Skip to main content
. 2017 Jun 12;17:400. doi: 10.1186/s12913-017-2351-8

Table 2.

Results of Logistic Regression Modelsa: Categorical IADL Scoreb and Number of Diagnoses as Predictors of Adverse Events in Four Canadian Provinces

p O.R. 95% CI for O.R.
Lower Upper
Quebec (n = 602)
 IADL Dependency and Number of Diagnosis
  Constant 0.000 0.037
  IADL dependency 0.006
  IADL dependency (1) 0.849 0.878 0.231 3.344
  IADL dependency (2) 0.014 3.522 1.293 9.590
  Mean # diagnoses 0.156
  Mean # diagnoses (1) 0.332
  Mean # diagnoses (2) 0.060
Nova Scotia (n = 302)
 IADL Dependency and Number of Diagnosis
  Constant 0.000 0.025
  IADL dependency 0.046
  IADL dependency (1) 0.040 3.309 1.057 10.354
  IADL dependency (2) 0.014 4.407 1.353 14.351
  Mean # diagnoses 0.016
  Mean # diagnoses (1) 0.126 2.052 0.817 5.149
  Mean # diagnoses (2) 0.004 5.154 1.684 15.771
Manitoba (n = 296)
 IADL Dependency and Number of Diagnosis
  Constant 0.000 0.058
  IADL dependency 0.176
  IADL dependency (1) 0.745
  IADL dependency (2) 0.085
  Mean # diagnoses 0.167
  Mean # diagnoses (1) 0.456
  Mean # diagnoses (2) 0.428
Ontario (n = 430)
 IADL Dependency and Number of Diagnosis
  Constant 0.000 0.306
  IADL dependency 0.000
  IADL dependency (1) 0.000 0.197 0.088 0.439
  IADL dependency (2) 0.001 0.287 0.136 0.604
  Mean # diagnoses 0.112
  Mean # diagnoses (1) 0.033
  Mean # diagnoses (2) 0.102

aForward stepwise regression used. n.s. signifies factor was not significant

bIADL dependency score is the mean of values across 7 IADLs (meal preparation, housework, financial transactions, medication administration, telephone use, shopping, transportation), where values are: 0 = independent, 1 = completes with difficulty or requires assistance, 2 = dependent