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Abstract

Collagen hydrogels have been widely investigated as scaffolds for vascular tissue engineering due 

in part to the capacity of collagen to promote robust cell adhesion and elongation. However, 

collagen hydrogels display relatively low stiffness and strength, are thrombogenic, and are highly 

susceptible to cell-mediated contraction. In the current work, we develop and characterize a 

sequentially-formed interpenetrating network (IPN) that retains the benefits of collagen, but which 

displays enhanced mechanical stiffness and strength, improved thromboresistance, high physical 

stability and resistance to contraction. In this strategy, we first form a collagen hydrogel, infuse 

this hydrogel with poly(ethylene glycol) diacrylate (PEGDA), and subsequently crosslink the 

PEGDA by exposure to longwave UV light. These collagen-PEGDA IPNs allow for cell 

encapsulation during the fabrication process with greater than 90% cell viability via inclusion of 

cells within the collagen hydrogel precursor solution. Furthermore, the degree of cell spreading 

within the IPNs can be tuned from rounded to fully elongated by varying the time delay between 

the formation of the cell-laden collagen hydrogel and the formation of the PEGDA network. We 

also demonstrate that these collagen-PEGDA IPNs are able to support the initial stages of smooth 

muscle cell lineage progression by elongated human mesenchymal stems cells.

INTRODUCTION

Collagen hydrogels have been widely investigated as scaffolds for vascular tissue 

engineering due in part to the abundance of collagen in the vessel wall and due to the 

capacity of a range of cell types to elongate and spread within collagen networks [1–4] [5]. 

Yet, collagen networks also have critical shortcomings which limit their broader utility in 
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vascular graft applications. For instance, L’Hereux et al. employed collagen hydrogels to 

form the medial layer of their engineered vascular grafts [2]. However, the encapsulated 

smooth muscle cells contracted the collagen gels by up to 70% within 4 days of culture. 

Although adult mesenchymal stem cells (MSCs) are increasingly used as a source of smooth 

muscle cells for tissue engineered vascular grafts [6–10], MSC-laden collagen hydrogels are 

also prone to cell-mediated compaction [11]. In addition, Weinberg and Bell noted that 

vascular grafts based on tubular collagen hydrogels were so highly distensible that they 

ruptured at very low pressures (< 10 mmHg) and that increasing the concentration of 

collagen had limited effect on hydrogel strength [4]. This restricted capacity to manipulate 

collagen hydrogel strength is also reflected in the relatively limited range of stiffnesses 

achievable with pure collagen hydrogels [12, 13]. Specifically, the elastic moduli of collagen 

hydrogels range from 1–100 Pa [14, 15], significantly less stiff than that of small-diameter 

vascular tissue (40–900 kPa) [16, 17]. Furthermore, collagen hydrogels have a tendency to 

undergo rapid cell-mediated degradation, which can be challenging to control and predict, 

and the thrombogenicity of collagen requires graft pre-endothelialization prior to 

deployment [4, 18].

To reduce the thrombogenicity of collagen, researchers have linked thromboresistant 

molecules, such as heparin and poly(ethylene glycol), to the collagen network with 

promising results [19, 20]. Similarly, several strategies have been employed to enhance 

collagen hydrogel stiffness, strength, and resistance to degradation and cell-mediated 

compaction. For instance, Girton et al. demonstrated that glycation can be used to stiffen and 

strengthen collagen networks [21]. Further studies have since demonstrated that glycation 

reduces collagen susceptibility to matrix metalloproteinase degradation [22]. In addition, 

glutaraldehyde, hexamethylene diisocyanate, cyanamide, and 1-ethyl-3-(3-dimethyl 

aminopropyl) carbodiimide (EDC) have each been examined in terms of their capacity to 

increase the mechanical properties and slow the degradation rate of collagen hydrogels [23]. 

However, these chemical treatments can also have unwanted side-effects. For instance, 

glutaraldehyde-treated tissues are prone to calcification, a situation which is undesirable for 

vascular graft applications [24].

To address the limitations of pure collagen hydrogels while avoiding the drawbacks of 

chemical crosslinking treatments, we propose to combine collagen hydrogels with a 

poly(ethylene glycol) diacrylate (PEGDA) hydrogel to form an interpenetrating network 

(IPN). IPNs comprised of two distinct polymer networks have recently been shown to result 

in increased hydrogel stability, stiffness, and strength relative to either single component 

network [25–28]. Importantly, the component networks often contribute to IPN properties in 

a synergistic, rather than simply an additive, manner [25, 26]. For instance, recent 

polyacrylamide-alginate IPNs [27, 28] demonstrate an elastic modulus, tensile strength, and 

strain at failure that exceed the sum of the corresponding properties of the individual 

networks.

In the present work, we combine a covalently-crosslinked PEGDA network with a 

physically-crosslinked collagen network. PEGDA was selected as the second component of 

this collagen-based IPN due to the established biocompatibility, low thrombogenicity, and 

resistance to cell-mediated compaction characteristic of PEGDA hydrogels [29–31]. In 
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addition, the degradation rate and mechanical properties of PEGDA hydrogels can be 

systematically tailored. Specifically, although pure PEGDA hydrogels degrade relatively 

slowly, their degradation rate can be modified by introduction of hydrolytically or 

enzymatically-degradable segments within the PEG network [32–36]. Similarly, the 

mechanical performance of PEGDA hydrogels can be tuned by varying the molecular weight 

(MW) and concentration of PEGDA in the hydrogel precursor solution [37, 38]. Given these 

properties, it is reasonable to assume that a collagen-based IPN which includes PEGDA as 

the second network may display improved thromboresistance, higher resistance to cell-

mediated compaction, and an increased range of mechanical properties relative to pure 

collagen.

Most IPNs, including those previously formed from PEG and collagen [39], are fabricated 

by mixing the two component polymers followed by their simultaneous crosslinking into 

interwoven networks [25, 27, 28, 39]. Unfortunately, in the case of collagen-PEG IPNs, this 

fabrication approach forces cells encapsulated within the IPN to take on a rounded cell 

phenotype, despite the presence of collagen. This is due to the nanoscale mesh structure and 

slow degradation rate of pure PEGDA hydrogels [40]. We propose to circumvent this 

limitation by first forming the collagen hydrogel and then infusing this hydrogel with 

PEGDA. Subsequent exposure of the infused network to longwave UV light will result in the 

formation of a PEGDA network interlaced with the pre-formed collagen network. As shown 

schematically in Figure 1, the degree of cell spreading in the IPN network can be controlled 

by varying the time delay between collagen hydrogel formation and PEGDA infusion and 

polymerization. In the current work, we demonstrate that this hybrid natural-synthetic IPN 

retains the benefits of collagen in terms of enabling robust cell elongation while improving 

scaffold stiffness and strength as well as scaffold resistance to compaction and platelet 

adhesion. Furthermore, we show the ability of these collagen-PEGDA IPNs to support the 

initial stages of MSC progression toward a smooth muscle cell lineage.

