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Selective Vulnerability of Striatal D2 versus D1 Dopamine
Receptor-Expressing Medium Spiny Neurons in HIV-1 Tat
Transgenic Male Mice
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Despite marked regional differences in HIV susceptibility within the CNS, there has been surprisingly little exploration into the differ-
ential vulnerability among neuron types and the circuits they underlie. The dorsal striatum is especially susceptible, harboring high viral
loads and displaying marked neuropathology, with motor impairment a frequent manifestation of chronic infection. However, little is
known about the response of individual striatal neuron types to HIV or how this disrupts function. Therefore, we investigated the morphological
and electrophysiological effects of HIV-1 trans-activator of transcription (Tat) in dopamine subtype 1 (D1) and dopamine subtype 2 (D2)
receptor-expressing striatal medium spiny neurons (MSNs) by breeding transgenic Tat-expressing mice to Drdla-tdTomato- or Drd2-eGFP-
reporter mice. An additional goal was to examine neuronal vulnerability early during the degenerative process to gain insight into key events
underlying the neuropathogenesis. In D2 MSNs, exposure to HIV-1 Tat reduced dendritic spine density significantly, increased dendritic dam-
age (characterized by swellings/varicosities), and dysregulated neuronal excitability (decreased firing at 200 -300 pA and increased firing rates
at 450 pA), whereas insignificant morphologic and electrophysiological consequences were observed in Tat-exposed D1 MSNs. These changes
were concomitant with an increased anxiety-like behavioral profile (lower latencies to enter a dark chamber in a light- dark transition task, a
greater frequency of light- dark transitions, and reduced rearing time in an open field), whereas locomotor behavior was unaffected by 2 weeks
of Tat induction. Our findings suggest that D2 MSNs and a specific subset of neural circuits within the dorsal striatum are preferentially
vulnerable to HIV-1.

Key words: basal ganglia; Drdla-tdTomato-expressing neurons; Drd2-eGFP-expressing neurons; striatal indirect pathway; synaptic
dysfunction; whole-cell patch-clamp physiology
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Despite combination antiretroviral therapy (cART), neurocognitive disorders afflict 30-50% of HIV-infected individuals and
synaptodendritic injury remains evident in specific brain regions such as the dorsal striatum. A possible explanation for the
sustained neuronal injury is that the neurotoxic HIV-1 regulatory protein trans-activator of transcription (Tat) continues to be
expressed in virally suppressed patients on cART. Using inducible Tat-expressing transgenic mice, we found that dopamine
subtype 2 (D2) receptor-expressing medium spiny neurons (MSNs) are selectively vulnerable to Tat exposure compared with D1
receptor-expressing MSNs. This includes Tat-induced reductions in D2 MSN dendritic spine density, increased dendritic damage,
and disruptions in neuronal excitability, which coincide with elevated anxiety-like behavior. These data suggest that D2 MSNs and
specific circuits within the basal ganglia are preferentially vulnerable to HIV-1. j
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Introduction viduals. Although the precise mechanisms underlying the con-

Despite the use of combination antiretroviral therapy (cART), ~ stellation of neurological deficits (including motor, mood,
neurocognitive disorders afflict 30-50% of HIV-infected indi-
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and neurocognitive disorders collectively termed HIV-associated
neurocognitive disorders or HAND) experienced by HIV patients
(McArthur, 2004; Saylor et al., 2016) remain to be fully under-
stood, the behavioral dysfunction is generally attributable to syn-
aptodendritic injury and a loss of neuronal connectivity (Masliah
et al., 1997; Ellis et al., 2007). In the post-cART era, central HIV
infection is not typically characterized by evidence of gross cellu-
lar pathology (Gelman, 2015). Rather, sublethal disruptions in
neuronal and glial function are beginning to be explored at the
molecular level.

Aspects of the central pathology observed in HIV may reflect
actions of neurotoxic viral proteins. In particular, the HIV-1 reg-
ulatory protein, trans-activator of transcription (Tat), is a soluble
viral protein that can be secreted independently of cell lysis
(Debaisieux et al., 2012) to exert lethal and sublethal effects on
neurons via activation of inflammatory chemokines/cytokines
(Langford and Masliah, 2001; D’Aversa et al., 2005); direct exci-
totoxic actions at glutamatergic receptors (Chandra et al., 2005;
Eugenin et al., 2007; Potter et al., 2013); intracellular actions that
drive Ca®" influx via NMDA receptors, L-type Ca*", and TRPC
channels (Haughey et al., 1999; Fitting el al, 2014a, 2014b; Hu,
2016); and the generation of reactive oxidative/nitrosative species
and endogenous excitotoxins (Kaul etal., 2001). The striatum has
been identified as a brain region especially vulnerable to HIV.

