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Abstract

Airway infections are a key component of cystic fibrosis (CF) lung
disease. Whereas the approach to common pathogens such as
Pseudomonas aeruginosa is guided by a significant body of
evidence, other infections often pose a considerable challenge to
treating physicians. In Part I of this series on the antibiotic
management of difficult lung infections, we discussed bacterial
organisms including methicillin-resistant Staphylococcus aureus,
gram-negative bacterial infections, and treatment of multiple
bacterial pathogens. Here, we summarize the approach to
infections with nontuberculous mycobacteria, anaerobic bacteria,
and fungi. Nontuberculous mycobacteria can significantly impact
the course of lung disease in patients with CF, but differentiation
between colonization and infection is difficult clinically as
coinfection with other micro-organisms is common. Treatment
consists of different classes of antibiotics, varies in intensity, and is

best guided by a team of specialized clinicians and microbiologists.
The ability of anaerobic bacteria to contribute to CF lung disease
is less clear, even though clinical relevance has been reported
in individual patients. Anaerobes detected in CF sputum are
often resistant to multiple drugs, and treatment has not yet been
shown to positively affect patient outcome. Fungi have gained
significant interest as potential CF pathogens. Although the role
of Candida is largely unclear, there is mounting evidence that
Scedosporium species and Aspergillus fumigatus, beyond the
classical presentation of allergic bronchopulmonary aspergillosis, can
be relevant in patientswithCF and treatment should be considered. At
present, however there remains limited information on how best to
select patients who could benefit from antifungal therapy.
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Lung disease accounts for the majority of the
morbidity and mortality in cystic fibrosis
(CF) (1). Bacteria typically found in airway
secretions of patients with CF include

Staphylococcus aureus, Haemophilus
influenzae, Pseudomonas aeruginosa,
Burkholderia cepacia complex,
Stenotrophomonas maltophilia, and

Achromobacter species (2). Many of these
bacteria have been associated with a decline
in lung function in CF (3–6). However,
other microorganisms have been isolated
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from CF lung fluids including
nontuberculous mycobacteria (NTM),
anaerobic bacteria, and fungi. Although the
isolation of some of these microorganisms
is temporally associated with deterioration
in baseline health in some individuals, it
is not clear whether they are relevant
pathogens in all patients. Clinicians must
discern how to proceed if one of these
organisms is isolated in the absence of
clinical manifestations, changes in lung
function, or radiographic changes. In
addition, the clinician must also balance the
potential for development of toxicities from
prescribed therapies with the possibility of
beneficial effect. Further complicating the
decision on whether treatment should be
initiated is the need to determine the best
therapeutic regimen for the individual
patient. These regimens may carry a large
treatment burden and interfere with other
therapies.

A scientific symposium was held at the
2013 American Thoracic Society (ATS)
International Conference in Philadelphia,
Pennsylvania to discuss the management
of difficult-to-treat lung infections in CF.
From this symposium, two companion
manuscripts were written to summarize
the current evidence presented at that
meeting. In Part I, the lung microbiome,
methicillin-resistant S. aureus, gram-negative
bacteria, and the treatment of multiple
infections in CF were discussed (7). In this
article (Part II), NTM, anaerobic bacteria,
and fungi are discussed. Practical treatment
approaches are discussed in both articles.
These approaches summarize the current
evidence. However, it is imperative to
recognize that these treatment approaches
are evolving as the results of ongoing and
future research studies become available.
The reader should realize that these
documents are not portrayed as guideline
documents or consensus recommendations.
The discussions contained within these
articles are not meant to represent the
finish line for treating lung infections in CF
but rather should be taken to represent the
starting line.

Nontuberculous Mycobacteria

NTM lung infections are increasingly
observed in the general population and in
patients with CF (8). The incidence of
NTM lung disease in patients with CF,
which most often occurs in patients older

than 15 years and increases with age, has
been estimated to be 13–20% (9–11).
Mycobacterium avium complex (MAC) and
Mycobacterium abscessus represent the
two most common NTM species causing
infection in CF. Accelerated loss of lung
function has been observed in patients with
M. abscessus (12). In patients with CF
under evaluation for lung transplantation,
up to 20% of patients were found to
have NTM (13). M. abscessus in particular
is associated with worse outcome and the
need for NTM treatment posttransplantation
(13). As a result, many transplant centers
now consider the presence of NTM lung
disease a relative contraindication for
transplantation (13).

