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ABSTRACT We present a model of neural group interac-
tions, which are projections from one neural network (network
B) of McCulloch-Pitts neurons connected via a Hebbian rule,
to another network (network A) of the same structure. We ffrst
consider the case in which the projecting network B is in a
pattern different from the initial attracting state of network A.
A critical projecting strength A, is found such that for A below
this value there exists a noise threshold HA corresponding to
each A. For the case where A < A, and the noise level or < 0rA,
there are two possible retrievals, with different probabilities:
the initial attracting state of network A and the projecting
pattern. If A < Ac and a > qA, stable states of network A
disappear. In the case A > A,, network A is pulled out of its
initial basin of attraction and into that of the projecting
pattern. This analysis provides a model for distraction. Second-
order interactions reduce the distraction. When the projecting
network B is in the same pattern as the initial attracting state
of network A, the projection acts as an external reinforcement,
which enables network A to retrieve in highly noisy conditions.
Sharp noise thresholds for nonzero retrievals are shown to be
eliminated by the projection. Higher-order connectivity im-
proves the retrieval ability of the network. The second case
serves as a model of concentration. We discuss the model of
distraction and concentration (i) in connection with common
experience of expectation of recognition and (ii) in connection
with recent T-maze experiments on infant rats; finally, we
suggest a refined version of the Bruner-Potter experiment to
test our prediction of the disappearance of hysteresis.

1. Introduction

Theories of neural networks provide models of elements of
brain functions, such as pattern recognition and memory,
models for computation devices, and studies of collective
properties of nonlinear components. (For recent reviews/
books on neural networks, see, e.g., refs. 1-6.)

In the present paper, we focus on interactions among
groups of neurons; in particular, the projection of one neural
network onto another. For simplicity, we assume that the two
networks have the same structure. We consider that the
projecting network (network B) is initially in a stationary
state and the other network (network A) is initially in the
vicinity of (i) a different state (Section 2) and (ii) the same
state as B (Section 3). Each neuron in network B projects a
field, which is proportional to its own local field, onto the
corresponding neuron in network A. Thus, the projection
influences the process of internal evolution of network A, for
which a statistical dynamics is developed in Section 2 for case
i, a model of distraction; and in Section 3 for case ii, a model
for concentration. Synaptic noise is incorporated in our
formulations, as well as the effects of higher-order neuronal

interactions. The studies of Sections 2 and 3 are discussed in
Section 4 to show that they may serve as models of distrac-
tion and concentration. In particular, the recent T-maze
experiments on infant rats and the Bruner-Potter experiment
are discussed in light of our results.
The work presented here constitutes a few illustrative

examples of interactions among neural networks. Many
variations are conceivable, involving more than two groups,
different connections, strengths of connections, and noise
levels.

2. Interaction of a Neuronal Group with Another Group,
Case i: A Model for Distraction

Consider network A, which consists of N McCulloch-Pitts
neurons (7). The state of the ith neuron is represented by Si,
which takes the value -1 when it is quiescent and +1 when
it is firing at a rapid rate. In our discussion, we use a
synchronous updating algorithm [as in the Little model (8);
see also refs. 9-12]. We let p patterns be stored in the neural
network via the Hebbian learning rule (13, 14). Explicitly, the
dynamics of the system is given by the following: Si(t + 1) =
sign[hi(t)], where hi(t) = Xj, TijSj(t) + qi; Sj(t) represents the
state of thej neuron at time t; sign(x) = -1 for negative x and
sign(x) = +1 for positive x; Tij = (1/N)XP,=1S1S1 are the
Hebbian synaptic efficacies, S1L is the uth stored pattern, and
p is the number of patterns stored. Here we also include a
background random Gaussian noise qi with a mean zero and
a standard deviation o'O to take into account the presence of
noise (temperature). Neural noise in physiological systems
may be attributed to spontaneous neural firing and the
statistical variation in the number of vesicles containing
neurotransmitters-e.g., acetylcholine-released at the syn-
aptic junctions (15-18). (For experimental evidence that
supports a Gaussian noise distribution, see, e.g., ref. 17, p.
21.)
Suppose that the initial state of the network is set in the

neighborhood of pattern S1; i.e., ml(0) = max{mJL(O)IJ = 1,
2, ... , p}, where mM(t) = (1/N)SA-S(t) is the overlap
between the state of the system at time t and the gth pattern.