Within the striatum, maximal viral loads are detected in the
head of the caudate nucleus (Nath, 2015). Before cART, AIDS
patients were notably susceptible to parkinsonian symptoms af-
ter even low exposure to antidopaminergic therapeutics (Hriso et
al., 1991; Kieburtz et al., 1991; Mirsattari et al., 1998). These
effects may be due in part to HIV-1 Tat as revealed by intrastriatal
injections of recombinant Tat, which reduce (but do not deplete)
tyrosine hydroxylase-positive cells concurrent with the onset of a
parkinsonian-like response to amphetamine in rats (Zauli et al.,
2000). Little is known about the distinct subsets of neurons
within the striatum that may confer resilience or vulnerability to
HIV protein insults throughout the striatal region. However, re-
cent evidence in hippocampus suggests the existence of cellular
subpopulations that appear to be preferentially vulnerable to Tat-
mediated neurotoxicity (Marks et al., 2016). Within the rodent
striatum, medium spiny neurons (MSNs) comprise 90-95% of
the neuronal population (Kemp and Powell, 1971; Wilson and
Groves, 1980; Gerfen, 1992) and can be categorized by their ex-
pression of either dopamine subtype 1 (D1) receptors, which
project directly to the internal segment of the globus pallidus and
substantia nigra pars reticulata (“direct” striatal pathway), or do-
pamine subtype 2 (D2) receptors, which project indirectly to the
internal segment of the globus pallidus and substantia nigra pars
reticulata by way of the external globus pallidus. D1 and D2 MSNs
have distinct morphological and electrophysiological properties
(Cepeda et al., 2008; Ma et al., 2012) and are involved in a variety of
functions (Graybiel, 2008).

Using animal models, we and others have observed previously
that HIV-1 Tat recapitulates a neuroAIDS-like behavioral profile,
promoting anxiety-like behavior (Paris et al., 2014b, 2016; Hahn
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et al., 2016), depressive-like behavior (Fu et al., 2011; Lawson et
al., 2011), and motor deficits (Fitting et al., 2012; Hahn et al,,
2015). These effects are dependent on the timing and duration of
exposure to Tat, with central pathology preceding behavioral
manifestations. The present experimental series was conducted
in a timeframe when affective behavioral symptoms are burgeon-
ing, but motor deficits are not yet manifest to better understand
the synaptodendritic sequelae that underlie development of HAND.
This approach allows for a more focused assessment of the
neuronal deficits associated with the affective changes. We hy-
pothesized that Tat-mediated dysregulation of the intrinsic elec-
trophysiological properties would coincide with morphological
aberrations in MSNs and provide novel insight into the nature of
the behavioral pathology.

Materials and Methods
Study approval

The use of mice in these studies was preapproved by the Institutional
Animal Care and Use Committee at Virginia Commonwealth University
and the experiments were conducted in accordance with ethical guidelines
defined by the National Institutes of Health (Publication No. 85-23).

Subjects and housing

Adult male mice (n = 63; ~70 d old) expressing or lacking an HIV-1 tat
transgene were described previously (Bruce-Keller et al., 2008) and were
generated in the vivarium at Virginia Commonwealth University. In
these mice, HIV-1 Tat, 44 is conditionally expressed in a CNS-targeted
manner via a glial fibrillary acidic protein-driven Tet-on promoter (ac-
tivated via consumption of doxycycline (Dox)-containing chow; Dox
Diet #2018, 6 g/kg; Harlan Laboratories). Tat transgenic mice were bred
to B6.Cg-Tg (Drdla-tdTomato)6Calak/J line 6 mice (#016204; The Jack-
son Laboratory; Ade et al., 2011) or Drd2-eGFP (#036931-UCD; Mutant
Mouse Resource and Research Centers) bacterial artificial chromosome
(BAC) mice to visualize D1 and D2 striatal MSNs. Both the Drd 1a-tdtomato and
Drd2-eGFP BAC mice were backcrossed onto a C57BL/6 background
from originating strains B6SJL (Drdla-tdTomato) or Swiss Webster
(Drd2-eGFP) by the investigators who generated the mice. All mice were
housed two to five per cage and maintained in a temperature- and
humidity-controlled room on a 12:12 h light—dark cycle (lights off at
18:00 h) with ad libitum access to food and water.

Procedure

Mice expressing (Tat *), or lacking (Tat ~), the tat transgene were placed
on a Dox diet for 13 d before testing. On day 14, mice were assessed
behaviorally either for locomotion/exploratory behavior in an open field
or for anxiety-like responding in a light—dark transition chamber. After
either task, mice were immediately assessed for evoked motor behavior
on a rotarod. On day 15 or 16, mice were euthanized and electrophysi-
ology was performed on D1- or D2-expressing MSNs in fresh dorsal
striatal (caudate/putamen) tissue. During recording, neurons were filled
with biocytin for morphological assessment.

Behavioral assays

To examine the morphologic and physiologic changes accompanying
affective-like disorders, mice were assessed for locomotion/exploratory
behavior in an open field or for anxiety-like responding in a light—dark
transition chamber. Behavior was recorded and encoded digitally by an
ANY-maze behavioral tracking system (Stoelting). Although motor dif-
ferences were not expected after early Tat exposure, this was confirmed
by assessing evoked locomotion via rotarod testing, which was recorded
via Rotamex-5 software (Columbus Instruments). Before all behavioral
testing, mice were acclimated to the testing room for 30 min.

Light—dark transition

Anxiety-like behavior was assessed in a light—dark transition task as de-
scribed previously (Crawley and Goodwin, 1980). Briefly, mice were
placed in the lower left corner of the light side of a square Plexiglas box
(40 X 40 X 35 cm, evenly divided into light and dark compartments;
Stoelting) and allowed to explore for 10 min. Shorter latencies to transi-
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tion to the dark compartment and less time spent in the light compart-
ment were considered indices of greater anxiety-like behavior.