NTM is ubiquitous in water and soil,
and can frequently be isolated from
residential sources including showerheads
and other home water sources (14–16). Peat
moss exposure in some studies has been
identified as a potential exposure risk for
NTM lung disease (14, 17, 18). However,
case–control studies have not clearly
demonstrated an association between
exposure to residential water sources or
other activities including gardening and
NTM lung disease (19). Furthermore,
patient NTM isolates do not always match
environmental NTM isolates, matching in
22–41% of cases when the same MAC
species were isolated (14, 16). Nonetheless,
certain environmental precautions may
reduce exposure. Simple environmental
controls implemented at home that may
reduce exposure to NTM include increasing
the temperature of hot water heaters to
greater than 1308F, installing large droplet
showerheads to reduce aerosolization,
avoiding tap water rinses of equipment and
avoiding tap water mouth rinses before
sputum collection, and avoiding peat moss
dust exposure by wearing a facemask
and moistening the soil before working
with it (18, 20). It is not clear, however,
whether these risk modifications impact
the development of NTM lung disease.
Reports of the transmissibility of M.
abscessus species in two outpatient CF
clinics is worth noting given the previous
experience of lack of human-to-human
transmissibility of NTM lung disease (21,
22). Although both reports describe the
transmissibility of M. abscessus ssp.
massiliense, it is unclear whether the risk
of transmission is restricted to only this
subspecies or whether it may be
generalized to all M. abscessus or even

other NTM isolates. Therefore, close
collaboration with the infection control
team and abiding by infection control
procedures in CF and bronchiectasis
clinics, including respiratory isolation for
patients with M. abscessus, is warranted in
outpatient as well as inpatient settings to
prevent transmission of M. abscessus in
high-risk situations.

The diagnosis of NTM lung disease is
based on criteria outlined by the ATS,
including a combination of clinical,
radiographic, and microbiologic elements
(9). It is worth noting that in most
circumstances and for most NTM
respiratory isolates (especially MAC), one
positive culture, especially with low
numbers of organisms, smear negative, or
growth on liquid media only, is not
adequate to establish a diagnosis of NTM
lung disease. A presumptive diagnosis
based on clinical and radiographic features
is equally inappropriate for the initiation
of empiric therapy. As such, longitudinal
monitoring and multiple cultures may
be required before a diagnosis of NTM
lung disease is firmly established. Further
contributing to this conundrum is the
well-recognized waxing and waning of
radiographic abnormalities, without
overall radiographic progression, that is
known to occur in patients with NTM
lung disease regardless of treatment
status. Establishing a more certain
diagnosis before committing to treatment
of NTM lung disease is thus required.
Overdiagnosis results in the unnecessary
exposure to complicated drug regimens,
and underdiagnosis may result in the
development of progressive lung disease
with irreversible loss of lung function from
inadequate treatment.

The decision regarding whether to treat
NTM lung disease must therefore balance
the risks and benefits of treatment versus
observation. Individualized patient factors
include the risk of progression, goals
of therapy (sputum conversion vs.
suppression), status of comorbid medical
conditions (gastroesophageal reflux, sinus
disease, and bronchiectasis), medication
tolerance, and patient acceptance (Figure 1).
Similarly, the intensity of the NTM regimen
should be proportionate to disease severity
and goals of therapy. In the case of MAC
lung disease, the treatment options range
from observation to three times weekly oral
therapy to daily therapy plus parenteral
therapy. Special attention regarding

SEMINARS FOR CLINICIANS

Seminars for Clinicians 1299



macrolide use for antiinflammatory
purposes is warranted to avoid the
development of resistance in macrolide-
susceptible NTM lung disease (23–27). CF
guidelines have reaffirmed the need to
screen patients at baseline and then every
6–12 months (28). This recommendation
has not changed despite preliminary data
not finding increased macrolide resistance
in CF patients with NTM infections
receiving chronic macrolide therapy (29).

