then cloned, sequenced and analyzed as described in ref. [14], or IonTorrent-sequenced as
described in ref. [30].

Results
Bacterial and human RBFA proteins are structurally related
Human RBFA comprises 343 amino acids, with a predicted molecular mass of 38 kDa (GeneCards, ref. seq.
NP_079081.2). This is in contrast with eubacterial RbfA proteins that are less than half the size, ranging from
13 to 15 kDa; the E. coli protein (strain K12; P0A7G2), for example, comprises only 133 amino acids (Interpro,
http://www.ebi.ac.uk/interpro/entry/IPR023799). BLAST could not align the human and E. coli protein
sequences. ClustalW stated 15% identity and 16% similarity when human RBFA was aligned with the 133

Figure 1. The human orthologue of bacterial RbfA associates with the mitoribosomal SSU. Part 2 of 2

determined using antibodies against the endogenous protein. (E) FLAG-tagged mS27 was expressed, immunoprecipitated and

the immunoprecipitate separated by sucrose gradient centrifugation. Fractions were subjected to western blot to detect the

monosome, the mt-SSU, and its assembly intermediates (fractions 2–3). A silver-stained gel of the fractions is shown below.
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amino acids of the E. coli protein (Figure 1A). RbfA homologues are described as containing ‘ribosome-
binding’ and RNA-binding ‘KH’ domains, which in the human protein are predicted to lie in the central
portion (amino acids 88–198, InterPro, http://www.ebi.ac.uk/interpro/protein/Q8N0V3; Figure 1A, boxed
region). Even over these two relatively conserved domains, there is little identity, although some sequence simi-
larity exists. Despite this, and excluding the N- and C-terminal extensions present in human RBFA, there is
clear structural similarity over the KH domains in the two proteins, as both display a type II KH domain fold
of three helices and three β-strands (Figure 1B). For both the E. coli and the Homo sapiens RbfA NMR struc-
tural studies, only ensembles have been deposited rather than a single lowest energy conformer, and, conse-
quently, we arbitrarily chose to compare model 1 from each of the submitted structures. Using Coot [31], the
RMSD (root-mean-square deviation) of the C alphas was determined to be 2.6 Å. This was based on a global
secondary structure superposition of 88 amino acids from the 108 found in structure 1KKG (E. coli; pink) and
the 129 residues in structure 2EKG (H. sapiens; silver). For clarity, the disordered residues at the N- and
C-termini (Gly79 to Gly85 and Ala189 and Gly207) in 2E7G have been omitted. This existing structural simi-
larity between the human and bacterial proteins is consistent with the former having retained an RNA-binding
function. Human RBFA has, however, substantial extensions, both N- and C-terminal to the RNA-binding/KH
domains, which may have evolved functions additional to or different from those of the bacterial protein.

RBFA associates with the mt-SSU
GeneCards describes human RBFA as ‘putatively’ mitochondrial, consistent with the N-terminal extension
driving its mitochondrial localization, but predictions are mixed (TargetP 1.1, 94.6% confidence of mitochon-
drial localization cf PSORTII at 43.5%). To clarify this issue, cell lysates and mitochondrial fractions were ana-
lyzed by western blot (Figure 1C, lanes 1 and 2, respectively). Isolated mitochondria were proteinase K-shaved
in the absence (lane 3) or presence of Triton X-100 (lane 4). The latter lyses the organelles and, when added
together with proteinase K, confirms susceptibility of intramitochondrial proteins to the protease. The pattern
of mitochondrial enrichment for RBFA corresponds to that of known mitoribosomal proteins (mS25 and
mS40) and contrasts with the S6 cytosolic ribosomal protein, confirming RBFA to be a mitochondrial protein.
To determine whether RBFA associates with the small (mito)ribosomal subunit (mt-SSU) as found for its

bacterial orthologue, HEK293 cell lysates were subjected to isokinetic sucrose gradient fractionation. The distri-
bution of mt-SSU and mt-LSU protein components was visualized by western blot, and RBFA was found to
co-migrate with mt-SSU proteins (Figure 1D; mS29 and mS40). To distinguish more accurately which mitori-
bosomal components RBFA associates with, a FLAG-tagged mitoribosomal protein (mS27) was expressed, by
which both mt-SSU and 55S particles could be immunoprecipitated. Following 3 days of mS27-FLAG expres-
sion, mitochondria were isolated and mS27 immunoprecipitated. The immunoprecipitated complexes were
competitively eluted from the beads and subjected to sucrose gradient separation. RBFA could be detected pre-
dominantly with the mt-SSU, confirming that the substantial majority of RBFA was mt-SSU-associated
(Figure 1E).