MATERIALS AND METHODS

Polymer Synthesis and Characterization

PEGDA was prepared as previously described [41] by combining 0.1 mmol/ml dry PEG 

(3.4, 6.0, or 10.0 kDa; Fluka), 0.4 mmol/ml acryloyl chloride, and 0.2 mmol/ml 

triethylamine in anhydrous dichloromethane and stirring under argon overnight. The 

resulting solution was washed with 2 M K2CO3 and separated into aqueous and 

dichloromethane phases to remove HCl. The organic phase was subsequently dried with 

anhydrous MgSO4, and PEGDA was precipitated in diethyl ether, filtered, and dried under 

vacuum. Acrylation of the PEG end hydroxyl groups was characterized by 1H-NMR to be ≈ 
95%.

IPN Fabrication Process

Collagen-PEGDA IPNs were fabricated under sterile conditions via a three-step process 

outlined schematically in Figure 1: 1) the physical crosslinking of a pure collagen network, 

2) followed by the infiltration of the collagen hydrogel with a 3.4 kDa, 6.0 kDa or 10.0 kDa 

PEGDA solution, and 3) UV polymerization of the infiltrating PEGDA solution. In brief, 
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ice-cold high-concentration rat tail collagen I (BD Biosciences) was diluted and neutralized 

with 1 M NaOH, 10X PBS and dIH2O to achieve the desired final collagen concentration 

(1.5 mg/mL, 3 mg/ml, or 5 mg/mL) in 1X PBS. Three hundred microliters of the neutralized 

ice-cold solution was then pipetted into BD Falcon culture inserts (12 mm diameter, 0.8 μm 

pore size) followed by polymerization via 30 min incubation at 37 °C and 5% CO2. The 

resulting hydrogels were then immersed for 30 min in serum-free medium (SFM) composed 

of phenol-red free, high glucose DMEM (Gibco, Life Technologies) supplemented with 1% 

sodium pyruvate (Gibco, Life Technologies) and 1% Glutamax (Gibco, Life Technologies).

The second polymer network was created as follows: the SFM solution surrounding the 

previously cured collagen constructs was carefully removed and replaced with 1.7 ml of 

sterile-filtered SFM containing 11.7% w/v PEGDA and 0.26% w/v photoinitiator (Irgacure 

2959). The concentration of PEGDA in this precursor solution was selected to achieve a 

nominal PEGDA concentration of approximately 10% w/v PEGDA within the collagen 

hydrogel. This PEGDA solution was then allowed to infiltrate the collagen network for 15–

60 min at 37 °C. Excess PEGDA solution was then removed, and the PEGDA within the 

collagen hydrogel was polymerized by 6 min exposure to longwave UV light (Spectroline, ≈ 
6 mW/cm2, 365 nm). The resulting IPNs were immersed in culture media (CM; SFM 

supplemented with 10% MSC qualified FBS) until further analysis.

Tailoring Infiltration Time—The fabrication of stable and homogeneous IPNs by the 

above methodology requires that the infiltration time of the PEGDA solution be 

appropriately selected. To determine the penetration time necessary for the infiltrating 

PEGDA solution to reach its equilibrium concentration within the collagen hydrogel, an 

11.7% w/v solution of an intermediate molecular weight PEGDA (6.0 kDa) was allowed to 

diffuse into a 3.0 mg/mL collagen hydrogel for 15 min, 30 min, 45 min or 60 min at 37 °C 

prior to UV polymerization. The resulting IPNs were immersed in CM for 24 h, after which 

they were exposed to the mechanical and swelling assessments described below. Pure 

collagen (3 mg/mL) and pure PEGDA (6 kDa, 10% w/v) hydrogel controls were also 

evaluated by the same methods.

Rheological Testing: Three to six hydrogel discs (8 mm diameter) per PEGDA infiltration 

time were used to characterize the rheological behavior of each resulting IPN. Hydrogels 

were blotted gently to remove excess water and placed on the testing stage of an Anton-Paar 

Physica MCR 301 rheometer fitted with an 8 mm diameter upper platen. The gap distance 

between the upper and lower platen was adjusted to achieve a 100 μm indentation depth 

within each IPN. Dynamic oscillatory frequency sweeps were then conducted at room 

temperature between 0.1 Hz and 100 Hz, with 10 measurement points per decade at a 

constant shear stress of 2%. Shear storage modulus (G′) and shear loss modulus (G″) were 

each evaluated as a function of frequency.

Tensile Ring Testing: The effect of infiltration time on IPN mechanical properties was also 

evaluated using a modification of the circumferential property testing technique previously 

validated for arterial ring specimens [42]. In brief, three to five 8 mm discs were further 

separated into a 6 mm inner disc and an outer 8 mm ring using a 6 mm sterile biopsy punch. 

Each outer 8 mm ring was mounted onto an Instron 3342 by threading opposing stainless 
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steel hooks through the segment lumen. The hooks were then uniaxially separated at a rate 

of 6 mm/min until construct failure. As hook separation increased, the mounted ring was 

drawn into an increasingly oblong conformation. Johnson et al. confirmed that the force 

applied by the hooks to this oblong oval could be approximated as being equally distributed 

between two rectangles, each with sides equal to the width and wall thickness, hv, of the 

ring. The gauge length, lg, was taken to be the inner diameter, Dv, of the unstretched ring 

plus hv, and the elastic modulus, E, of each sample was defined as the slope of the resulting 

linear stress–strain curve.

Swelling: Swelling measurements were performed as an additional indicator of the degree of 

PEGDA infiltration within the collagen networks. Twenty-four hours following IPN 

fabrication, three to six swollen constructs per IPN type were transferred to sterile PBS for 4 

h at room temperature, after which the swollen weight (Ws) of each sample was recorded. 

The dry weight (Wd) of each specimen was subsequently recorded after 24 h of 

lyophilization. The equilibrium mass swelling ratio (q) was then calculated for each 

collagen-PEGDA IPN formulation as .