Let there be another identical neural network B, which has
settled down to another stored pattern, S2. Suppose that
there exists a one-to-one projection from network B to
network A-that is, we consider a local field in network A
hi(t) = 21jlTijSj(t) + AS? + qi, where A is the strength of the
projection. We rewrite the total signal in the following form

hi(t) = m1(t)S! + [m2(t) + A]S? + X. [1]

The first two terms are proportional to the overlaps of the
system with pattern S1 and S2, respectively. The last term qI'
consists of external noise ,qj and interferences from patterns
s2, S3, . .. , SP. Following Hopfield (14), we assume the
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stored memories to be completely uncorrelated. They are
represented by random vectors SA, each of whose compo-
nents takes the values +1 and -1 with equal probability.
Hence there exists an up-down, or S to -S. symmetry. The
probability distributions of interferences are therefore sym-
metric with respect to zero. As a first approximation, we
assume that interferences have an identical and time-
independent Gaussian distribution (9) with a standard devi-
ation oa. (The calculations of the actual distributions of the
interferences will be the subject of another report.) This
approximation becomes exact when many synapses are dis-
connected randomly (19). Inclusion of synaptic dilution in-
troduces rescaling in both the noise level and the projecting
strength; however, the dynamic equations remain un-
changed. The mathematical details are omitted.

After averaging over all configurations of stored patterns,
as well as the external noise, we obtain the following dynamic
equations in the first case of our model:

(m{(t+1)d= 1 2 414m'(t) m2(t) A]

+ 1
- i/4m'(t) + m2(t) + A]}

2(t + 1)) = 1 2(t) M1(t) + A]

[2]

+ (- qIm2(t) + m1(t) + A]}

[3]
with 4i(y) = [1/(21T)1/2] fy e-2/2dx, cr= [(c)2 + (cro)2]1/2, and
d is the Hamming distance between S' and s2-i.e., they are
d bits different.
By comparing Eqs. 2 and 3 we realize that

(m1(1)) <-(m2(1)), if A > A- m1(0) - m2(0). [4]
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second cycle of updating and remains so in the rest of the
evolving process. In summary,

(m2(t)) > (m1(t)) for t - 2, iff A > Ac -m1(0) - m2(0), [5]

and, similarly,

(m2(t)) < (m1(t)) for t 2 1, iff A <AC = m1(0) -m2(0). [6]

To discuss the limiting behavior of the network (the
stationary states), we decouple Eqs. 2 and 3 with respect to
S1 and S2. Noticing that ip[m'(t) - m2(t) - A] + qlm2(t) -
m1(t) + A] = 1, we derive from Eqs. 2 and 3 that

(Z+(t + 1)) = 2(1 - dIN) {1 - 24[Z + (t) + A]}, [7]

and

(Z-(t + 1)) = 2(d/N) {1 - 24[Z-(t) + A]},

where we have defined

z-+.( - m2(t) + m1(t).