RBFA is an RNA-binding protein
KH domains denote RNA-binding activity, and this domain has been thoroughly characterized for bacterial
RbfA and the related plant protein, RBF1 [18–23]. In these organisms, maturation of the SSU rRNA requires
multiple cleavages at the 50-terminus, but this is not the case for human mt-rRNA. In human mitochondria,
transcription units containing the mt-rRNA sequences are processed to release the individual 12S and 16S
species without the need for further cleavage at either terminus. Therefore, even if the RNA-binding capacity
and the association with the SSU were retained, the function of RBFA cannot be completely conserved. To
determine if the interaction between RBFA and the mt-SSU seen in sucrose gradients (Figure 1D) was mediated
by the ribosomal RNA and, if so, to assess the precise RNA-binding spectrum of RBFA under physiological
conditions, CLIP was employed both on intact cells growing on tissue culture plates and on isolated mitochon-
dria. Cross-linking was followed by lysis, and affinity purified antibody against RBFA was used to immunopre-
cipitate the endogenous protein together with any cross-linked RNA species. Bound RNA was extracted, used
to generate a cDNA library and sequenced using IonTorrent. RBFA was found to bind almost exclusively to
the 12S rRNA, in four independent locations, with the vast majority of protected fragments mapping to the
30-terminal region (Figure 2A,B and Supplementary Figure S1). RBFA has, therefore, clearly retained the cap-
acity to bind RNA. Moreover, as with the bacterial protein, RBFA physiologically binds the ribosomal RNA
from the SSU, albeit near the 30- but not 50-terminus.
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Loss of RBFA affects cell homeostasis
If the primary function of RBFA is to act on mitochondrially encoded rRNA, it is reasonable to assume that it
may not be stable in Rho0 cells that lack mtDNA and thus cannot assemble mitoribosomes. A similar lack of
stability has been well described for many other components of the mitoribosome and factors involved in
mtDNA expression in Rho0 cells. To test this hypothesis, lysates were prepared from human cell lines: HeLa,
osteosarcoma 143B.206 parental and 143B Rho0. Comparing 143B Rho0 cells (Figure 2C, lane 3) with controls
(lanes 1–2), expression of cytosolic proteins was at similar levels, mt-encoded proteins were absent and
steady-state levels of RBFA were at the limit of detection, implicating a role in mitochondrial gene expression.
To investigate this further, the effect of RBFA depletion using six independent siRNA duplexes was assessed in
the same three cell lines alongside a non-targeting (NT) control siRNA. In both control cell lines, a significant
decrease in growth rate was observed (Figure 2D, graph), recapitulating the defect reported for RbfA-deleted
bacteria [20,32]. The lack of a growth defect in Rho0 cells reinforced the potential role of RBFA in mitochon-
drial gene expression. Two siRNAs were selected for continued investigations in HEK293 cells (Figure 2D,
inset). After 6 days of RBFA depletion, the mtDNA copy number was unaffected (data not shown), and a
minimal increase in the steady-state level of some mt-RNAs and a mild increase from 1.7% apoptotic cells in
controls to 7.4% could be detected (Supplementary Figure S2A,B).

ERAL1 and RBFA are not interchangeable in human cell lines
Our CLIP data showed that RBFA-bound helices 44 and 45 of the 12S rRNA, covering the site where the
GTPase and 12S mt-rRNA chaperone, ERAL1, has also been shown to bind [14,33]. Furthermore, ERAL1 was
the only mitochondrial gene identified (www.genecards.org) to share a similar RNA-binding KH domain. The
bacterial orthologue of ERAL1, Era, also binds in the vicinity of the 30-end of the SSU rRNA [34,35]. It is also
involved in bacterial ribosome biogenesis [36], and interestingly, in bacteria, Era overexpression can partially
suppress RbfA deletion mutant defects arising in 16S rRNA maturation and ribosome assembly [19,37]. Since
these data implied that the two proteins have overlapping functions in bacteria, we aimed to determine if the
same functional redundancy exists in human cells. We, therefore, depleted RBFA with concomitant overexpres-
sion of ERAL1 in HEK293 cells. Unlike the suppression seen in bacteria, RBFA-depleted HEK293 cells grew
equally poorly with or without the expression of ERAL1 (Figure 2E, upper panel). The reciprocal experiment
did not restore either the control levels of growth or the steady-state levels of 12S rRNA, which became
decreased when ERAL1 was absent (Figure 2E, lower panel).