Open field

Spontaneous locomotion was assessed in an open field as described pre-
viously (Hall and Ballachey, 1932). Briefly, mice were placed in the lower
left corner of a square Plexiglas box (40 X 40 X 35 cm; Stoelting) and
allowed to explore for 30 min. The average speed and total distance
traveled, time spent mobile, as well as the time spent rearing, were used as
indices of motor/exploratory behavior.

Rotarod

Evoked locomotion was assessed in a series of rotarod tests as described
previously (Paris et al., 2013; Hahn et al., 2016). Briefly, mice were re-
quired to balance on an immobile rotarod (3 c¢m in diameter and
suspended 44.5 cm high; Columbus Instruments) for 30 s. Two 30 s
fixed-speed trials (10 rpm), followed by two 180 s fixed speed trials (10
rpm), were conducted for training. Lastly, mice were tested on two ac-
celerating speed trials (180 s maximum latency at 0—20 rpm). Some mice
were further assessed in two additional accelerating speed trials with a
higher performance ceiling (180 s maximum latency at 0—40 rpm). The
mean latency to fall from the rotarod and the maximum rpm achieved
across the two accelerated trials were used as indices for evoked locomo-
tion. Decreased latencies to fall and lower maximal rpm achieved on the
accelerating tests indicated impaired locomotion.

Electrophysiological recording

Adult male mice expressing either D1, 4o mato OF D2.grp Were transcar-
dially perfused with calcium-free sucrose cutting medium containing the
following (in mm): 3 KCl, 4.12 MgSO,, 1.2 NaH,PO,, 206 sucrose, 25
NaHCO;, and 25 glucose oxygenated using a 5% CO, balanced oxygen
mixture. Brains were extracted and cut coronally on a Leica VT1200 S
vibratome in 350 um sections while submerged in oxygenated sucrose
cutting medium held at 1-3°C by an external cooling apparatus (Huber).
Slices were transferred to a beaker with oxygenated extracellular record-
ing solution containing the following (in mwm): 125 NaCl, 3 KCl, 1.2
CaCl,, 1.2 MgSO,, 1.2 NaH,PO,, 25 NaHCO;, and 25 glucose, returned
to room temperature, and allowed to rest for 30 min before recording.

Stimulation and recording protocol

Slices were visualized at 4X magnification on a Zeiss Axio Examiner Al
microscope to verify the location of the striatum. Striatal neurons
were identified using a 63X water-immersion objective. D1, 41omato- OF
D2 pp-expressing neurons were identified using LED illumination
(UHP-T-LED; Prizmatix) and filters for green (470/40 nm excitation,
495 dichroic, 525/50 nm emission; filter set 38, catalog #000000-1031-
346; Zeiss) and red (filter set XF140-2, Omega Optical) wavelengths.
Recordings were obtained using borosilicate glass pipettes (2—6 MJ{);
WPI catalog #1B1505-4) pulled on a Narishige PC-10 pipette puller, and
filled with an intracellular solution containing the following (in mm): 135
KMeSO,, 10 HEPES, 2 MgATP, 0.1 MgGTP, 8 NaCl, and 0.1 BAPTAK4,
biocytin 0.2%, pH 7.25. Membrane potentials were recorded using a
MultiClamp 700B amplifier (Molecular Devices), a Digidata 1550A dig-
itizer (Molecular Devices), and Clampex 10.4 software (Molecular De-
vices) configured to a Windows 7-based PC. The passive and active
electrical membrane properties were assessed by injecting hyperpolariz-
ing and depolarizing current steps of 50 pA ranging from —100 to 450
PA. Analyses were performed using Clampfit 10.4 (Molecular Devices).

Morphological assessment

Histology. After patch-clamp experiments, slices containing biocytin-
filled neurons were fixed using 4% paraformaldehyde in 1X PBS for 4—7
d at 4°C. Slices were then rinsed six times in PBS for 10 min on a rocking
platform. Fluorescent probes conjugated to streptavidin were used to
identify biocytin-filled neurons. Slices were placed in a PBS solution
containing 0.04% Triton X-100 and a 1:500 dilution of the streptavidin-
conjugated probe. D1, 1o mato-€Xpressing MSNs were marked with Alexa
Fluor 488 (Thermo Fisher Scientific, catalog #532354), and D2 pp-
expressing MSNs with Alexa Fluor 594 (Thermo Fisher Scientific. catalog
#532356) to differentiate the biocytin-filled target neuron from D1- or
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D2-expressing MSNs not being assessed. Slices remained in these solu-
tions for 2-3 d at 4°C on a rocking platform and were then rinsed as
above. Slices were mounted on slides using ProLong Gold Antifade re-
agent (Invitrogen, catalog #P36930).