Based on the resulting rheological and swelling data, it was determined that 45 min was 

sufficient for equilibrium PEGDA infiltration to be achieved in the collagen networks 

employed (Figure 2). However, to ensure equilibrium PEGDA infiltration, all further 

collagen-PEGDA IPNs were prepared using a 60 min infiltration time.

Tailoring the Mechanical Properties of Collagen-PEGDA IPNs

Varying the Molecular Weight of PEGDA: In pure PEGDA hydrogels, scaffold 

mechanical properties can be modulated by varying PEGDA molecular weight (MW) and/or 

concentration [37, 38, 43]. In this study, we chose to focus on the effects of PEGDA MW in 

modulating IPN mechanical properties. We did not vary PEGDA concentration, as 

increasing PEGDA concentration would have extended the time needed for the infiltrating 

PEGDA solution to achieve equilibrium within the collagen hydrogel. In examining the 

effects of PEGDA MW, the concentration of collagen within the collagen hydrogel was 

maintained at 3 mg/mL and the PEGDA MW in the infiltration solution was varied (3.4 kDa, 

6.0 kDa, or 10.0 kDa PEGDA) with a 60 min infiltration time. The resulting IPNs and 

corresponding pure PEGDA and collagen hydrogel controls were immersed in CM for 24 h, 

followed by ring tensile testing as described above.

Varying the Concentration of Collagen: By varying the concentration of collagen in the 

hydrogel precursor solution, the stiffness of collagen hydrogels can be tuned. We therefore 

also examined the potential impact of variations in collagen concentration on overall IPN 

tensile properties. In brief, collagen hydrogels were prepared at 1.5 mg/mL, 3 mg/mL, and 5 

mg/mL. An 11.7% w/v solution of the intermediate molecular weight PEGDA (6.0 kDa) was 

allowed to infiltrate the collagen gels for 60 min, followed by UV polymerization. After 24 h 

immersion in CM, mechanical testing was performed according to the rheological testing 

method described above.
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IPN Microarchitectural Characterization

For microstructural assessment, 8 mm diameter collagen-PEGDA IPN discs were fabricated 

as described above using 3 mg/mL of collagen and 6.0 kDa PEGDA. Following 24 h 

immersion in CM, the IPN discs were processed for confocal microscopy or scanning 

electron microscopy (SEM), as outlined below.

Confocal Microscopy Imaging—The collagen-PEGDA IPN discs were fixed in 

formalin for 1 h, and 1 mm thick transverse sections were cut from each disc using a razor 

blade. Each section was washed with PBS and blocked with 3% bovine serum albumin 

(BSA) in PBS for 1 h. Samples were then exposed to primary antibody for collagen I 

(Rockland Immunochemicals) diluted in staining buffer (PBS containing 3% BSA and 

0.05% Tween 20) for 12 h at 4 °C. Sections were subsequently rinsed 3 times with PBS, and 

donkey anti-rabbit Alexa Fluor 488 secondary antibody (Life Technologies) diluted in 

staining buffer was applied for 12 h at 4 °C. Following rinsing in PBS to remove unbound 

secondary antibody, confocal microscopy was performed using a Zeiss LSM 510 META 

confocal microscope equipped with a 40X water immersion objective. Four randomly 

selected regions in each sample segment were imaged.

Scanning Electron Microscopy Imaging—SEM was performed on collagen-PEGDA 

IPN hydrogels using a FEI Quanta 600F SEM with secondary electron detector. The 

hydrogels were prepared for electron microscopy by transverse sectioning, followed by 

fixation and serial dehydration with ethanol and hexamethyldisilazane according to the 

method described by Raub et al. [44]. Prior to imaging, dried hydrogels were mounted on 

SEM sample stages using carbon tape and sputter coated with Pd/Pt to a thickness of 6 nm 

using a Cressington 208HR sputter coater. Each specimen was then imaged at 5 kV using 

magnifications of 1500X and 40000X.

Cell Studies

Cryopreserved human mesenchymal stem cells (MSCs; Lonza) at passage 2 were thawed 

and expanded in monolayer culture. Prior to encapsulation, cells were maintained at 37 °C 

and 5% CO2 in MesenPRO RS medium (Gibco, Life Technologies). For each of the cell 

studies below, MSCs were harvested at passage 4 and encapsulated at 7.5×105 cells/ml as 

described above. Collagen-PEGDA IPNs containing 3 mg/mL collagen and 6.0 kDa PEGDA 

were selected for evaluation due to the prior use of 10 % w/v 6.0 kDa PEGDA hydrogels in 

vascular tissue engineering studies [45, 46]. Cells were allowed to spread in the collagen 

network for 0 h, 4 h or 6 h in either SFM or CM prior to infiltration with an 11.7% w/v 6.0 

kDa PEGDA solution for 60 min, followed by 6 min exposure to longwave UV light. The 

resulting cell-laden IPNs were incubated at 37 °C and 5% CO2 and cultured in CM for up to 

14 days with media changes every 2 days.

Cell Viability Assessments—Twenty-four hours post-fabrication, cell-laden IPNs were 

exposed to Live/Dead Cell Viability Assay reagents (Life Technologies) per the 

manufacturer’s protocol. One mm thick transverse sections were cut from each hydrogel 

disc using a razor blade. Fluorescence images of the Live/Dead stained cells were obtained 

from 10 randomly selected regions of each transverse section using confocal microscopy. 
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Images were processed using ImageJ software to compute the number of viable versus dead 

cells.

Evaluation of the Ability of the IPN to Support Cell Elongation—To quantitatively 

assess cell elongation as a function of the time delay between collagen I network formation 

and PEGDA infiltration, cell-laden IPNs formed with delay times of 0, 4, and 6 h were fixed 

in formalin for 30 min, followed by exposure to 66 nM rhodamine phalloidin (Life 

Technologies) and 300 nM DAPI dilactate (Life Technologies) for 1 h at room temperature. 

Discs were then rinsed to remove unbound phalloidin and DAPI. One mm thick transverse 

sections were cut from each hydrogel disc using a razor blade. Cell shape information was 

then obtained from confocal microscopy images of the actin networks of the encapsulated 

cells from 4 randomly selected regions of each transverse section. Circularity (C) and 

roundness (R) measurements were obtained using ImageJ software. In brief,  and 

 were calculated for each cell, where A and P are the cell area and perimeter, 

respectively, and where a is the length of the major axis of the cell [47].