Specific treatment regimens for NTM
lung disease are outlined in the ATS
statement (9). Although these
recommendations remain appropriate for
treating MAC lung disease, the use of
nebulized amikacin and increased
understanding of the various treatment
approaches for M. abscessus lung disease
warrant special comment. Inhaled amikacin
has been increasingly used for the
treatment of both MAC and M. abscessus
lung disease despite limited published
clinical experience (30–32). Dosing of
nebulized amikacin is variable but most
often ranges between 250 and 500 mg once
or twice daily. Higher dosing is generally
less well tolerated (32). Results from
a completed phase 2 study of liposomal
amikacin for refractory NTM lung disease
are expected to be released soon. The use of
nebulized amikacin when treating NTM
lung disease should be considered as part of
a multidrug mycobacterial regimen.

The recognition of a variably expressed
erythromycin ribosomal methylation (erm)
gene in M. abscessus has been associated

with variable clinical response to
macrolide-based regimens for M. abscessus
(33–35). This may also explain some of the
apparent macrolide resistance in other
NTM organisms such as M. fortuitum. This
is in contrast to M. chelonae, which does
not express an active erm gene. The erm
gene encodes enzymes that methylate the
23S ribosomal RNA within the 50S
ribosomal subunit, resulting in reduced
binding affinity of macrolides for their
specific target, to impair protein synthesis.
The additional importance of the presence
or absence of an active erm gene is
highlighted by the difference between
M. abscessus subspecies. M. abscessus ssp.
abscessus has universal expression of an
active erm gene conferring macrolide
resistance whereas other M. abscessus
subspecies, such asM. abscessus ssp. bolletii,
also known as M. massiliense, do not
express an active erm gene. It is important
to note, however, that even in the absence
of the erm gene, NTM species may be
resistant to macrolides through other
mechanisms. Expression of the erm gene
can be variable; there are some data to
suggest that clarithromycin induces
greater expression of the gene than does
azithromycin (34). The inclusion of
a macrolide in treatment regimens for M.
abscessus lung disease thus relies heavily on
the presence or absence of an active erm gene
or, as a surrogate, differentiation of M.
abscessus ssp. abscessus fromM. abscessus ssp.
bolletii (M. massiliense). Initial M. abscessus
isolates should be incubated with macrolide

for 14 days before a determination of
macrolide susceptibility and, by inference, the
presence or absence of an active erm gene.
Other potential mechanisms of drug
resistance have been described, but the
clinical significance of these requires further
study (36). Thus, the approach to the
treatment of M. abscessus ssp. abscessus lung
disease most often involves a regimen
including other nonmacrolide agents, such as
amikacin with a combination of two or more
additional antibiotics including cefoxitin or
imipenem, tigecycline, or linezolid. In the
absence of inducible macrolide resistance or
an active erm gene, regimens forM. abscessus
ssp. bolletii (M. massiliense) should include
clarithromycin or azithromycin in addition to
multiple other antibiotics. A typical practice
pattern, even without clear supporting data in
the literature, is to begin with an intensive
treatment regimen including both parenteral
and oral agents followed by deescalation to
an inhaled and oral regimen after a period of
weeks or months. The timing and specifics of
this transition can be particularly variable
given the essential need to avoid
monotherapy and to maintain a multidrug
regimen with effective nonparenteral agents;
the efficacy of which must be weighed against
the risks of toxicity and the technical
challenges of extended use of parenteral
agents. Consultation with a pulmonary
disease, infectious disease, and/or NTM
expert is generally recommended. Common
treatment regimens for NTM lung disease are
given in Table 1. Surgical resection in
conjunction with medical therapy should be
considered for localized cavitary NTM lung
disease, macrolide-resistant MAC lung
disease, and M. abscessus ssp. abscessus lung
disease in highly selected patients. Surgery,
when considered, should be undertaken by
an experienced team of mycobacterial
physicians including surgeons with robust
experience in mycobacterial lung surgery.