3D reconstruction and neurite analysis. Z-stack imaging of neurons was
performed usinga Zeiss LSM 700 at 20X (0.8 numerical aperture, NA) or
63X magnification (1.40 NA) (34 wm pinhole = 1 airy unit; Zeiss objec-
tives). Z-stack data were reconstructed into 3D images using the Bitplane
Imaris 7.6.4 neuroscience analysis software package. Primary dendrites
were determined as emanating directly from the cell body and dendritic
order increased distally at every branch point. Dendritic complexity of
individual neurons was assessed by Scholl analysis using 2D maximum-
intensity projections of the Z-stack images. Dendritic spine analyses were
performed on 20-30 wm dendritic segments that were =5 pum distant
from the proximal and distal branch points. Dendritic spine densities are
reported as the average number of spines per 10 um length of dendrite.
Spine density and dendritic integrity were averaged from ~4 segments
each from second-, third-, and fourth-order dendrites for each neuron
and constituted separate (n = 1) observations. Different morphologic
types of dendritic spines were assessed using uncompressed Z-stacks.
Dendritic spines were categorized as thin, stubby, or mushroom shaped
(Harris et al., 1992; Ochs et al., 2015) and each type was counted and
reported as a percentage of total spines. The proportion of each spine
type was determined from one or more dendritic segments (~30 um
total) in segments oriented parallel to the plane of the slice for each
neuron.

Statistical analyses

For the patch-clamp neurophysiologic and corresponding morphologic
studies, biocytin-filled neurons were uniformly sampled from atleast five
mice per experimental group such that no more than three neurons were
sampled from an individual mouse. Dependent measures on morphol-
ogy were assessed via Student’s two-tailed t tests with genotype (Tat ~ or
Tat ") as the between-subjects factor, apart from the Scholl analyses,
which were assessed via repeated-measures ANOVA with genotype
(Tat™ or Tat ™) and crossings as the between- and within-subjects fac-
tors, respectively. Simple linear regressions were used to discern the
amount of variance in dendritic damage that could be explained by
changes in neurite morphology. Firing frequency was assessed via
repeated-measures ANOVA with genotype (Tat ~ or Tat ") and current
steps (200—450 pA) as the between- and within-subjects factors, respec-
tively. Intrinsic physiological properties were analyzed by one-way
ANOVA. For behaviorally dependent measures, no significant differ-
ences were observed between Tat ~ or Tat * mice that were crossed to
equivalent numbers of Drdla-tdTomato versus those crossed to Drd2-
eGFP reporter mice; therefore, groups were collapsed on reporter condi-
tion and analyzed by Tat genotype condition via Student’s two-tailed ¢
tests. Fisher’s protected least significant difference post hoc tests deter-
mined group differences following main effects. Interactions were delin-
eated via simple main effects and main effect contrasts with the error
controlled for multiple comparisons. Analyses were considered signifi-
cant when p < 0.05.

Results

D2 MSNs demonstrated selective vulnerability to HIV-1
Tat-induced dendritic damage, but not loss of complexity
Dendrites and dendritic spines were readily visualized in biocytin-
filled D1-expressing (Fig. 1 A, C,E) or D2-expressing (Fig. 1 B, D,F)
MSNs. Importantly, Tat expression did not elicit global changes
in the gross appearance of MSNs (Fig. 1 E, F) in either dendritic
complexity (Fig. 1G,H) or length (Fig. 1I) among D1 (n = 9
neurons, 5 Tat ~ mice; n = 8 neurons, 6 Tat " mice) or D2 (n =9
neurons, 8 Tat ~ mice; n = 15 neurons, 8 Tat " mice) MSNs in 3D
reconstructed images (Fig. 1C,D).

An analysis of dendritic spines (Fig. 2) revealed no significant
changes in dendritic spine density (Fig. 2A,A’,C) or the percent-
age of damaged dendrites (Fig. 2I') among D1 neurons. D2 MSNs
were, however, selectively vulnerable to HIV-1 Tat-induced den-
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Figure1. Structureof D1and D2 receptor-expressing striatal MSNsin Tat ~ and Tat + transgenic mice. A-F,D1 (A, C, E) and D2 (B, D, F) MSNs were identified via expression of tdTomato or eGFP,
respectively, and filled with biocytin for morphological assessment; a filled axon is shown in E (arrows). C, D, Biocytin-filled neurons were reconstructed in 3D from sequential, Z-stacked, confocal
images and their dendritic complexity was analyzed using Bitplane Imaris software (version 7.6.4). -1, Dendritic complexity (G, H) and overall length (/) as estimated using Scholl analysis did not
differ significantly between Tat * and Tat ~ transgenic mice in either D1 (G) or D2 (H) MSNs. Scale bars: 4, B, 10 um; C, D, 30 um; and E, F, 5 um.