Assessment of Cell-Mediated IPN Compaction—Collagen-PEGDA IPNs were 

prepared with a 6 h time delay between collagen hydrogel formation and PEGDA infiltration 

to ensure MSC elongation. These IPNs were cultured for 14 days alongside pure PEGDA 

and pure collagen I hydrogel controls prepared with similar initial cell densities (7.5×105 

cells/mL). Compaction was assessed by monitoring changes in hydrogel dimensions using a 

digital micrometer over the course of 14 days of culture.

Capacity of the IPN to Support Initial Smooth Muscle Cell Lineage 
Progression—Collagen-PEGDA IPNs were prepared with a 6 h time delay between 

collagen hydrogel formation and PEGDA infiltration to ensure MSC elongation. The 

resulting IPNs were initially immersed in DMEM containing 10% MSC-qualified FBS and 

1% penicillin/streptomycin/amphotericin solution. After 24 h of culture, a set of gels was 

harvested as “day 0” specimens, snap-frozen, and stored at −80 °C until analysis. Remaining 

gels were then cultured in DMEM supplemented with 10% MSC-qualified FBS, and 10 

ng/mL TGF-β3, with media changes every two days. After 14 days of culture, these IPNs 

were harvested and snap-frozen for subsequent analysis.

MSC phenotypic progression within the day 14 IPNs was evaluated by qRT-PCR relative to 

day zero. Specifically, gene expression for smooth muscle alpha actin (SM-α-actin), smooth 

muscle 22 alpha (SM22α) and calponin h1 (CNN1) was quantified relative to the 

housekeeping gene GAPDH. Since TGF-β3 can also induce chondrogenesis in MSC cultures 

[48], the chondrogenic markers sox9 and collagen II were also evaluated to assess the 

presence of this undesired lineage. In brief, mRNA was extracted using the Dynabeads 

mRNA direct kit (Ambion, Life Technologies). In brief, a 6 mm disc was cored from each of 

the IPN constructs and transferred to a 1.7 ml RNase-free conical tube containing 330 μL of 

the provided lysis binding buffer. The samples were then homogenized using a plastic 

RNase-free pestle (Kimble Chase) and incubated at room temperature for 10 min. Following 

incubation, the samples were centrifuged for 5 min at 10,000 rpm and the polyA-mRNA in 

the supernatant was harvested using 20 μL of Dynabeads oligo (dT)25 magnetic beads. 
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Following rinsing steps, the polyA-mRNA was released from the Dynabeads in 100 μL of 10 

mM Tris-HCl by heating the beads to 80 °C for 2 min.

Proprietary qRT-PCR verified primers for human SM-α-actin, SM22α, CNN1, sox9, 

collagen II and GAPDH were purchased from Origene. qRT-PCR was performed on each 

sample using a StepOne real-time PCR system (Life Technologies) and the SuperScript III 

Platinum One-Step qRT-PCR kit (Invitrogen, Life Technologies). mRNA levels for each 

gene of interest were assessed in duplicate for each construct. Approximately 3 ng of polyA-

mRNA and 5 μL of 1 mM primer were added per 25 μL of reaction mixture. Amplification 

during the PCR phase was monitored by measuring the change in SYBR Green 

fluorescence, with ROX dye serving as a passive reference. A threshold fluorescence value 

at which each sample was in the exponential phase of amplification was identified using 

StepOne software v2.0. The amplification cycle at which a given sample exceeded this 

threshold was recorded as the Ct for that sample. For each sample, expression of each gene 

of interest was calculated relative to GAPDH using the ΔΔCt method. Melting temperature 

analysis was performed for each PCR reaction to verify the appropriate amplification 

product.

Platelet Adhesion Assessment

The thrombogenicity of the collagen-PEGDA IPNs was evaluated relative to pure collagen 

hydrogels using platelet adhesion studies per standard protocols [49]. IPNs were fabricated 

using 3 mg/mL of collagen and 11.7 % w/v 6.0 kDa PEGDA via the sequential process 

described above. The resulting IPNs and corresponding collagen hydrogel controls were 

immersed in CM for 24 h, followed by exposure of four hydrogels from each group to 1 mL 

of porcine whole blood containing heparin (Lampire, Biological Laboratories). After 2 h of 

incubation, the blood was gently removed from each surface, and hydrogels were rinsed five 

times for 5 min at room temperature with 1 mL of Dulbecco’s PBS (Gibco, Live 

Technologies). Adherent platelets were then lysed for 20 min at room temperature using 1 

ml of lysis solution from the LDH Cytotoxicity Detection Kit (Roche). The total number of 

adhered cells was indirectly quantified by the measurement of lactate dehydrogenase (LDH) 

levels in the lysate [49].

Statistical Analyses

Data are reported as mean ± standard deviation. Comparison of sample means was 

performed using ANOVA followed by Tukey’s post-hoc test (SPSS software), p < 0.05.

RESULTS

Tailoring the IPN Fabrication Process

In terms of fabricating the collagen-PEGDA IPNs, it was important to first identify the 

infiltration time needed for the infusing PEGDA precursor solution to reach its equilibrium 

concentration throughout the pre-formed collagen hydrogel [50]. Thus, a series of 

experiments were conducted in which the PEGDA infiltration solution was allowed to 

diffuse into a 3 mg/mL collagen hydrogel for 15 min, 30 min, 45 min or 60 min prior to UV-

initiated PEGDA polymerization. The resulting IPNs were immersed in culture media for 24 
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h, after which they were characterized in terms of shear storage modulus (G′), shear loss 

modulus (G″), and mass swelling ratio (q). Results from these assays are shown in Figure 

2A–C. As expected, both the G′ and G″ of the collagen-PEGDA IPNs increased with 

increasing infiltration time up through 45 min. Beyond this infiltration time, no further 

statistically significant changes in G′ or G″ were observed, indicating that equilibrium 

infusion of the PEGDA solution was achieved at 45 min infiltration time. Tensile ring testing 

supported these rheological results. Specifically, IPN tensile modulus increased from ≈ 37 

kPa at a 15 min infiltration time to ≈ 78 kPa at a 45 min infiltration time (Table 1). Similarly, 

no further significant changes in IPN tensile modulus were observed between 45 min and 60 

min infiltration time. These trends were also observed for tensile strength (Table 1).

As with mechanical property testing, mass swelling assessments can give quantitative insight 

into the extent of PEGDA diffusion into the collagen hydrogel prior to PEGDA crosslinking. 

The equilibrium mass swelling ratios of the collagen-PEGDA IPNs decreased with 

increasing infiltration time through 45 min (p < 0.010), after which no further significant 

reductions were observed (Figure 2C). Furthermore, the post-swelling concentration of 

PEGDA in IPNs as a function of infusion time was calculated from the obtained swelling 

data. The concentration of PEGDA in the IPN after 15 min of infiltration time reached 6.1 

± 0.1% w/v and monotonically increased until attaining equilibrium at 45 min infusion time. 