Loss of RBFA does not cause any immediate measurable mitochondrial
dysfunction
As the lack of RBFA is clearly deleterious for the cell, we aimed to determine the molecular pathogenesis. The
association of RBFA with mitoribosomes infers that the growth defect may be due to a problem in synthesizing
mtDNA-encoded proteins. Cells depleted of RBFA demonstrated no significant decrease in steady-state levels
of individual OXPHOS components when assessed by western blotting (Figure 3A). This was consistent with
metabolic labelling of the mitochondrially encoded proteins that was also unaffected on short-term depletion of
RBFA (Figure 3B). The standard parameters associated with mitochondrial dysfunction were then assessed. No
significant differences, relative to non-target (NT) siRNA controls, were observed for mitochondrial membrane
potential, or superoxide levels, while a minimal increase in mitochondrial mass was apparent (Supplementary
Figure S2C). Intriguingly, a similar lack of mitochondrial dysfunction has been noted previously for cells
depleted of ERAL1 [14]. Using an siRNA approach, that study also identified a defect in cell growth in
ERAL1-depleted cells. Under those conditions, little de novo mt-SSU assembly was observed; however, the
remaining intact mt-SSU was sufficient to maintain normal levels of mitochondrial protein synthesis and, thus,
steady-state levels of OXPHOS components. Both cases, depletion of either RBFA or ERAL1, resulted in pro-
found growth defects before any effect on gross mitochondrial function could be measured.

Loss of RBFA reduces the modification of 12S rRNA
Our data indicate that the interaction of RbfA with both the SSU and the rRNA observed in bacteria is also
seen in human mitochondria. Their corresponding rRNA species, however, differ, as mammalian mt-rRNA is
much reduced in size compared with its bacterial counterpart [38]. This loss of nucleotides is not random but
represents removal or shortening of specific peripheral helices [38]. Notable is the retention of the terminal
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Figure 2. RBFA binds to helix 45 of 12S rRNA but has a distinct function from that of ERAL1.

(A) The graph represents the human mtDNA sequence with locations and numbers of the CLIP tags indicated. Tags were

generated as described in the Experimental Procedures. (B) The location of the greatest number of CLIP tags from three

independent experiments is depicted spanning helix 45 and protruding into helix 44. The two dimethylated adenines in helix 45

are indicated in light grey. The terminal C-residue represents the near 30-terminus of the 12S mt-rRNA, corresponding to

nt1597 of mtDNA. (C) Lysates (30 μg) from HeLa, 143B.206 parental and Rho0 cells were analyzed by western blot to compare

the relative expression levels of RBFA, components of the OXPHOS complexes (COX2, NDUFB8 and SDHA) and members of

the mitoribosome (mS29, mS40, mL62 and uL3m,). Cytosolic RP-S6 is also shown. (D) Cell growth of each cell line was

determined after 3 days treatment of six RBFA-targeted siRNAs (33 nM) (lanes 1–6) compared with control (NT lane 7). Inset:

western blot of cell lysates (25 mg) after treatment with RBFA siRNA 2 and 6 to assess the level of depletion with β-actin as the

loading control. (E) Top panel: HEK293 cells were grown for 72 h in the presence of either si-NT (lanes 1 and 3) or si-RBFA

(lanes 2 and 4). ERAL1-FLAG expression was induced 4 h after siRNA transfection (lanes 3 and 4). Lower panel: HEK293 cells

were grown for 72 h in the presence of either si-NT (lanes 5 and 7) or si-ERAL1 (lanes 6 and 8). RBFA-FLAG expression was

induced 4 h after siRNA transfection (lanes 7 and 8). All siRNAs were used at 33 nM. Final cell numbers are plotted, and initial

numbers are indicated by dashed lines. Western blots (50 mg of cell extracts) confirmed depletion and correct expression using