dritic damage. Tat-exposed D2 MSNs (n = 16 neurons, 8 mice)
exhibited significantly reduced third-order (¢, = 3.23, p <
0.05) and fourth-order (.3, = 1.92, p < 0.05), but not second-
order, dendritic spine density (Fig. 2D). A greater proportion of
D2 MSN dendrites also showed structural damage (Fig. 2F-H ) as
determined by the presence of swellings/varicosities in second-

order (t(,3, = 1.95, p < 0.05), third-order (¢,5, = 3.38, p < 0.05),
and fourth-order (t,;) = 3.45, p < 0.05) dendrites, compared
with Tat™ (n = 9 neurons, 6 mice) controls (Fig. 2]), although
many displayed normal morphology (Fig. 2E). Additional
analyses of spine morphology were conducted to determine the
proportion of mushroom-, stubby-, and thin-shaped spines as-
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sociated with D1 (n = 7 neurons, 5 Tat
mice; n = 7 neurons, 6 Tat " mice) and D2
(n = 7 neurons, 6 Tat~ mice; n = 14 neu-
rons, 7 Tat* mice) MSN dendrites (Fig.
3). Compared with Tat ™ controls, Tat™
mice demonstrated a significant (F; ;o) =
4.452, p < 0.05) decrease in the propor-
tion of thin spines, and a significant
(F(1,19) = 5.402, p < 0.05) increase in the
proportion of stubby spines on D2 MSNs
(Fig. 3G, E,G). No significant differences
were observed in the proportion of D2
mushroom spines (Fig. 3G) or the pro-
portion of any morphological spine sub-
type on D1 MSNs (Fig. 3F). Linear
regressions revealed that the proportion
of thin (R* = 0.33, F(; 59 = 9.44, p <
0.05) and stubby (R* = 0.24, F,,9) =
6.12, p <0.05) spines (but not mushroom
spines) significantly accounted for vari-
ance in the proportion of damaged D2
neurons. No significant differences were
observed in D1 MSNs.

HIV-1 Tat increased the excitability of
D2, but not D1, MSNs
Electrophysiological recordings from D1
MSNs (n = 9-10 neurons, 6 Tat ~ mice;
n = 10—11 neurons, 5 Tat * mice) revealed
no differences in measures of excitability or
intrinsic physiological properties after Tat
induction (Fig. 4, Table 1). Exposure to
Tat caused a significant, biphasic shift in
the excitability of D2 MSNs (n = 14 neu-
rons, 6 mice) compared with recordings
from D2 MSNs of Tat ™ animals (n = 14
neurons, 6 mice) (F(,,5 = 8.916, p <
0.05) (Fig. 4A’,B"). Firing frequency was
decreased in Tat ™ MSNs at current levels
between 200 and 300 pA (p = 0.0005—
0.03) and increased at 450 pA (p = 0.03),
with no differences in frequency observed
at midrange current sweeps (350—400 pA;
Fig. 4C"). A commensurate increase in
rheobase was observed in Tat ™ D2 MSNs
(n = 14 neurons, 6 mice) compared with
Tat ™ controls (n = 14 neurons, 6 mice)
(Fl26) = 9420, p < 0.05) (Fig. 4C', in-
set). A reduction in the input resistance of
Tat* D2 MSNs (1 = 14 neurons, 6 Tat "
mice; n = 14 neurons, 6 Tat™ mice) was
also observed (F, ,5) = 6.563, p < 0.05)
(Table 1).

Anxiety-like (but not locomotor)
behavior was increased, whereas
exploratory behavior decreased with
HIV-1 Tat exposure

Exposure to Tat significantly increased
anxiety-like behavior of mice and reduced
exploratory behavior. In the light—dark
transition task, Tat ™ mice (n = 17) dem-
onstrated a significantly lower latency to
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Figure2. A-J, Synaptodendritic structure of D1 and D2 receptor-expressing striatal MSNs in Tat ~ and Tat ™ transgenic mice.
No differences in dendritic spine density were observed in D1 MSNs between Tat * and Tat ~ transgenic mice (4, A", €); however,
Tat ™ mice had significantly lower dendritic spine density in D2 MSNs compared with Tat ~ mice (B, 8", D).A’, B', Superimposed,
Bitplane Imaris 3D reconstructions of the same dendrites as in Aand B. Scale bar, 3 wm. *Significant main effect of genotype, p <
0.05 (D). E-J, Compared with dendrites of D2 MSNs in Tat — mice (B, I), a significantly greater proportion of dendrites in Tat +
mice displayed swellings/varicosities (arrows) and thinning (arrowheads) of the main axis of the dendrite indicative of dendritic
damage and/or pending fragmentation (F-H ), although dendrites with normal morphology lacking swelling/varicosities could
also be found on D2 MSNs (E). Images in E—H were sharpened (Gaussian blur) and median gray levels adjusted in Adobe Photoshop
(56 to better illustrate subtle boundaries, especially those associated with regions of dendritic thinning. Scale bar, 3 um (F,H are
the same scale). *Significant main effect of genotype, p < 0.05 (J).
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Figure3. A, Depiction of the three classifications of dendritic spines assessed in this study. B—E, Representative dendrite segments from Tat ~ (B) and Tat * (D) D1 MSNs and from Tat ~ (€) and
Tat ™ (E) D2 MSNs showing various dendritic spine morphologies. Scale bar, 3 um. F, G, Percentage of morphologic spine types on D1 MSN dendrites was unchanged between Tat ™ and Tat ~
animals (F), whereas the percentage of filopodia/thin-shaped spines on D2 MSN dendrites was decreased in Tat ™ animals (*p < 0.05), the percentage of stubby spinesincreased (**p < 0.05), and

the proportion of mushroom-shaped spines was unchanged compared with Tat ~ controls (G).

escape the light chamber after Dox-induced induction of Tat expres-
sion compared with Tat ™~ mice (n = 16) (3, = 2.81, p < 0.05)
(Fig. 5A) and made significantly more transitions between the
light and dark chambers (.5,, = 2.06, p < 0.05) (Fig. 5B). More-
over, exploratory behavior was decreased in an open field because
Tat * mice (n = 18) spent significantly less time rearing after Dox
administration than did Tat ~ controls (n = 14) (t5,) = 2.06,p <
0.05) (Fig. 5C), although no difference was observed for the
amount of time spent exploring the center field (Table 2). These
effects are not thought to be due to differences in motor pheno-
type given that mice did not differ in the distance traveled within
an open field (Fig. 5D) or evoked locomotor performance on a

rotarod (Table 2). Mice also did not differ on other behavioral
measures (Table 2). There was no baseline difference between
Drdla-tdTomato and Drd2-eGFP mice in the behavioral out-
comes measured in the present study (data not shown).

