Skip to main content
. 2017 Jun 12;18:300. doi: 10.1186/s12859-017-1715-8

Table 5.

The performance of all feature descriptors with various machine learning algorithms based on independent dataset

Method Features ACC SN SP AUC MCC F1
Random forest OAAC 0.697 0.734 0.585 0.660 0.290 0.785
Dipeptide = 0 0.570 0.557 0.610 0.583 0.144 0.660
Dipeptide = 1 0.696 0.731 0.590 0.687 0.292 0.784
Dipeptide = 2 0.546 0.516 0.634 0.575 0.130 0.631
AAindex 0.703 0.798 0.415 0.607 0.211 0.802
PSSM 0.703 0.774 0.488 0.631 0.249 0.797
All features 0.727 0.807 0.488 0.647 0.288 0.816
SVM All features 0.642 0.613 0.732 0.672 0.298 0.720
Baseline All features 0.509 0.492 0.558 0.526 0.044 0.591