[8]

[ ]
[9]

The stationary states in Eqs. 7 and 8 can then be obtained
by letting Z+(t + 1) =Z+(t) = Z+(oo) and Z-(t + 1) = Z-(t) =
Z-(oo). Hence, the final average overlaps between the net-
work A and S1 and s2 are, respectively,

(m'(oo)) = (1/2)[Z + (o) - Z(oo)] =

(1/2)[Y(1- d/N) - Y(d/N)], [101
and

(m2(oo)) = (1/2)[Z + (oo) + Z - (oo)] =

(1/2)[Y(1- d/N) + Y(d/N)]. [11]

Here the function Y(X) denotes the solution of

Y= 2X[1 - 2qi(Y+ A)]. [12]

If the strength of the projection A is above a critical value A,
defined in Eq. 4, the network A turns closer to patternS2 than
pattern S5 after the first cycle of updating. Since the system
is then evolving toward s2 (away from S1), it remains
thereafter closer to pattern s2 than pattern S1. In the case
where A = Ac, Eq. 4 shows that the system is within the same
distance away from S1 and s2 after the first cycle. The
network turns closer to pattern s2 than pattern S1 after the
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For the case A < Ac and dIN = 1/2 (S1 and S2 are
orthogonal), the results predicted by Eqs. 10 and 11 are
shown in Fig. 1. In this figure, we plot the average overlap
between the state of network A and the two patterns S1 and
S2 as functions of the noise level o-. We see that in this case
there are two possible retrievals with different probabilities-
i.e., (m2(oo)) < (ml(oo)). There exists a threshold noise level OA
for every projection strength A, at which (ml(oo)) and (m2(oo))

FIG. 1. Solid lines labeled a-d
are the average overlaps between
the final state of network A and
the two patterns Si and S2, for
projection strengths A = 0.34,
0.20, 0.08, and 0, respectively, for

\dl case i and A < A, as a function of
o, the noise level. Numerals 1 and

e1\ 2 represent the corresponding
overlaps with patterns S5 and S2,
respectively. Dashed lines labeled
e are the envelopes of the overlap
curves at noise thresholds for dif-

e2 ferent projection strengths A. Ar-
rows on these dashed lines indi-

rth= 0.798 \ cate the directions in which A de-
2 t \ creases (0 < A < 1). The noise
-1 . thresholds for curves a-d are oA =
.60 0.80 0.360, 0.483, 0.624, and 0.798,

respectively.
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reach their minimum and maximum, respectively. Also,
(m1(oo)) at a nonzero A is smaller than its corresponding value
at A = 0. When the noise level is above its threshold
value-i.e., C > 0rA, there are no nonzero fixed points.
Our noise threshold AA is projection dependent. In the

absence of a projection-i.e., A = 0, and for d = N/2
(orthogonal patterns), VA takes the known result (2/Xr)/2 (9,
11). 0A decreases as A increases and approaches zero as A
approaches 1.

In the case A 2 Ac, we have shown that the network turns
closer to S2 than S1 after the second cycle ofupdating (see Eq.
5). From then on, S1 no longer plays any special role in the
evolving process. We therefore conclude that

(m(OO)) = (ml(o)) = 0, if A > Ac_ [13]

where u = 3, 4, . . ,p.
In summary, the limiting behavior of network A in case i

can be described as follows. For A 2 Ac, there is one
retrieval-i.e., (m'(oo)) = 0 and (m2(o))> 0. For A < Ac, there
exist two possibilities: (i) for or < 0-A, there are two retrievals
with (m'(oo)) > (m2(oo)) > 0, (ii) for o > o-A, there are no
retrievals-i.e., (m1(oo)) = (m2(oo)) = 0.

In the above analysis, we have assumed that there exist
only pair-wise-i.e., first-order-interactions within each
neural network. Several experiments have shown evidence
for nonlinear, multiplicative neuronal interactions (20-22).
We now include a second-order interaction (11, 12, 23) in the
model presented above, with an input for the ith neuron hi(t)
= 1i7-jlTijSj(t) + Y2 Yj'k=1TijkSj(t)Sk(t) + AS? + ip. The
coefficients yi and y2 measure the relative strengths of
first-order and second-order interactions, and Tijk = (1/
N2) ,1SA StS£. The rest of the analysis is similar to that of
the first-order interaction. Dynamic equations for (m1(t)) and
(m2(t)) can be derived but their expressions are omitted here.
We find that they can no longer be decoupled with respect to
S1 and S2 after inclusion of second-order interaction, and we
have to resort to numerical methods to find the final overlaps
of the system with patterns S1 and S2. We also find a different
critical strength of influence:

All = 'yAc + y2{[ml(0)]2- [m2(0)]2}. [14]

Compared to the case of first-order interaction, we find that
A' > A , if yi = 1 and y2 > 0. In other words, the critical
strength is enhanced by second-order interaction: It is more
difficult to pull network A out of a basin of attraction in the
presence of the second-order interaction. Hence, the higher
connectivity introduced via second-order interaction resists
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distraction and therefore improves the retrieval performance
of the network.

3. Interaction of a Neuronal Group with Another Group,
Case a: A Model for Concentration

In this section, we consider the case where the external
influence reinforces the internal processes. We still assume
that network A is initially in the vicinity of pattern S1, but we
let network B settle down to the same pattern S'. As
discussed in the previous section, this situation can also
happen after two updating cycles if network A is initially
close to a pattern that is different from the projecting pattern
but the projecting strength is above the critical value. Such a
projection results in a nonzero retrieval in network A even in
the case in which the noise level in network A is so high that
the network does not evolve to SI in the absence of any
outside influence.
By arguments similar to those in Section 2, we obtain

(m(t + 1)) = 1 - 21{Tylm(t) + y2[m(t)]2 + A}. [15]

Here we have omitted the superscripts 1-e.g., m(t) denotes
the overlap between the projecting pattern and the state of
network A at time t.

Let us first consider the linear case, where yT = 1 and T2
= 0. In Fig. 2 we plot the average final overlap as a function
of noise level. As shown in Fig. 2, there exist nonzero
stationary states for Eq. 15, for any noise level, as long as A
> 0. Thus, sharp noise thresholds (9, 11) are eliminated by a
nonzero projection.
The results of the final average overlap with second-order

interaction are presented in Fig. 3. Second-order interactions
(y2 > 0) enhance the effect of concentration and therefore
improve the retrieval performance of the network. Again,
there are no sharp noise thresholds. In the absence of a
projection-i.e., A = 0-second-order interaction introduces
hysteresis (11). We see from Fig. 3 that hysteresis persists at
small projections, with the singularity being smoothed by a
nonzero A (see curve b in Fig. 3 with A = 0.03). For a given
set of Ty and y2, there exists a Aks such that for A > Acs there
is no hysteresis-i.e., see curve c in Fig. 3 with A = Acs =
0.108 and curve d with A = 0.18 > Acs in the case yi = T2 =
1. A three-dimensional diagram of (m(oo)) vs. A and oa reveals
a cusp catastrophe formed by Acs and the corresponding acs.
This three-dimensional diagram, as well as detailed deriva-
tions of Ac, and -cs as functions of Ty and T2 are omitted. Our
results show that for a given yi, both Acs and o-, increase
monotonously as T2 increases.

FIG. 2. Average overlap be-
tween the final state of network A
and the projecting pattern as a
function of noise level a- at differ-
ent projection strengths: a, A = 0;
b, A = 0.03; c, A = 0.19; d, A =
0.27, in the case where the projec-

1.20 1.60 tion reinforces the processes of
evolution in network A. Only first-
order interaction is included.
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FIG. 3. Same as in Fig. 2, with
second-order interaction included
(Yi = Y2 = 1). Curves a (A = 0) and
b (A = 0.03) show hysteresis,
whereas curve d (A = 0.19) does
not. Curve c (A = AcS = 0.108) is
the cusp point. Dashed lines in a
and b are unstable. For compari-
son, the overlap for V2 = A = 0 is
also shown (dot-dashed line).

4. Discussion

In this section, we discuss the issues of distraction and
concentration in relation to our model.