The equilibrium infusion time was set as the time beyond which the post-swelling PEGDA 

concentration in the IPN was statistically indistinguishable from that of the PEGDA control 

formulation (7.0% w/v post-swelling, 10% w/v nominal). Detailed data information of the 

post-swelling concentration of PEGDA in each IPN formulation as a function of infusion 

time has been reported in the Supplementary Table 1. As such, both the mechanical testing 

and swelling data indicate that a 45 min infiltration time was sufficient for an 11.7 % w/v 

solution of 6.0 kDa PEGDA to reach equilibrium levels within a 3 mg/mL collagen 

hydrogel. However, to ensure that equilibrium PEGDA infiltration was achieved in our 

studies, all further collagen-PEGDA IPNs were prepared using a 60 min infiltration time.

Mechanical Testing Assessment at Equilibrium PEGDA Infiltration

In further examining the mechanical data in Figure 2, the shear storage modulus (G′) and 

shear loss modulus (G″) were each substantially greater for the equilibrium IPN (45–60 min 

infiltration time) than for the single network PEGDA and collagen hydrogel controls. 

Specifically, the G′ for the IPN at 60 min infiltration time was 136-fold greater than the 

pure collagen control and 3-fold greater than the PEGDA control (p < 0.001). Similarly, a 

140-fold increase in G″ was observed for the equilibrium IPN relative to the pure collagen 

hydrogel control (p < 0.001) and a 1.6-fold increase was observed relative to the PEGDA 

control (p < 0.001).

This increase in IPN storage and loss modulus relative to the individual component networks 

was also reflected in the tensile modulus data. Specifically, the tensile modulus of the 

collagen-PEGDA IPN at equilibrium PEGDA infiltration was approximately 2.5-fold greater 

than that of the pure PEGDA control (p = 0.001, Table 1). Similarly, the tensile strength (TS) 

of the IPN at 60 min infiltration time was ≈ 2.4-fold greater than the TS of the PEGDA 

control (p = 0.002), with a TS of approximately 100 kPa being achieved for the collagen-
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PEGDA IPN (Table 1). This value of TS is over an order of magnitude larger than that of the 

tubular collagen hydrogels previously utilized in vascular graft construction [5].

To gain insight into the elasticity of the collagen-PEGDA IPN, the rheological data was used 

to determine the loss tangent (G″/G′) of the IPN compared to that of the pure PEGDA 

control. The loss tangent for the collagen-PEGDA IPN was 0.11 ± 0.01, significantly lower 

than the 0.19 ± 0.06 loss tangent of pure PEGDA hydrogels (p = 0.040). This indicates that 

the IPNs may have increased elasticity relative to pure PEGDA gels, which are generally 

considered to be highly elastic.

Post-Encapsulation Cell Viability

Prolonged exposure of cells to high concentrations of solubilized, uncrosslinked PEGDA 

can have cytotoxic effects. As such, it was important to assess the viability of cells through 

the sequential encapsulation process associated with IPN formation. Toward this end, human 

MSCs were encapsulated within a 3 mg/mL collagen hydrogel followed by either a 0 h or a 

6 h delay time. The gels were then exposed to an 11.7 % w/v solution of 6.0 kDa PEGDA 

for 60 min prior to UV polymerization. Live/Dead staining performed 24 h following 

encapsulation indicated cell viability levels of 91.1 ± 1.2% in IPNs fabricated with 0 h 

delay-time between collagen network formation and the onset of PEGDA infiltration. IPNs 

formed with a 6 h delay-time were associated with a cell viability of 95.1 ± 1.6%. 

Representative Live/Dead images can be seen in Supplementary Figure 1. These viability 

results are consistent with data from Nuttelman et al., which showed human MSC viability 

in photocrosslinked PEGDA hydrogels to fall between 75% and 97% [51]. In addition, the 

present MSC viability results suggest that the IPN fabrication strategy used in this study 

provides similar cytocompatibility compared to other IPN cell encapsulation strategies, 

where viability ranges from 47 % to 96 % [52, 53]. Thus, a 60 min exposure to solubilized 

PEGDA prior to crosslinking appears to be cytocompatible at the concentration of PEGDA 

employed.

Tailoring the Mechanical Properties of Collagen-PEGDA IPNs

In pure PEGDA hydrogels, scaffold mechanical properties can be modulated by varying 

PEGDA molecular weight (MW) and concentration [37, 38, 54, 55]. Collagen hydrogel 

mechanical properties can also be tuned by tailoring the concentration of collagen [14]. To 

demonstrate the tunability of this IPN system, we have therefore examined the effects of 

PEGDA MW and collagen concentration on IPN mechanical properties.

Effect of PEGDA MW—In assessing the effects of PEGDA MW, 3.4 kDa, 6 kDa, and 10 

kDa PEGDA was utilized. Consistent with PEGDA hydrogel literature, a decrease in 

PEGDA MW led to a significant increase in tensile modulus for the pure PEGDA controls (p 

= 0.008; Figure 3A). This modulation of stiffness by PEGDA MW was also reflected in the 

collagen-PEGDA IPN series, with the average tensile modulus of the IPNs increasing from 

25.2 ± 1.4 kPa for 10.0 kDa PEGDA to 103.2 ± 20.3 kPa for 3.4 kDa PEGDA (p ≤ 0.001). 

Rheological assessments indicated a similar increase in IPN shear elastic modulus with 

decreasing PEGDA MW (p < 0.028), with G′ for the IPN containing 3.4 kDa PEGDA being 

≈ 2.2-fold greater than for the IPN containing 10 kDa PEGDA (Table 2). TS of the collagen-
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PEGDA IPNs also increased from ≈ 47 kPa to over 100 kPa as PEGDA MW decreased from 

10 kDa to 3.4 kDa (p = 0.002, Figure 3B).

These PEGDA MW data also reveal consistent trends with the equilibrium IPN results 

containing 6.0 kDa PEGDA discussed in the previous section. Specifically, the average 

tensile modulus (p ≤ 0.001) and average TS (p ≤ 0.002) of the IPNs containing 3.4 kDa, 6.0 

kDa, or 10 kDa PEGDA was increased 1.6–2.5-fold relative to the corresponding pure 

PEGDA controls. Furthermore, the elasticity of the IPNs was greater than their 

corresponding pure PEGDA counterparts per loss tangent calculations for each PEGDA MW 

examined (Table 2). Importantly, several of the examined IPN tensile modulus values fall 

within the range of health vascular tissue (40 – 900 kPa) [16, 17].