Discussion

Dendritic complexity and length of D1 or D2 MSNs were unaf-
fected by short-term (2 weeks) exposure to HIV-1 Tat, which
differs markedly from the pronounced MSN damage seen after 3
months of Tat induction in male mice (Hahn et al., 2015). In
contrast, subtler patterns of synaptodendritic injury were evident
at 14 d, especially in D2 MSNs, whereas little to no effects were
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Figure4. A-B’,Representative traces from electrophysiological recordings of D1 (4) and D2 (A’) striatal MSNs at 250 pA (4, A") or 450 pA (B, B') of current. €, No differences were observed in
thefrequency of action potential firing or rheobase (€, inset) in D1 MSNs of mice that expressed the HIV-1Tat transgene (Tat ™) or their control counterparts (Tat ~). €', However, MSNsin Tat * mice
demonstrated a significantly reduced frequency of action potentials while stimulating at 200 —350 pA and a significantly greater frequency of action potentials at 450 pA in D2 MSNs compared with
Tat ~ MSNs. D2 MSN rheobase values were significantly greaterin Tat * compared with Tat —, mice (€, inset). *Significant difference from Tat ~ following a significant interaction of genotype and

stimulus current (pA) intensity, p << 0.05.
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Table 1. Intrinsic electrophysiological properties of D1 and D2 striatal medium
spiny neurons from HIV-1Tat * transgenic and Tat ~ control mice

D1 MSNs D2 MSNs
Tat ~ Tat ™ Tat ~ Tat™
(n=9-10) (n=10-11) (=13-14) (h=14)
Vg (mV) —8.0*£07 —8.7*x06 —81*+07 —847=*05
Capacitance (pF) 31.8 =44 232 =45 342 +39 323 %31
Input resistance (M2) 38143 40.0 =43 56.3 = 6.3 36.7 = 4.3%
Action potential —=379*x14 —-397*x11 —400=x11 —410=x12
threshold (mV)
Action potential 80.6 = 2.0 820*24 88219 85513

amplitude (mV)?

No significant differences were observed in the intrinsic properties of DT MSNs.
*Significant main effect of Tat genotype, p < 0.05.

*Amplitude of the first action potential evoked by a 450 pA depolarizing current injection. Amplitudes were
measured from action potential threshold to peak.

observed in D1 MSNs. Tat effects in D2, but not D1, MSNs agree
with our previous findings that 7 d of Tat expression significantly
reduces dendritic spine density in Golgi-impregnated MSNs (Fit-
ting et al., 2010). Because the Golgi procedure cannot discern
neurochemically distinct MSN subpopulations, the present
findings suggest our earlier findings were solely due to deficits
in D2 MSNs. Perturbations in D2 MSN's were associated with
an increased anxiety-like behavioral profile. These results
were somewhat unexpected because HIV patients can display
parkinsonian-like symptomatology that can be treated with do-
pamine agonists (Nath et al., 2000) and are typically associated
with deficits in D1 MSNs comprising the direct striatal pathway
(Gerfen, 1992; Gerfen and Wilson, 1996). However, such patients
have likely experienced long-term exposure to Tat, additional
neurotoxic viral proteins, and local inflammation, with resulting
damage to D1 MSNs and their associated circuitry. The amount
of overall MSN degeneration is much greater after 3 months of
Tat induction in mice (Hahn et al., 2015) compared with 2 weeks
of induction, as seen in the present study. Future studies explor-
ing whether D2 MSN deficits can be reversed by turning off Tat
expression or prevented by, for example, D2 receptor agonists,
may be warranted.