In summary, NTM lung disease in
patients with CF presents variably and
remains a complex problem with respect to
establishing a diagnosis and treatment
program when indicated. Longitudinal
follow-up may be required before specific
treatment recommendations can be made.
Patients with CF with NTM lung disease are
best cared for by teams of clinicians
experienced in the care of patients with
mycobacterial infections and who work
closely with their laboratory colleagues to
optimize the timing and intensity of
multidrug mycobacterial lung disease

Observation po 3×/week po Daily

Diagnosis + / – Treatment

po Daily
plus Injectable
plus nebulized

Disease severity (risk of progression)
Goals (sputum conversion vs. suppression)
Co-morbid conditions

Gastroesophageal reflux disease
Sinus disease
Bronchiectasis

Medication tolerance
Patient acceptance
Cost

Figure 1. Determining treatment of nontuberculous mycobacteria (NTM) lung disease requires
assessment of diagnostic strategies, treatment options, and individualized risk–benefit analyses.
When deciding whether to treat a patient with NTM lung disease, the risk and benefits of treatment
must be weighed against observation. This decision is influenced by many factors including the risk of
progression, goals of therapy, and patient factors. Po = per os (by mouth).
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treatment regimens, carefully weighing risks
and benefits and, when necessary, also
considering surgical intervention.

Anaerobic Bacteria

Anaerobes are organisms that do not require
oxygen for growth. They can be obligate or
facultative; P. aeruginosa is an example of
the latter. In this state, P. aeruginosa exists
as a slow-growing organism that is
relatively resistant to antibiotics.

Obligate anaerobes have been implicated
in a number of non-CF infections, such
as infections of the upper respiratory
tract and aspiration pneumonia. Steep
oxygen gradients exist within CF mucus
such that even at relatively shallow
depths within mucus, the environment is
considered to be hypoxic, or even frankly
anaerobic (37). Conventional culture-
dependent approaches are not optimized
for identifying anaerobes. Specific
anaerobic culture methods, or culture-
independent techniques, may be more

appropriate. Several studies on tracheal
aspirates, sputum, or bronchoalveolar
lavage (BAL) fluid have confirmed the
presence of anaerobes in the lower
airways in CF in up to 80% samples and
at bacterial densities of between 107 and
109 colony-forming units/ml in sputum
(38–43). The most common genera
identified were Prevotella, Veillonella,
Propionibacterium, Actinomyces,
Staphylococcus saccharolyticus,
Peptostreptococcus, and Clostridium (44).
Using terminal restriction fragment

Table 1. Empiric antibiotic therapy for the treatment of nontuberculous mycobacteria lung infections in cystic fibrosis*

Organism Antibiotic Pediatric Dose Adult Dose Side Effects

Mycobacterium
abscessus

Clarithromycin or azithromycin† Clarithromycin 15 mg/kg
orally (max 500 mg) twice
daily or azithromycin
5 mg/kg/d (max 250 mg)

Clarithromycin 500 mg
orally twice daily or
azithromycin 250–500 mg
orally daily

GI, ototoxicity

Plus amikacin‡ 10–30 mg/kg intravenously
daily or 25–30 mg/kg three
times weekly followed by
250–500 mg nebulized daily
to twice daily

10–30 mg/kg intravenously
daily or 25–30 mg/kg
three times weekly
followed by 250–500 mg
nebulized daily to twice
daily

Ototoxicity,
nephrotoxicity

And cefoxitin 200–250 mg/kg/d in divided
doses (max 12 g)

200–250 mg/kg/d in divided
doses (max 12 g)

GI, rash,
myelosuppression

Or imipenem 60–100 mg/kg/d intravenously
divided doses (max 2 g)

1–2 g intravenously divided
doses

GI, rash,
myelosuppression,
rarely seizures

Or tigecycline 1.2 mg/kg intravenously every
12 h (max 50 mg)

25–50 mg daily intravenously GI, cholestasis,
myelosuppression

Or linezolid (include
pyridoxine 50 mg daily)

If , 11 yr: 10 mg/kg
intravenously or orally every
8 h

300–600 mg intravenously or
orally daily to twice daily

Optic/peripheral
neuropathy,
myelosuppression

If . 11 yr: 10 mg/kg (max
600 mg) intravenously or
orally daily to twice daily

Mycobacterium
avium complex

Clarithromycin or azithromycin Clarithromycin 15 mg/kg orally
(max 500 mg) twice daily or
azithromycin 5 mg/kg/d (max
250 mg)