Effect of Collagen Concentration—To assess the effect of collagen concentration on 

IPN mechanical properties, 3 collagen hydrogel types were prepared: 1.5 mg/mL, 3 mg/mL, 

and 5 mg/mL. These hydrogels were then exposed to an 11.7 % w/v solution of 6.0 kDa 

PEGDA for 60 min, followed by PEGDA polymerization. The average rheological 

properties of the resulting IPNs are given in Table 3. As anticipated, G′ increased with 

increasing collagen concentration, from 11.0 ± 4.6 kPa at 1.5 mg/mL collagen to 21.7 ± 4.1 

kPa at 5.0 mg/mL collagen (p = 0.003). Furthermore, the loss tangent decreased by a factor 

of 2 from 1.5 mg/mL collagen to 5 mg/mL collagen, indicating that IPN elasticity increased 

with increasing collagen concentration (p = 0.001). These results are consistent with the 

increased G′ and increased elasticity reported for pure collagen gels over a similar collagen 

concentration range [56]. Cumulatively, the above PEGDA MW and collagen concentration 

data demonstrate the mechanical tunability of the collagen-PEGDA IPNs.

IPN Microarchitectural Characterization

To further characterize the developed IPNs, their microarchitecture was examined using 

standard microscopy techniques To visualize the native state and distribution of the fibrillar 

collagen network within the swollen hydrogels, immunostaining for collagen I was 

performed followed by confocal microscopy. Representative confocal images of a 3 mg/mL 

collagen hydrogel, 6.0 kDa PEGDA 10% w/v hydrogel and the 60 min infiltrated IPN with 

6.0 kDa PEGDA are shown in Figure 4. The fibrillar collagen network within the pure 

collagen and the IPN is apparent, and the collagen fibrils appear to be relatively evenly 

distributed within the matrix. In contrast, no fibers were observed in the pure PEGDA 

control formulation, which has no intrinsic fluorescence.

To visualize both the PEGDA and collagen components of the IPN, SEM imaging was 

employed. Figure 5A shows representative SEM images of a pure PEGDA hydrogel, 

whereas Figure 5B displays representative images of a collagen-PEGDA IPN. In the IPN 

images, collagen fibrils entangled with flat PEGDA structures can be seen. The average 

thickness of these collagen fibrils was measured as approximately 60 nm using the SEM 

software measurement tool. This diameter value is consistent with that observed in other 

studies for collagen hydrogels cured at neutral pH and temperature of 37 °C [44].
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IPN Ability to Support an Elongated Cell Phenotype

Pure PEGDA hydrogels are not permissive to cell elongation following PEGDA 

polymerization, even in the presence of incorporated cell adhesion ligands. This is due to the 

tight, nanoscale mesh structure and resistance to degradation that is characteristic of PEGDA 

gels [57]. To enable cell elongation within this IPN system, we therefore chose to rely on the 

capacity of collagen hydrogels to facilitate cell spreading. In brief, MSCs were encapsulated 

within 3 mg/mL collagen hydrogels, and then incubated in the presence of serum-free 

culture medium for 0, 4, or 6 h prior to exposure to PEGDA (also dissolved in serum free 

medium) for 60 min. Following PEGDA polymerization, each disc was immersed in 

medium containing 10% serum and cultured for 24 h prior to imaging.

The average extent of cell elongation was assessed by quantification of cell circularity (C) 

and roundness (R). The measures serve as quantitative measures of cell shape, where values 

of C and R significantly less than 1 correspond to a high degree of cell elongation and values 

of C and R closer to 1 correspond to more rounded morphology. As expected, both cell 

circularity and roundness decreased as the time for cell spreading in the collagen network 

prior to PEGDA infusion increased from 0 h to 6 h. Specifically, circularity decreased from 

0.5 to 0.28 as the delay-time between collagen network formation and PEGDA infiltration 

increased from 0 h to 6 h (p < 0.001, Figure 6A). Similarly, roundness was reduced from 

0.64 to 0.38 with increasing delay-time (p < 0.001, Figure 6B). These quantitative changes 

in cell morphology corresponded to a shift from rounded cells at 0 h to spindle-shaped cells 

at 6 h, as shown in Figure 7. These cell shapes were maintained through 2 weeks of culture 

(Supplementary Figure 2).

Cumulatively, the present data demonstrate that the sequentially polymerized collagen-

PEGDA hydrogel system retains the benefits of collagen hydrogels in terms of enabling cell 

elongation.

IPN Resistance to Cell-Mediated Compaction

To assess the resistance of the collagen-PEGDA IPNs to cell-mediated compaction, IPNs 

fabricated with a 6 h delay time, i.e. containing elongated MSCs, were cultured for 14 days. 

Compaction was assessed by monitoring changes in hydrogel dimensions over the course of 

14 days of culture. No alteration in IPN thickness was observed through the culture period 

(Figure 8A). Similarly, the lateral dimensions of the IPN networks were also maintained 

over 14 days of culture (Figure 8B and the Supplementary Table 2). These results are 

consistent with the resistance to cell-mediated compaction characteristic of pure PEGDA 

hydrogels. In contrast, the diameter of pure collagen hydrogels at 14 days of culture was 

reduced 60.3 ± 8.2 % relative to day 0 (Figure 8B).

Collagen hydrogels enable significant cell proliferation, whereas PEGDA-containing 

hydrogels do not, due in part to their nanoscale crosslinks and slow degradation rates [37, 

38]. Thus, the above studies do not enable matrix compaction resulting from a potential 

increase in cell number to be distinguished from intrinsic hydrogel susceptibility to 

compaction. An additional set of hydrogels were therefore prepared containing h-MSCs pre-

treated with 8 μg/mL mitomycin C (MMC), a potent inhibitor of cell proliferation. MMC 
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pre-treated hydrogels could be considered to have a relatively constant total cell number over 

the 14 day culture period. In the MMC-treated set, differences in the extent of collagen 

hydrogel and IPN compaction could therefore be attributed to differences in their intrinsic 

susceptibility to cell-mediated compaction. Significant reduction in the diameter (~37.9 

± 3.2 %) of the MMC-treated collagen hydrogels was observed, although no change was 

observed for the IPNs (Figure 8B). Therefore, the collagen-PEGDA IPNs displayed an 

increased resistance to cell-mediated matrix compaction relative to pure collagen.