Striatal D2 MSNs are more vulnerable to kainic acid-mediated
cell death (Mesco et al., 1992) and typically more excitable than
their D1 MSN counterparts (Cepeda et al., 2008), which is com-
mensurate with an enhanced vulnerability to the excitotoxic ef-
fects of Tat. Moreover, genetic studies in humans (Sanna et al.,
2016) and HIV transgenic rats (Repunte-Canonigo et al., 2014)
show patterns consonant with synaptodendritic injury in Hun-
tington’s disease, which is characterized by altered dopaminergic
neurotransmission (Jakel and Maragos, 2000) and decreased
numbers of D2-expressing MSNs (Augood et al., 1997). Impor-
tantly, the preferential loss of dendritic spines on D2-expressing
MSNs may not result in diminished output from the indirect
pathway. In fact, Tat had opposing effects on D2 MSN excitability
depending on the amount of current applied, indicating complex
actions on D2 MSNs. Although some findings question the ca-
nonical model of opposing, parallel direct/indirect pathways in
favor of a model in which D1- and D2-expressing MSNs act
interdependently through intrastriatal connections (Calabresi et
al., 2014), other recent evidence suggests that the classic model
remains valid depending on the outcome measured (Lee et al.,
2016). Our findings indicate that Tat dysregulates the D2-
expressing, indirect pathway preferentially, which is likely to dis-
rupt the dynamic interrelationship between D1 and D2 MSNs
and trigger imbalances in striatal function.
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Despite differences in etiology, there are similarities between
Parkinson’s disease and the hypokinetic movement disorders ob-
served in HIV-1 patients (DeVaughn et al., 2015). In cART-naive
cohorts, observations of increased CSF dopamine and reduced
dopamine turnover to its metabolites have been reported (Larsson et
al,, 1991; Berger et al., 1994; di Rocco et al., 2000; Scheller et al.,
2010). Increased levels of dopamine and its metabolites correlate
with neuropsychological impairment and reduced CD4 counts in
HIV patients (Obermann et al., 2009; Scheller et al., 2010). How-
ever, genetic polymorphisms may influence these observations
(Horn et al., 2013; Koutsilieri et al., 2014). HIV proteins, includ-
ing Tatand gp120 (Agrawal et al., 2010), can modulate dopamine
and HIV-1 Tat induces excitotoxicity in MSNs (Silvers et al.,
2007; Zhou and Saksena, 2013; Fitting el al, 2014a, 2014b). There-
fore, Tat appears to affect both dopamine levels and the excitabil-
ity of MSNs directly.

The intrinsic electrophysiological properties of D2 MSNs may
confer vulnerability to Tat effects. D1 and D2 MSNs have
divergent anatomical and physiological properties reflecting
differential cortical inputs, with D2-expressing MSNs being
more excitable and mirroring cortical activity more closely (Ce-
peda et al., 2008; Gertler et al., 2008; Lee et al., 2016). As noted
earlier, D2-expressing neurons are reportedly more vulnerable to
excitotoxic insults (Mesco et al., 1992). This increased excitability
is observed in the dendrites of D2 MSNs, in which single back-
propagating action potentials produce increased calcium influx
more reliably and at a greater distance from the soma than D1
MSNGs. In cultured MSNs treated with Tat, intradendritic calcium
levels were increased compared with controls, suggesting that
normally high [Ca?"]; in D2 MSNs is further increased by Tat
(Day et al., 2008; Fitting el al., 2014a). Excitatory and inhibitory
inputs to the striatum are modulated differentially by D1 or D2
receptor activation, respectively, with D1 receptors potentiating
NMDA signaling (Chergui and Lacey, 1999; Brady and
O’Donnell, 2004; Tseng and O’Donnell, 2004). HIV-1 Tat can
inhibit dopamine transporter function allosterically (Zhu et al.,
2009; Midde et al., 2013), potentially elevating extracellular do-
pamine content. Collectively, Tat-induced alterations in extracel-
lular dopamine may exacerbate its excitotoxic effects. In support,
blocking D1 or NMDA receptors protects against HIV-1 Tat-
mediated neurotoxicity (Aksenov et al., 2006, 2012; Silvers et al.,
2007). Although a subset of MSNs express both D1 and D2 re-
ceptors (Gerfen, 1992; Bertran-Gonzalez et al., 2008; Matamales
et al., 2009), the proportion coexpressing D1 and D2 is =7% in
the dorsal striatum (Perreault et al., 2010, 2011).

Synaptodendritic injury coincided with physiological distur-
bances in D2 MSNs (Cepeda et al., 2008; Gertler et al., 2008, Lee
et al., 2016). We speculate that synaptodendritic injury is largely
due to Tat-driven calcium influx into the dendrites of D2 MSNs,
which generally display greater [Ca®"]; than D1 MSNs (Day et
al., 2008). Although functional deficits cannot be associated
causally with spine loss, there is a link between spine loss and
parkinsonian-like symptoms in neuroAIDS (Cardoso, 2002; Tse
et al., 2004; Villalba and Smith, 2013).

In addition to direct actions on MSNs, Tat may affect intrin-
sically neurons projecting to the striatum from other brain re-
gions, as well as intrastriatal interneurons, which could modulate
direct/indirect striatal pathways beyond that predicted from sim-
ple models of basal ganglia function (Day et al., 2008; Chuhma et
al., 2011; Blomeley et al., 2015; Marks et al., 2016). In agreement,
Tat exposure did not affect the firing frequency of D1-expressing
MSNs, whereas D2-expressing MSNs responded biphasically.
This imbalance between D1 and D2 outputs is likely to disrupt
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Anxiety-like and spontaneous motor behavior of equally represented Tat * and Tat ~ mice crossed to Drd7a-tdTomato or Drd2-eGFP reporter mice. Given that behavior did not differ

significantly as a function of the D1 or D2 reporter, analyses of Tat genotype are shown. A—C, In a light— dark transition test, Tat * mice demonstrated significantly reduced latencies to exit the
brightly lit chamber (A), made more transitions between the light and dark chambers (B), and demonstrated significantly greater rearing behavior (C) than did Tat ~ control mice. D, No differences
were observed on spontaneous locomotor behavior in an open field as indicated by the total distance traveled. *Significant differences between Tat ~ and Tat * mice, p < 0.05.