Clarithromycin 500 mg orally
twice daily or azithromycin
250–500 mg orally daily

GI, ototoxicity

Plus rifampin 10–20 mg/kg orally once daily
(max 600 mg)

450–600 mg orally once daily Hepatotoxicity,
body fluid
discoloration

And ethambutol 15 mg/kg orally once daily 15 mg/kg orally once daily Optic/peripheral
neuritis

Plus for advanced disease:
amikacin‡

10–30 mg/kg intravenously
daily or 25–30 mg/kg three
times weekly followed by
250–500 mg nebulized daily
to twice daily

10–30 mg/kg intravenously
daily or 25–30 mg/kg three
times weekly followed by
250–500 mg nebulized daily
to twice daily

Ototoxicity,
nephrotoxicity

Definition of abbreviations: GI = gastrointestinal; min, minimum; max, maximum.
*The antibiotic doses given come from a compilation of sources and practice patterns including commonly prescribed off-label doses and uses. Sources
include the pharmacy formulary of the Hospital for Sick Children (Toronto, ON, Canada), which is based on product inserts and the published literature.
The doses given are general guidelines, and may vary somewhat between institutions. It is recommended that the clinician consult his/her institution’s
pharmacy, product inserts, and published literature before prescribing these drugs. Consultation with a pulmonary disease, infectious disease, and/or
nontuberculous mycobacteria expert to individualize treatment regimens is recommended.
†Consider alternative antibiotic if the erm gene (encoding inducible macrolide resistance) is detected or inducible macrolide resistance is noted.
‡Serum concentrations should be monitored, and aim for a maximal serum concentration (Cmax) in the range of 80–120 mg/L with a minimal serum
concentration (Cmin) of less than 1 mg/L. Alternatively, peak levels may also be used with a target peak serum level between 20 and 35 mg/ml. It is
known that patients with CF generally have an increased volume of distribution and more rapid clearance, which may require higher dosing than for others
without CF.
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length polymorphism, Rogers and
colleagues (45) identified differences
between paired mouthwash and sputum
samples obtained from subjects with CF,
both in the bands identified and the
band volume, suggesting that the finding
of anaerobes in the lower airways is not
explained by aspiration of the oral anaerobiota.

Although the inflammatory response to
individual aerobic organisms identified in
BAL fluid from infants and young children
with CF has been described (46), no such
data linking anaerobes to inflammation
or clinical outcomes are available.
Studies in younger subjects might help to
elucidate the role of anaerobes in disease
pathogenesis and whether or not their
presence in the lower airways represents
an epiphenomenon (47). Existing studies
are in older subjects who have therefore
experienced a more complex infection
history. Longitudinal studies are also
lacking, although a comprehensive
longitudinal study conducted in a single
patient suggested that anaerobes of the
Streptococcus milleri group contributed
to the development of pulmonary
exacerbations (48). Ulrich and colleagues
reported that 16 of 17 patients with CF
produced antibodies against two
immunoreactive antigens of Prevotella
intermedia compared with 0 of 30 controls
(49), suggesting that anaerobes are, indeed,
immunogenic in CF. Culture supernatant
fluid of P. intermedia was also cytotoxic to
respiratory epithelial cell lines, associated
with neutrophil and macrophage
recruitment into lung tissue in mice, and
cytotoxic to human-derived neutrophils.
Its pathogenicity is estimated as being
intermediate between that of aerobic and
anaerobic P. aeruginosa. In studies where
anaerobes were specifically targeted during
treatment for pulmonary exacerbations, the
results have been conflicting. Worlitzsch
and colleagues (43) did not identify any
significant reduction in the density of
anaerobes in sputum after treatment
with antibiotics despite an increase in
pulmonary function during the period of
treatment. Similarly, Tunney and colleagues
identified only limited reduction in the
density of anaerobes at the end of 2 weeks
of treatment (50). An important factor to
consider when treating anaerobic infections
is that anaerobic organisms are often
resistant to the commonly administered
antibiotics. For example, resistance to
metronidazole was reported to occur

in nearly all Peptostreptococcus and
Streptococcus species, whereas resistance to
meropenem is more rare (44). Although
meropenem is commonly included in CF
antibiotic protocols as a second- or third-
line intravenous drug in the treatment of
pulmonary exacerbations, it remains
unclear whether any clinical improvements
associated with its administration are
related directly to its targeting of anaerobes.