IPN Capacity to Support Smooth Muscle Cell Lineage Progression

Adult mesenchymal stem cells (MSCs) are increasingly used as a source of smooth muscle 

cells for tissue engineered vascular grafts [6–10]. We therefore evaluated the capacity of the 

collagen-PEGDA IPNs to support MSC differentiation to vascular smooth muscle cells in 

the presence of TGF-β3, a growth factor which can support either smooth muscle cell or 

chondrogenic differentiation depending on microenvironmental factors [58].

Following 14 days of culture, elongated MSCs encapsulated within an IPN containing 3 

mg/mL collagen and 10 % w/v of 6.0 kDa PEGDA exhibited a 13.7-, 9.8-, and 9.5-fold 

increase in the gene expression of smooth muscle cells markers SMα-actin, SM22α and 

CNN1, respectively, relative to day zero (p < 0.004, Figure 9). On the other hand, no 

alteration in gene expression of the chondrogenic transcription factor sox9 was observed 

between day 14 and day 0 of culture, and mRNA for collagen II was not detected. These 

data indicate that the 6.0 kDa PEGDA IPN formulation was able to support the initial stages 

of MSC smooth muscle cell lineage progression in the presence of elongated cells.

Initial Assessment of IPN Thrombogenicity

As an initial thrombogenicity assessment, collagen-PEGDA IPNs were exposed to porcine 

whole blood under static conditions and the levels of platelet adhesion and clot formation 

were assessed relative to collagen hydrogel positive controls. The degree of platelet adhesion 

supported by the IPNs was ≈ 40% lower than that supported by the collagen controls (p = 

0.001, Figure 10A) and clot formation was qualitatively reduced (Figure 10B). Thus, the 

presence of PEGDA within the IPNs appeared to enhance their thromboresistance relative to 

pure collagen hydrogels.

DISCUSSION

The aim of the present work has been to develop an IPN which would retain the benefits of 

collagen in terms of enabling robust cell elongation, but which would display enhanced 

mechanical stiffness and strength, improved thromboresistance, and high resistance to 

compaction. To allow for cell elongation within the IPN networks despite the presence of 

PEGDA, a delay time was introduced between the formation of the cell-laden collagen 

network and subsequent infiltration with PEGDA. This is in contrast to most IPNs, including 

those previously formed from PEG and collagen [39], which are generally prepared by 

mixing the two component polymers followed by their simultaneous crosslinking into 

interwoven networks [25, 27, 28, 39]. In the present work, we have demonstrated that 

collagen-PEGDA IPNs fabricated by this sequential polymerization process permit control 
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over the degree of cell elongation, from rounded at a 0 h delay time to increasingly 

elongated at a 6 h delay-time. MSC viability through the sequential polymerization process 

was > 90%, irrespective of delay time. Furthermore, elongated MSCs within a ≈ 60 kPa 

collagen-PEGDA IPN progressed through the initial stages of smooth muscle cell 

differentiation when cultured in the presence of TGF-β3, a growth factor that can stimulate 

either chondrogenesis or smooth muscle cell formation depending on the local cell 

environment.

In terms of mechanical properties, the observed improvement in rheological and tensile 

moduli in the collagen-PEGDA IPNs relative to their single network counterparts is in 

agreement with previous studies that used PEG [50] or poly (2-hydroxyethyl methacrylate) 

(HEMA)-based IPN systems [59]. The synergistic increase in TS observed in the collagen-

PEGDA IPN relative to the additive TS of the component networks is also consistent with 

existing IPN literature [27, 28]. Furthermore, the elasticity of the IPNs was greater than their 

corresponding pure PEGDA counterparts, per loss tangent calculations. Given the 

importance of biomaterial resistance to dilation in vascular graft applications, the ability to 

modulate scaffold elasticity is advantageous in graft design.

Also, consistent with existing literature is the tunability of collagen-PEGDA IPN mechanical 

properties in response to changes in PEGDA MW and collagen concentration. It is 

anticipated that tailoring the PEGDA concentration in the infiltration solution would result 

in a further broadening of achievable tensile and rheological properties [38, 60, 61], 

although longer infiltration times may be needed for more concentrated PEGDA solutions to 

reach equilibrium within the collagen hydrogel.

Collagen-PEGDA IPNs containing elongated MSCs also exhibited a high degree of physical 

stability, with construct dimensions being maintained over 14 days of culture with no 

evidence of significant cell-mediated compaction. This is important for vascular graft 

applications, where control over graft dimensions and stability is critical. Moreover, the 

collagen-PEGDA IPNs displayed significantly reduced platelet adhesion and clot formation 

relative to pure collagen hydrogels. Both the increased physical stability and increased 

thromboresistance of the collagen-PEGDA IPNs relative to pure collagen hydrogels result 

from the physical properties of PEGDA hydrogels. Specifically, the nanoscale crosslink 

density and resistance to degradation characteristic of pure PEGDA networks limit cell-

mediated network compaction [57]. In addition, the non-fouling or passivating nature of 

PEGDA is considered to underlie its thromboresistance [29, 30].

This sequential polymerization/time-delay approach to creating hybrid natural-synthetic 

IPNs containing elongated cells is not limited to collagen and PEGDA. For instance, 

fibrinogen-based hydrogels could potentially be employed in place of collagen. Furthermore, 

the fabrication of collagen-PEGDA IPNs with directionally aligned collagen fibers could be 

achieved if the protein fibers are aligned prior to PEGDA infiltration and polymerization via 

the application of mechanical strain or a magnetic field [3].
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CONCLUSIONS

In the present work, a collagen-PEGDA IPN has been developed which retains many of the 

benefits of pure collagen hydrogels but which displays improved stiffness, strength, physical 

stability, and blood compatibility. The introduction of a variable time delay between the 

formation of the collagen hydrogel and the formation of the secondary PEGDA network 

enables tight control over cell spreading, ensuring the robust cell elongation needed for 

vascular graft applications despite the present of PEGDA. This ability to control the degree 

of cell spreading combined with the broad tunability of the collagen-PEGDA IPN modulus 

and strength also opens the potential use of these scaffolds in a range of other tissue 

engineering applications.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic representation of the sequential collagen-PEGDA IPN fabrication process.
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Figure 2. 
Change in IPN rheological properties and swelling as a function of PEGDA infiltration time. 