Table 2. HIV-1Tat * and Tat ~ control transgenic mice were crossed to
Drd1a-tdTomato or Drd2-eGFP reporter mice

Tat~ Tat™
Light— dark transition (n=16) (n=17)
Time in light (s) 242 + 24 224 =19
Open field (n=14) (n=18)
Velocity (cm/s) 34*02 34+0.1
Time mobile (s) 1,071 £ 42 1,047 £ 26
Time in center (s) 167 = 32 177 =20
Rotarod (latency to fall; s) (n=9) (n=17)
Fixed-speed trial (10 rpm for 30's) 25+2 25+2
Fixed-speed trial (10 rpm for 180 5) 130 £ 14 127 £12
Accelerated trial (0—20 rpm for 180 s) 16.0 = 0.8 16.6 = 0.4
Accelerated trial (0—40 rpm for 180 s) 97 =5 94 + 6

Given that behavior did not differ significantly as a function of the D1 or D2 reporter, analyses of Tat genotype are
shown. Mice were assessed for anxiety-like behavior in a light— dark transition task, for exploratory behavior in an
open field, and for evoked locomotion on a rotarod. No significant differences were observed.

the go versus no-go circuitry of the basal ganglia (Crook and
Housman, 2012; Ehrlich, 2012; Lee et al., 2016). Optogenetic
studies indicate that high D2 MSN firing frequencies (compara-
ble to our observations at 450 pA) are important for inhibiting
downstream targets (Lee et al., 2016). The decreased input resis-
tance in the D2 MSNs resulting in reduced firing rates at low
current intensities and increased rheobase might cause circuit
imbalances that favor a more hyperkinetic state; however, in HIV
patients, hyperkinetic disorders are generally not observed with-
out comorbid infections (Cardoso, 2002; Tse et al., 2004). Given
the modest global neuropathology in our transgenic mouse

model after 2 weeks of Tat induction and the absence of hyper-
motoric or hypomotoric movement deficits, the cumulative syn-
aptodendritic damage might not yet be sufficient to unbalance
the functionality of striatal motor circuits, but may nevertheless
be sufficient to promote anxiety-like behaviors.

Our findings suggest that Tat expression restricts synaptic
plasticity in D2 MSNs because the proportion of filopodia/thin
dendritic spines decrease, whereas the percentage of stubby spines
increase, implying diminished spine turnover (Fig. 3; Bhatt et al.,
2009; Villalba and Smith, 2013). Although direct and indirect stri-
atal projections from nucleus accumbens (NAc) MSNs do not
segregate to the same degree as MSNs in the dorsal striatum
(Smith et al., 2013), to the extent that our findings in dorsal
striatum can be generalized to the NAc (Howard et al., 2009),
reductions in D2 MSN plasticity may also disrupt behavioral pro-
cesses involved in reward. Activation of D1 receptors is critical for
psychostimulant self-administration (Xu et al., 2000; Caine et al.,
2007; Karlsson et al., 2008), whereas stimulating D2 receptors
blocks the behavioral effects of psychostimulants (Beyer and
Steketee, 2002). D2 receptor-knock-out mice show increased
psychostimulant sensitization (Sim et al., 2013). Notably, Tat
exposure elevates dopamine content significantly in caudate pu-
tamen while reducing dopamine within the NAc (Kesby et al.,
2016). This coincides with increased intracranial self-stimulation
(Kesby et al., 2016), supporting prior demonstrations of Tat-
potentiated conditioned place preference for cocaine or alcohol
(Paris et al., 2014a, 2014b; McLaughlin et al., 2014). Tat may
affect behavioral reward by reducing dopamine transporter ex-



Schier, Marks et al. @ Selective D1/D2 Vulnerability to HIV-1 Tat

pression at the cell surface (Midde et al., 2012; Theodore et al.,
2012) and/or through allosteric inhibition of the dopamine
transporter (Zhu et al., 2011; Midde et al., 2013, 2015). Because
D2 MSNs reportedly act by countering the development of place
preference and sensitization to amphetamine or cocaine (Du-
rieux et al., 2009; Ferguson et al., 2011; Heinsbroek et al., 2017),
Tat-induced impairment of D2 MSN function may promote
drug-seeking behavior. Evidence of increased cocaine self-
administration related to striatal dysfunction has been reported
in an HIV-1 transgenic rat model (McIntosh et al., 2015).

Our work reveals that a subpopulation of striatal MSNs is
selectively vulnerable to the effects of HIV-1 and suggests that
HIV exposure may damage specific neurocircuits preferentially,
resulting in a characteristic spatiotemporal pattern of CNS dam-
age and behavioral deficits. The underlying circuit-level deficits
will be uniquely modified in individual patients depending on
genetic factors, sex differences, age at infection, and the cumula-
tive effects of drug exposure or other unique environmental fac-
tors. Because damage to specific neural circuits will affect specific
behaviors, it is predicted that the range of behaviors affected by
Tat and other HIV proteins will broaden as additional extrastria-
tal and intrastriatal circuits become impaired during the disease
course.
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