Data from culture-based studies, and
more recently from studies using culture-
independent techniques, therefore indicate
that anaerobes are prevalent in the
lower airways of people with CF, but
whether these organisms play a part in the
pathophysiology of progressive lung damage
remains unknown. How anaerobes interact
with the microbiota of the lower airways and
other CF organisms also requires study.
Resistance in vitro is common, meaning
that antibiotics usually considered for the
treatment of anaerobes may not be
effective. Anaerobes appear to play a role in
CF lung disease, but this requires
clarification before the targeting of obligate
anaerobes in the treatment of CF lung
infections becomes routine.

Fungi

Patients with CF are at increased risks of
fungal colonization owing to impaired
mucus clearance, local immunogenic

dysfunction, and antibiotic use. Although
CF lung disease is classically dominated by
bacteria, fungal isolates are increasingly
described because the respiratory tract
anatomically communicates with the
atmosphere, a rich source of airborne fungal
spores. Inability to clear such inhaled
particles results in their persistence,
colonization, and potential airway infection.
This spectrum of clinical consequences
combined with enhanced detection methods
makes it probable that we have thus far
underestimated fungal prevalence and
importance in clinical practice over the last
decade of CF care (51–58).

Vast arrays of fungal species are
described in CF; however, methods used for
their isolation primarily dictate the species and
populations detected. Although traditional
methodologies of fungal culture remain,
emerging molecular techniques and
genotyping provide greater sensitivity. Despite
fungal biodiversity (Figure 2), the major
clinical challenges are caused by Aspergillus
fumigatus (59, 60), Candida albicans (61, 62),
and Scedosporium species complex. Clinicians
are often left wondering about the
significance of isolating fungi from a patient
with CF and whether treatment is indicated.

A. fumigatus is detected in sputum in
approximately 30% of patients with CF.
Allergic bronchopulmonary aspergillosis
(ABPA) remains a key consequence, but
sputum isolation does not correlate with
ABPA occurrence (63). The difficulty in