Distraction and concentration are opposite ways of direct-
ing one's attention. According to Webster's New World
Dictionary (24), attention is the act of focusing one's mind on
a subject: to concentrate is to direct one's thoughts or efforts,
or to fix one's attention, whereas to distract is to draw one's
attention away in another direction.
As long as a person is awake, there is the ability to direct

attention to specific aspects of the mental environment.
Furthermore, the degree of attention can change remarkably
from (i) almost no attention to anything to (ii) broad attention
to almost everything, with the possibility of (iii) intense
attention to one thing of particular interest.
Much research has been done on the attention mechanism

(see, e.g., refs. 25-30), in particular on its physiology, but the
basic mechanisms by which the brain accomplishes its di-
verse acts of attention remain largely unknown. There are
clues that a subportion of the brain called the posterior
parietal cortex, which is generally referred to as area 5 and
area 7, plays a major role in directing attention (25, 29, 30),
whereas other parts of the brain-for instance, the basal
ganglia and the cerebellum-are more important for execu-
tion of an action. "Anticipatory sets" represent a physio-
logical organization in the brain that facilitates processes of
expectancy, especially in the field of conditioned response
(31). The neural counterparts and derivatives of the psycho-
logical expectancies are thought to lie at the interface be-
tween the sensory and motor systems of the brain, exert their
influences on these domains (32), and conceivably play a role
in such mental processes as selective attention, anticipation,
and motivation (31, 32).

In the models discussed in the text, we considered a neural
system consisting of networks A and B. Suppose that net-
work A is the decision-making network-e.g., it is connected
to a motor system. We also assume that B evolves much
faster than A so that when A and B are exposed to the same
(sensory) input, B immediately reaches a stable state S*. Let
network B serve the purpose of directing the attention of
network A, through a projection, to pattern S*, or in a
broader sense, a decision, of a particular interest according
to past experiences. We assume that S is the pattern to be
recognized, or the correct decision to be made, and S may be
either different from or the same as S*. Hence networks A
and B, in a highly simplified model, assume roles analogous
to the cerebellum and the posterior parietal cortex, respec-

tively. Pattern S * plays the role of the expectation of the
system.

In the first case that we considered in Section 2, the
projecting pattern is different from the pattern to be recog-
nized-i.e., S* # S; the influence from B to A is incorrect.
We use this case to model distraction. The attention of the
system is distracted toward pattern S*, which is different
from the pattern S to be recognized. As shown by our results,
the chance of making the correct pattern recognition is
decreased by the distraction modeled by a projection from
network B. If the projection strength A is below a critical
value A, and the noise level of is below a threshold CA, our
results predict that there exists a certain probability for
network A to retrieve the projecting pattern S *, although the
probability to retrieve S is greater. When A < Ac and a > oHA,
there are no retrievals. The noise threshold VA decreases as
the strength of the projection A increases, which indicates
that the retrieval ability ofthe system decreases with increas-
ing distraction. If the projection strength is equal or above the
critical value Ac, the retrieval of network A is most likely to
be the distracting pattern S *, whereas the probability of
retrieving pattern S vanishes. When the input is too "fuzzy,"
which is represented by a small initial overlap between the
state of network A and the pattern to be recognized, we know
that Ac is also small (see Eq. 4), and hence a small A (>Ac)
suffices for network A to retrieve S*.

In the second case considered in Section 3, where S* = S,
the influence from network B to A is the correct one for
recognition of S. The probability of making the correct
recognition is enhanced by the influence of B, and this is our
model for concentration. As predicted by our results, suc-
cessful recognition is possible above a normal noise threshold
with the help of the projection of B on A. Concentration of
attention may enable one to retrieve a pattern when the noise
level is high-for instance, the recognition of an object in
inadequate luminance.
Consider the following simple example. Jim is asked to

recognize a photograph of Harold (pattern S discussed
above). However, the noise level in the photograph is rather
high, perhaps due to underexposure and poor focusing, which
makes the recognition difficult. Jim barely knows Harold,
and the photograph reminds him of his good friend Bill
(pattern S*, and S* 5 S). It is then very likely for Jim to
conclude that the person in the photograph is Bill. On the
other hand, ifJim is asked to recognize an unclear photograph
of Bill, Jim's expectation will undoubtedly improve his
chance of making a correct recognition.