antibodies against RBFA, ERAL1, FLAG or porin as a control. Westerns are representative of experimental triplicates.
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helix, h45, which remarkably, considering the lack of primary sequence conservation over the entire rRNA,
shares identity with 18 of the 26 nucleotides (Figure 4A) and is a major RNA-binding region identified for
RBFA (Figure 2A,B and Supplementary Figure S1). Of these identical residues, two consecutive adenines (A936,
A937; numbering reflects position within human 12S mt-rRNA) are situated in the tetraloop capping the apex
of h45. Not only is their position highly conserved but so is their modification, as each is dimethylated [27,39–
41]. Loss of this modification in bacteria has been shown to compromise SSU/LSU and SSU/IF3 interactions,
leading to defects in translation. The latter manifest as decreased fidelity at both ribosomal A and P sites, ele-
vated initiation from non-AUG codons and increased stop codon read-through and frameshifting [42,43].
Therefore, to determine the status of the dimethylation modification of mitochondrial 12S rRNA, we utilized a
primer extension assay. Under the assay conditions used, primer extension was arrested at modified base A937

[44] or, in the absence of modification, terminated to position U933 as no dGTP was in the reaction
(Figure 4A). The assay revealed modest variations in the modification levels in several human cell lines (73–
93%; Supplementary Figure S3). Since both RBFA and ERAL1 bind h45, we first sought to clarify the order of
their interaction with 12S rRNA and the modification status at each stage. Parallel immunoprecipitations of
endogenous RBFA and ERAL1-FLAG were performed and bound RNA was extracted for analysis. Strikingly,
only 4% (n = 2) of the RBFA-bound 12S rRNA was unmethylated at h45 in contrast with 74% (n = 2) in the
ERAL1 immunoprecipitation (Figure 4B, lane 3 cf 2). These data identified that ERAL1 associates with 12S
rRNA prior to RBFA during mitoribosome biogenesis. We then proceeded to analyze the consequences of
RBFA depletion on 12S mt-rRNA modification in HEK293 cells. As mitoribosomes are relatively stable and the
substantial majority of 12S rRNA is already modified at steady state, it was important to enrich for newly
synthesized (and unmodified) 12S rRNA to maximize any measurable effects of RBFA depletion on 12S modi-
fication. Thus, to enrich for newly synthesized 12S rRNA, the level of mature and partially assembled mt-SSU
was first reduced by depletion of ERAL1 (the 12S mt-rRNA chaperone, [14]) from all cells for 3 days.
Repletion of ERAL1 was then undertaken to stabilize nascent 12S concomitant to RBFA depletion or si-NT
control (4 days), and total RNA was extracted and subjected to primer extension. The amount of unmodified
12S rRNA increased substantially on depletion of RBFA from the control average of 13.7 ± 1.4%, n = 3
(Figure 4B, lane 7) to 34.7 ± 1.2%, n = 4 (lane 8; P < 0.0001). These data indicate a role for RBFA in promoting
12S modification, an important maturation step of mt-SSU rRNA. It was unclear at the molecular level how
RBFA may mediate this modification. However, preliminary microarray analyses on RBFA-depleted cells
showed a modest 1.9-fold increase in TFB1M, the methyltransferase reported to be responsible for the modifi-
cation [45], and 1.7-fold increase in ERAL1 (data not shown). These findings were supported at the protein
level, where enrichment of signal was noted for TFB1M and ERAL1 in HEK293 lysate from si-RBFA cells com-
pared with si-NT control (Figure 4C). Taken together with the primer extension assay performed on 12S rRNA

Figure 3. Depletion of RBFA has no appreciable effect on mitochondrial protein synthesis.

(A) HEK293 cells were treated with RBFA (lanes 2 and 3) or non-targeting (NT, lanes 1 and 4) siRNA for 3 days and extracts

(25 mg) were subjected to western blotting to compare OXPHOS (COX2, NDUFB8 and SDHA) or mitoribosomal (mS40, mS29

and uL3m) protein levels. (B) Following similar siRNA treatment (NT or RBFA-2) for 3 (lanes 1 and 2) or 6 (lanes 3 and 4) days,

cells were metabolically labelled (35S-met/cys) and extracts (3 days—30 mg; 6 days—50 mg) separated by 15% denaturing

PAGE. Migration of the 13 mtDNA-encoded polypeptides is indicated and loading confirmed by Coomassie blue (CBB)

staining.
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Figure 4. Depletion of RBFA causes a decrease in 12S rRNA modification.