Pathogenicity

established Aspergillus fumigatus

Scedosporium species complex

T. mycotoxinivorans

A. terreus S. prolificans C. dubliniensis

Frequency

High Chronicity

Candida albicans

E. dermatitidis

(S. apiospermum, P. boydii, S. aurantiacum,

P. minutispora)
C. glabrata

R. argillacea, R. aegroticola, R. piperina

E. phaeomuriformis

C. parapsilosis

A. lentulus

A. flavus  A. nidulans  A.niger
A. fusispora N. pseudofischeri
C. bracarensis, C. nivariensis

C. metapsilosis, C.orthopsilosis

P. jirovecii

Low ChronicityPathogenicity

still unknown

Figure 2. Cystic fibrosis fungal biodiversity grouped according to frequency of isolation (x axis) and
established pathogenicity (y axis). The fungi are further divided in terms of chronicity as illustrated. The
most frequently isolated filamentous fungi, Aspergillus fumigatus and Scedosporium species complex,
and yeast Candida albicans are highlighted and further discussed in text. Low-chronicity genera:
A. = Aspergillus; C. = Candida; E. = Exophiala; P. = Pneumocystis; R. = Rasamsonia. High-chronicity
genera: A. = Aspergillus (flavus, nidulans, niger); A. = Acrophialophora (fusispora); C. = Candida;
E. = Exophiala; N. = Neosartorya; P. = Pseudallescheria; S. = Scedosporium; T. = Trichosporon.
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diagnosis of ABPA exists because of
overlapping clinical, radiological,
immunological, and microbiological
features similar to that of an infective
exacerbation in CF (63, 64). To address
this, biomarkers such as recombinant
Aspergillus antigens, precipitins, anti-
Aspergillus IgG, thymus activation and
regulated chemokine (TARC), and the
basophil surface marker CD203c have been
proposed, but pose difficulties because of
their variability and lack of sensitivity,
standardization, and accessibility (65). In
acute ABPA, corticosteroids suppress the
inflammatory response. One treatment
protocol employed includes prednisone at
40 mg once daily for 2 weeks with taper
over 3 months tailored to clinical
symptoms, lung function, and total
serum IgE concentration. Concerns
over side effects of long-term steroid
administration has prompted the use of
alternative regimens such as high-dose
methylprednisolone (10–15 mg/kg) daily
for 3 days monthly for up to 10 months
(66). Antifungal therapy may be
concurrently administered. However, no
randomized controlled trials to date
support use in CF-ABPA (67).
Itraconazole is preferred with a favorable
side effect profile, but it does possess
variable absorption and food interactions
necessitating close serum monitoring. In
addition, the development of azole
resistance remains a concern (68).
Voriconazole is an alternative drug
option but has significant associated
photosensitivity especially in patients
with CF (69). Steroid-resistant cases
may necessitate antifungal therapy or
administration of an anti-IgE monoclonal
antibody, but existing evidence is limited
to case series reports (70).

Clinically distinct from ABPA,
Aspergillus sensitization independently
affects pulmonary function; however, the
mechanism through which it does so
remains unclear (71). Allergic sensitization
does not correlate with sputum detection of
Aspergillus. Unlike Candida sensitization,
Aspergillus sensitization is associated with
greater lung function decline and
pulmonary exacerbations (72). The
presence of severe CF mutations, mild lung
disease (FEV1 . 70%), absence of
Pseudomonas, and prior azithromycin
exposure all remain predictive for
Aspergillus sensitization (73). A novel
immunological classification for CF

aspergillosis has been proposed. On the
basis of serum IgE and IgG concentrations
combined with sputum galactomannan
and the presence of PCR-detectable
Aspergillus, four distinct subgroups are
defined. These include those with ABPA,
those who are Aspergillus sensitized, those
with Aspergillus bronchitis, and those
without disease. Improved classification
and definition can assist with clinical
phenotyping and may impact future
treatment decisions in Aspergillus-
associated CF disease (74).

Controversy persists over the
significance of non-ABPA Aspergillus
colonization. It is often associated with
worse radiologic findings and is an
independent risk factor for hospitalization
(75, 76). Itraconazole treatment reduces
the burden of Aspergillus, attenuates
radiological mosaic perfusion, reduces
exacerbations, and stabilizes pulmonary
function in this setting (77). Such effects are
mediated by down-regulation of the
vitamin D receptor through the virulence
factor gliotoxin. Itraconazole treatment has
been shown to decrease BAL gliotoxin
concentrations and to restore vitamin D
receptor expression with concomitant
reduction in helper T-cell type 2 cytokines
IL-5 and IL-13, drivers of ABPA (77).
Despite these findings, a double-blind,
placebo-controlled trial failed to
demonstrate clinical benefit, but treatment
efficacy may have been impacted by
failing to achieve therapeutic itraconazole
concentrations in a significant proportion
of patients (78). Further study in this
area is warranted before treatment
recommendations can be issued (if
necessary) for the non-ABPA Aspergillus–
colonized population.

C. albicans is capable of causing oral
and genital candidiasis and vascular device
infections in CF (62, 79). It is frequently
isolated from CF sputum. Patients with CF
are at increased risk of pulmonary
colonization because of inhaled steroid
use, CF-related diabetes, and lifelong
antibiotic exposure. A prospective
longitudinal study showed high (49.4%)
colonization rates best predicted by
pancreatic insufficiency, osteopenia, and
cocolonization with P. aeruginosa, all
features of advanced disease (61).
Colonization presaged increases in
hospitalizations for exacerbations and
longitudinal declines in body mass index
and FEV1 (61). At present, its clinical role

(if any) is unclear, and there is no evidence
to suggest treatment benefit.