Interesting experiments have been reported (33-36) on
how expectancies of infant rats can influence their perfor-
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mance. In these studies, infant rats were trained to find the
correct goal box in a simple T maze after deprivation treat-
ments. The reward for the rats after successfully approaching
the correct goal box was either the opportunity to suckle or
to obtain milk in the absence of the mother (33, 34). The
performances of the rats were found to be in the following
decreasing order: (i) preweanling rats with reward to suckle,
or to obtain milk in the presence of maternal odors (the
so-called shavings effect; cf. ref. 34), (ii) weanling rats with
milk alone, and (iii) preweanling rats with milk alone. These
results suggest (36) that preweanling rats deprived of nutri-
ents and placed in the training environment, having never
obtained nutrients from any source other than the mother,
have an expectancy that their nutritional needs will be met by
locating and approaching the mother. In the language of our
theory, the correct "pattern" S to be recognized, which
represents the fact in the above three experimental situations,
is "milk is available in the goal box," no matter whether the
mother is present or not. The expectancies of the rats vary in
these three cases. In experiment i, either the mother or
maternal odors are present and the preweanling rats think
that the mother is in the goal box. Hence the expectancy,
which is represented by pattern S*, is also "milk is available
in the goal box"-i.e., S = S* (concentration). In this case,
the probability that the rats find the correct goal box is
therefore enhanced by the expectancy and the performance
is the best. However, in experiment iii, the absence of the
mother and maternal odors implies to the preweanling rats
the absence of milk; therefore the expectancy in this case is
"milk is not available in the goal box"-i.e., S # S* (dis-
traction). Since the rats are in the preweanling stage, we
anticipate the expectancy, a distraction, to be large (A3 large).
The distraction reduces the chance of reaching the correct
goal box and the performance is the worst. After the infant
rats have acquired early weaning experience, as in experi-
ment ii, the association between mother and nutrients be-
comes weakened. In this stage, the expectancy is still S* =
"milk is not available in the goal box" $ S, but the distraction
is less in ii than in iii, and hence A2 < A3. The performance in
ii is therefore intermediate between i and iii. Note that A2 and
A3 must be below the critical value, since the performance
ability of the rats is not yet completely lost.
We now suggest an experiment to check the cusp catas-

trophe predicted in the model. Bruner and Potter (37) have
shown evidence for hysteresis in an experiment in which
human subjects were tested on recognition performance,
while patterns were gradually focused and defocused. Our
results show that there exists a cusp point of projecting
strength and noise level, at or above which there is no
hysteresis. It is reasonable to assume that the strength of the
projection is proportional to the intensity of the memory. If
the Bruner-Potter experiment on the visual system is per-
formed with patterns of different interest to the subject, our
results predict that hysteresis will be reduced or even disap-
pear for those patterns that are strongly memorized by the
subject. Similar experiments can also be performed with
other sensory systems: for instance, in the case of the
auditory system, our results imply that there will be little or
no hysteresis in recognition of a subject's favorite music.

In the absence of neural group interactions, sharp noise
thresholds and a stiff hysteresis curve were predicted theo-
retically in ref. 11. However, as further explained in ref. 11, the
thresholds are not expected to be as sharp as shown in figure
1 of ref. 11, due to statistical fluctuations in a finite size system
and variability of the subjects. Our present study shows that
the sharp noise thresholds and the stiffcorner in the hysteresis
curve (11) may be completely smeared out when strong
interactions between neuronal groups are present.
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