(A) Schematic presenting sequence conservation of helix 45 (dashed line) and the primer extension assay used to measure the

modification levels at adenine residues A936/A937 in human 12S rRNA. If the modification is present, the primer extends four

residues, and in its absence the primer extends a further five residues. (B) To determine the modification status of 12S rRNA

bound to ERAL1-FLAG (lane 2, 3-day induction) or RBFA-FLAG (lane 3, 3 days), these proteins were immunoprecipitated from

HEK293 cells and the bound RNA was extracted. Samples were subjected to primer extension and denaturing PAGE. (Right

panel) Cells were depleted of ERAL1 (3 days) followed by 4 days of siRNA treatment; si-NT (lane 7) or si-RBFA (lane 8). RNA

was extracted and primer extension performed. Primer alone (lane 1, 4), extension on unmethylated template (lane 5) and

wild-type cells (lane 6) were controls performed in parallel. (C) Western blot (50 mg of cell extracts) determined the steady-state

levels of ERAL1, TFB1M and COXII in cells depleted of RBFA. SDHA and β-actin were used as loading controls. (D) HEK293

cells were grown for 5 days in the presence of NT or RBFA siRNA with induction of mS27-FLAG (IP SSU) or mL62-FLAG

(IP LSU) on day 3. (Left panel) Cell extracts were subjected to immunoprecipitation and bound 12S rRNA was assessed by

primer extension alongside controls (primer alone, lane 1; unmethylated control, lane 2), and then visualized and quantified as

described. (Right panel) Densitometric analysis is presented for lanes 3–6 from the left panel (stop m6
2A937 = arrested at

dimethylation; stop dGTP = full read-through). Western blots of the initial extract (50 mg) are shown probed for RBFA,

mS27/mL62 via FLAG and porin.
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immunoprecipitated via ERAL1-FLAG (Figure 4B), this suggests that loss of RBFA may trigger less efficient
compensatory ways of promoting dimethylation.
As RBFA depletion increased the proportion of unmodified h45, we next sought to determine whether this

unmodified rRNA species was incorporated into the mt-SSU, or whether correct 12S adenine dimethylation
represents a quality control step in full assembly of the mt-SSU. To address this, the mt-SSU was immunopreci-
pitated from HEK293 cells via a FLAG-tagged component, mS27, after RBFA depletion (5.5 days). The propor-
tion of unmodified h45 in the immunoprecipitated mt-SSU was 38.4 ± 4.2%, n = 3. In contrast, only 12 ± 6.3%,
n = 3, was unmodified in the non-targeting (NT) siRNA control immunoprecipitation (Figure 4D, lanes 3 and
4; P = 0.0011). This demonstrates that unmodified 12S rRNA can be incorporated into assembled mt-SSU.
Does the lack of 12S modification preclude mt-LSU interaction? To determine if unmodified h45 was
represented in the intact monosome, RBFA was depleted prior to immunoprecipitation of mt-LSU via
FLAG-tagged mL62. The 12S rRNA signal derived from the mt-LSU immunoprecipitation therefore repre-
sented assembled monosome. In contrast with the mt-SSU IP, h45 modification of the 12S rRNA was apparent
on 96 ± 4% (n = 3) in the non-targeted control and 92 ± 6% (n = 3) of the RBFA-depleted cells (Figure 4D,
lanes 5 and 6). These data suggest that correct modification is an important quality control step, permitting
only modified mt-SSU to associate with the mt-LSU, thus ensuring that assembled monosomes will be transla-
tionally efficient. This observation can also explain how de novo synthesis of mitochondrial proteins could
remain unaffected after 3 days of RBFA depletion (Figure 3), a phenomenon that was previously detected upon
ERAL1 depletion [14]. Despite the significant effect on assembly and maturation of mitoribosomes following
the loss of these key factors, nascent synthesis is still supported by the recycling of fully matured mt-SSU that
remains during the depletion period.

Discussion
Loss of rRNA modifications in bacteria has been known for some time to cause reduced growth rates [46] and
may also reduce ribosome recycling [47]. The characterization and roles of rRNA modifications in the human
mitoribosome are less well established, although data on A936 and A937 have been published [27,44,48]. The
involvement of RBFA in this modification process, however, has not previously been documented. Our data
show that RBFA has a role in promoting dimethylation of the 12S rRNA in the human mitoribosome.
How might RBFA promote dimethylation of the tandem adenines in helix h45? In humans, both ERAL1 and