Members of the Scedosporium species
complex are chronic colonizers and
emerging pathogens in CF (80, 81). A
major risk exposure includes potted plants.
However, they also have an environmental
presence (82, 83). Colonization is not
associated with FEV1 or steroid or
antifungal use. Interestingly, those
harboring the fungus are less likely to be
colonized with P. aeruginosa (84).
Discordance between relatively high
isolation frequency (6.5–10%) and low
environmental abundance prompts
questions about how initial acquisition
actually occurs in CF (80, 81). Genotype
analysis of sequential isolates demonstrates
that individual patients are colonized by
unique phenotypes that remain conserved
over time (85). Clinical consequences
include allergic responses and risk of
dissemination in immunocompromised
hosts (86). Eradication remains difficult
once colonization is established, with
voriconazole the agent of choice.

Although our knowledge regarding the
role of fungi in CF is improving, many
questions remain. Are certain fungi
pathogenic and if so, what mechanisms
do they use? When do they become
pathogenic? Are they pathogenic from the
time they enter into the airway or only after
a certain time of colonization and
sensitization? Does clinical setting matter?
Should attempts be made to eradicate them?
If so when, with what drugs, and for how
long? These are all valid questions, which are
difficult to answer on the basis of existing
data (60).

There is limited knowledge regarding
treatment approaches for fungi in CF. A.
fumigatus is commonly detected in the CF
airway. It is a proven fungal pathogen in
CF-ABPA. Sputum isolation is discordant
with ABPA occurrence, thereby making
diagnosis difficult. Treatment should always
be pursued in CF-ABPA. However, it
remains controversial in the non-ABPA
Aspergillus–colonized patient. There is no
evidence that C. albicans isolated from CF
sputum should be treated because its
pathological significance in the airway is
unknown. No current evidence exists to
suggest treatment benefit in this context.
However, when C. albicans causes mucosal
or vascular device infection, prompt
treatment is indicated. Infection rates with
Scedosporium species are underestimated
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because of difficulties with diagnosis, as
this mold’s clinical, radiological, and
pathological appearance is similar to
Aspergillus. Such misdiagnosis may be
lethal considering that Scedosporium is
almost always resistant to amphotericin B,
the agent frequently used in presumptive
Aspergillus infection. Consequently,
eradication should be attempted at first
isolation in view of its potentially devastating
clinical consequences if misdiagnosed or
allowed to persist long term.

Summary

For decades, clinicians have been treating
a narrow array of bacteria that infect the CF

airway (2). Under selective pressure of
frequent antibiotic use and with improved
techniques to identify microorganisms, that
array is expanding. Physicians must treat
not only the classic pathogens associated
with CF, such as S. aureus and P.
aeruginosa, they may also have to treat
other microorganisms such as NTM,
anaerobic bacteria, and fungi. Less evidence
regarding treatment of these organisms is
available than for the typical bacteria
known to infect the CF airway. These
organisms often grow slowly, if at all, on
typical microbiological cultures. However,
when a new organism is identified, CF
clinicians are often left wondering about the
pathologic significance of this new finding.
Furthermore, determining a treatment

regimen is often frustrating to even the
most experienced individual. The airway
environment in CF is continually evolving.
Niches are being created that will allow new
potential pathogens to gain a foothold in
the CF airway. Therefore, clinicians must
be constantly vigilant for the emergence of
new microorganisms infecting the CF
airway, and researchers must be prepared
to develop novel antimicrobial therapies to
treat these infections. n
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R, Honoré I, Dupouy-Camet J, Dusser D, Klaassen CH, et al. High
prevalence of azole-resistant Aspergillus fumigatus in adults with
cystic fibrosis exposed to itraconazole. Antimicrob Agents
Chemother 2012;56:869–874.

69 Rondeau S, Couderc L, Dominique S, Pramil S, Leguillon C, Masseline B,
Favennec L, Marguet C. High frequency of voriconazole-related
phototoxicity in cystic fibrosis patients. Eur Respir J 2012;39:782–784.

70 Tanou K, Zintzaras E, Kaditis AG. Omalizumab therapy for allergic
bronchopulmonary aspergillosis in children with cystic fibrosis:
a synthesis of published evidence. Pediatr Pulmonol 2014;49:503–507.

71 Fillaux J, Brémont F, Murris M, Cassaing S, Rittié JL, Tétu L, Segonds
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