(A) Shear storage modulus, (B) Shear loss modulus, (C) Mass swelling ratio. For each 

formulation, n = 3–6 independent samples were measured. * significantly different from the 

pure nominal 10 % w/v PEGDA hydrogel, p < 0.05; # significantly different from the pure 3 

mg/mL collagen hydrogel, p < 0.05; + significantly different from the 15 min infiltration 

time, p < 0.05; & significantly different from the 30 min infiltration time, p < 0.05.
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Figure 3. 
Influence of PEGDA molecular weight on IPN tensile properties. (A) Tensile modulus, (B) 

Tensile strength. For each formulation, n = 3–5 independent samples were measured. * 

significantly different from the 3.4 kDa PEGDA IPN, p < 0.05; # significantly different from 

6.0 kDa PEGDA IPN, p < 0.05; + significantly different from the corresponding pure 

PEGDA control, p < 0.05; & significantly different from the pure 3.4 kDa PEGDA hydrogel, 

p < 0.05.
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Figure 4. 
Representative confocal images of a transverse section through hydrogels immunostained 

for collagen I: (A) a 3 mg/mL collagen hydrogel; (B) a nominal 10% w/v 6.0 kDa PEGDA 

hydrogel; (C) a 6.0 kDa PEGDA IPN hydrogel at 60 min infiltration time. Scale bar = 50 

μm.
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Figure 5. 
Microscopy-based assessment of IPN microstructure. (A) A representative SEM image of a 

nominal 10% w/v 6.0 kDa PEGDA hydrogel control at 15,000X magnification, scale bar = 4 

μm. The image inset shows the gel structure at 40,000X magnification; (B) A representative 

SEM image of a 6.0 kDa PEGDA IPN, 60 min infiltration time at 15,000X magnification, 

scale bar = 4 μm, arrow indicating a flat PEGDA structure surrounded by collagen fibrils. 

The image inset shows the gel structure at 40,000X magnification.
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Figure 6. 
Cell shape descriptors (A) Circularity, (B) Roundness in 6.0 kDa PEGDA IPN. 

Approximately 100 cells were evaluated for each time delay. * significantly different from 

the 0 h time delay samples, p < 0.05.
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Figure 7. 
Representative images of phalloidin-stained cells in collagen-PEGDA IPNs (3 mg/mL 

collagen, 6.0 kDa PEGDA) as a function of the delay time between collagen network 

formation and PEGDA infiltration. (A, D) 0 h delay time, (B, E) 4 h delay time, (C, F) 6 h 

delay time. The cell cytoskeleton is stained with rhodamine phalloidin, and the cell nuclei 

are stained with DAPI. The scale bars in (A, B, C) equal 20 μm and the scale bars in (D, E, 

F) equal 100 μm.
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Figure 8. 
Volume assessment of collagen-PEGDA IPNs (3 mg/mL collagen, 6.0 kDa PEGDA, 60 min 

infusion time) containing elongated MSCs over 14 days of culture. (A) Average IPN 

thickness at day 14 relative to day 0; (B) Representative images of day 0 and day 14 IPNs 

relative to pure PEGDA and pure collagen control gels.

Munoz-Pinto et al. Page 26

Biomaterials. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Gene expression of SMα-actin, SM22-α, CNN1, sox9 and collagen II by elongated MSCs 

in a 6.0 kDa PEGDA IPN (60 min infusion time) following 14 days of culture relative to day 

0. Gene expression was assessed relative to the housekeeping gene GAPDH and fold 

differences were calculated using the ΔΔCt method. Four IPN discs were evaluated for each 

time point. * significantly different from day zero, p < 0.05.
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Figure 10. 
Initial thrombogenicity assessment. (A) 6.0 kDa PEGDA IPN (60 min infusion time) platelet 

adhesion relative to collagen hydrogel positive controls, n = 4 samples per formulation. (B) 

Representative images of clot formation on various hydrogel surfaces.
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Table 1

6 kDa PEGDA IPN tensile modulus and tensile strength as a function of infiltration time.

Formulation Tensile Modulus, E [kPa] Tensile Strength, TS [kPa]

Controls
PEGDA 10 w/v% (nominal) 31.0 ± 4.2 46.1 ± 15.0

Collagen 3 mg/ml ND ND

Infiltration Time [min]

15 37.2 ± 9.5 32.4 ± 15.3

30 62.8 ± 4.3a 77.4 ± 14.6b

45 78.6 ± 12.4a,b 120.7 ± 12.8a,b,c

60 70.8 ± 9.0a,b 107.8 ± 19.1a,b

(ND) Not able to be determined with ring tension test;

a
significantly different from nominal 10% w/v 6 kDa PEGDA, p < 0.05;

b
significantly different from 15 min infiltration time, p < 0.05;

c
significantly different from 30 min infiltration time, p < 0.05.
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Table 2

Influence of PEGDA molecular weight on IPN shear storage, loss modulus and loss tangent.

Hydrogel Shear Storage Modulus G′[kPa] Shear Loss Modulus G″[kPa] Loss tangent

3.4 kDa PEGDA 9.9 ± 1.9 2.0 ± 0.5 0.22 ± 0.06

3.4 kDa PEGDA IPN 16.9 ± 3.5c 2.0 ± 0.4c 0.12 ± 0.02c

6.0 kDa PEGDA 4.9 ± 0.8 0.9 ± 0.2 0.19 ± 0.06

6.0 kDa PEGDA IPN 14.2 ± 3.7c 1.6 ± 0.4c 0.11 ± 0.01c

10.0 kDa PEGDA 3.5 ± 0.6d 0.6 ± 0.2d 0.19 ± 0.06

10.0 kDa PEGDA IPN 7.8 ± 0.3a,b,c 0.7 ± 0.3a,b 0.09 ± 0.04c

a
significantly different from 3.4 kDa PEGDA IPN, p < 0.05;

b
significantly different from 6.0 kDa PEGDA IPN, p < 0.05;

c
significantly different from corresponding PEGDA control, p < 0.05.
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Table 3

Influence of collagen concentration on 6.0 kDa PEGDA IPN shear storage, loss modulus and loss tangent.

Collagen concentration [mg/mL] Shear Storage Modulus G′ [kPa] Shear Loss Modulus G″ [kPa] Loss tangent

1.5 11.0 ± 4.6 1.2 ± 0.4 0.14 ± 0.02

3.0 14.2 ± 3.7 1.6 ± 0.4 0.12 ± 0.01

5.0 21.7 ± 4.1a,b 1.5 ± 0.3 0.07 ± 0.01a,b

a
significantly different from 1.5 mg/mL IPN, p < 0.05;

b
significantly different from 3.0 mg/mL IPN, p < 0.05.
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