RBFA bind helix 45 of the 12S rRNA. Prior to RBFA binding, ERAL1 must first chaperone 12S rRNA during
biogenesis of the mt-SSU. Our immunoprecipitation data indicated that, at this stage, the majority of
ERAL1-bound RNA is unmethylated, whereas the RBFA-associated 12S rRNA was almost exclusively methy-
lated. CryoEM data of RbfA and Era complexed with the 30S SSU from T. thermophilus reveal occupancy at
different positions but in close proximity [22]. Our mass spectrometric analysis of proteins
co-immunoprecipitating with RBFA did not detect significant levels of ERAL1 (unpublished observation), infer-
ring that dual occupancy on human 12S rRNA is unlikely, particularly as the vast majority of CLIP-protected
RNA fragments associated with the two proteins were found to be similar. Detailed NMR and X-ray crystallo-
graphic analyses have determined the structure of RbfA in various bacterial species as well as the structurally
conserved KH/ribosome-binding domain from human RBFA [21,49] (PDB ID 2KZF; 2E7G). Another study
showed that, in line with its role in the cleavage of the 50-terminus of the eubacterial rRNA, RbfA is found at
the neck of the SSU, where helix 1 of the 16S rRNA is located, at a junction of all four domains of the SSU,
and where h1 and h44/45 are in relatively close proximity. Indeed, the binding of bacterial RbfA causes a struc-
tural rearrangement displacing h45 together with the abutting section of h44 by ∼25 Å [22]. RbfA binding also
causes significant alterations in the location of the RNA-dependent intersubunit bridges, B2a and B3, preclud-
ing any association with the 50S large subunit [22]. Furthermore, RbfA binding overlaps with the position of
the anticodon stem loops of both A- and P-site tRNAs, preventing the ingress of the fmet-tRNAmet, mRNA
binding and therefore translation initiation. In the human mitochondrial ribosome, not only is the h44 and
h45 structural unit conserved, but despite many differences between the intersubunit bridges of 70S and 55S
ribosomes, both B2a and B3 are also present [38,50,51]. This is consistent with our various analyses indicating
that RBFA binds the mt-SSU and associates poorly with the 55S monosome.
The cryoEM data of T. thermophilus SSU in complex with RbfA clearly show that it binds in the cleft, essen-

tially burying itself inside the SSU and is found behind helices 44/45 rather than on the surface of the intersu-
bunit face [22]. This is consistent with the specificity of binding that we see with our CLIP data and might
predict that RBFA pushes helix 45 outwards, exposing the tandem adenines, making them more accessible for
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the methyltransferase. Thus, although not directly responsible for the methyltransferase activity, RBFA appears
to facilitate more efficient modification that may occur although with lower efficiency in the presence of
ERAL1.
This may also explain why the proportion of unmodified h45 was not more marked when RBFA was

depleted. It is important to note that at least for the bacterial SSU rRNA in vitro, modification is not absolutely
essential for ribosomal function, as reconstitution with unmodified 16S rRNA produces a functional subunit,
albeit one that translates with a drastically reduced efficiency [45]. In contrast, we show that despite RBFA
depletion in intact cells, 55S particles retained near-maximal levels of A936, A937 dimethylation compared with
reduced levels in total mt-SSU. These data imply that, in live cells, only fully modified mt-SSU is licensed to
become part of a functional monosome and that RBFA plays a role in the quality control of ribosome biogen-
esis in human mitochondria.
Depletion of RBFA caused a dramatic cellular phenotype prior to any detectable loss of mitochondrial trans-

lation or OXPHOS activity. Although loss of RBFA affected the level of mt-SSU maturation, normal levels of
protein synthesis were maintained by promiscuous use of the remaining fully matured mt-SSU, as was previ-
ously noted following ERAL1 depletion [14]. What, therefore, causes the growth defect in these cells? We are
currently unable to explain this phenomenon but made similar observations upon depletion of several other
components necessary for mitochondrial translation [14,52] (unpublished observation). We are currently
exploring this intriguing signalling process.

Figure 5. A schematic depicting the role that human RBFA plays in the maturation process of the 12S rRNA that is

incorporated into the small subunit of the mitoribosome.
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In conclusion, our data show that RBFA is important for 12S rRNA maturation as it plays a role in facilitat-
ing the modification of helix 45. It is likely that helix 45 needs to present a specific structure to the methyl-
transferase for optimal dimethylation of A936, A937, and that the RBFA binding provides the most favourable
conditions for the final stages of 12S rRNA maturation (Figure 5). Moreover, these data indicate that the cell
carefully monitors this maturation step, as failure to correctly assemble and maintain the mitoribosome triggers
cell growth defects in advance of OXPHOS dysfunction or other markers of mitochondrial distress.
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