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Abstract

Endogenous neurosteroids such as allopregnanolone, allotetrahydrodeoxycorticosterone, and 

androstanediol are synthesized either de novo in the brain from cholesterol or are generated from 

the local metabolism of peripherally derived progesterone or corticosterone. Fluctuations in 

neurosteroid concentrations are important in the regulation of a number of physiological responses 

including anxiety and stress, reproductive, and sexual behaviors. These effects are mediated in part 

by the direct binding of neurosteroids to γ-aminobutyric acid type-A receptors (GABAARs), 

resulting in the potentiation of GABAAR-mediated currents. Extrasynaptic GABAA Rs containing 

the δ subunit, which contribute to the tonic conductance, are particularly sensitive to low 

nanomolar concentrations of neurosteroids and are likely their preferential target. Considering the 

large charge transfer generated by these persistently open channels, even subtle changes in 

neurosteroid concentrations can have a major impact on neuronal excitability. Consequently, 

aberrant levels of neurosteroids have been implicated in numerous disorders, including, but not 

limited to, anxiety, neurodegenerative diseases, alcohol abuse, epilepsy, and depression. Here we 

review the modulation of GABAA R by neurosteroids and the consequences for health and disease.
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Introduction

The term neurosteroids was first introduced in the 1980s by Baulieu to describe steroids 

produced de novo in the brain from cholesterol; it was later expanded to include those 

derived from the local metabolism of peripherally derived steroid precursors such as, 

progesterone, corticosterone, or testosterone (1–3). Neurosteroids are modulators of 

aminobutyric acid type A receptors (GABAARs) and can induce analgesic, anxiolytic, 

sedative, anesthetic, and anticonvulsant effects (4, 5). The ability of neurosteroids to 

modulate GABAAR function was first shown in 1984 by Harrison and Simmonds who 

demonstrated that alpha-xalone, a synthetic neuroactive steroid with anesthetic properties, 

potently potentiated GABAAR currents (6). This result was repeated shortly afterward with 
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the endogenous neurosteroids 5α-pregnane-3α-ol-20-one (allopregnanolone) and 5α-

pregnane-3α,21-diol-20-one (THDOC) (7). Fluctuations in the concentration of endogenous 

neurosteroids and changes in GABAergic signaling have been implicated in a variety of 

physiological and pathophysiological conditions including stress, pregnancy, reproductive/

sexual behaviors, depression, and epilepsy (8–15). Here we review the neurosteroid-

mediated regulation of GABAergic transmission, the effects on neuronal excitability, and the 

implications for health and disease.

Neurosteroidogenesis

There are three main classes of neurosteroids: the pregnane (e.g., allopregnanolone), the 

sulfated (e.g., dehydroepiandrosterone sulfate, or DHEAS), and the androstane (e.g., 

androstanediol), which are classified according to their structural homology (9) (Figure 1). 

The 3-α hydroxy ring A-reduced pregnane steroids, such as allopregnanolone and THDOC, 

are the most potent positive modulators of GABAARs and will be the focus of this review 

whereas; the sulfated neurosteroids are often inhibitory and act as noncompetitive 

antagonists at GABAARs (16). Allopregnanolone and THDOC can be synthesized from 

cholesterol by a series of steroidogenic enzymes [for reviews, see (2, 5, 17, 18)] (Figure 1). 

Briefly, the key pathways are as follows: cholesterol is transported into the inner 

mitochondrial membrane via the steroidogenic acute regulatory protein (StAR) and 

translocator protein 18 kDa (TSPO), also known as the peripheral benzodiazepine receptor 

(19). Here, mitochondrial cholesterol side-chain cleavage enzyme (cytochrome P450scc) 

catalyzes a side chain cleavage to convert cholesterol into pregnenolone, an important rate-

limiting step for the production of allopregnanolone and THDOC. Pregnenolone is then 

converted by 3β-hydroxysteroid dehydrogenase (3β-HSD) into progesterone with further 

metabolism of progesterone by 21 hydroxylase (p450c21), yielding deoxycorticosterone. 

Finally, progesterone and deoxycorticosterone are metabolized by 5α-reductase followed by 

3α-hydroxysteroid dehydrogenase (3α-HSD), to yield allopregnanolone and THDOC, 

respectively. In addition, androstanediol, another potent positive modulator of GABAARs, 

also utilizes the 5α-reductase/3α-HSD metabolic pathway to catalyze its synthesis from 

testosterone (3, 9) (Figure 1).

The steroidogenic enzymes are not uniformly distributed throughout the brain but are 

localized in specific brain regions and cell types (20). Cytochrome p450scc, for example, is 

expressed in both principal neurons and glial cells in various brain regions including the 

amygdala, hypothalamus, thalamus, cortex, and hippocampus (21). Furthermore, both 5α-

reductase protein and 3α-HSD mRNA have been shown to colocalize in principal neurons in 

the thalamus, striatum, cerebellum, cortex, amygdala, and hippocampus, indicating that 

these are likely sites of neurosteroidogenesis (22). However, there is limited or no expression 

in interneurons with weak 5α-reductase/3α-HSD expression found only in the granule cells 

of the cerebellum and olfactory bulb (22). As neurosteroids are produced in the same 

neurons that express GABAARs, they may act in an autocrine as well as a paracrine fashion 

to alter neuronal excitability. Interestingly, p450c21 mRNA has so far only been found in the 

brain stem and at very low levels in the cerebellum, suggesting that local metabolism of 

steroid hormone precursors from the periphery might be the prominent pathway for neuronal 

THDOC synthesis, which coincides with the observation that THDOC is not detectable in 
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the brains of adrenalectomized animals (20, 23). Indeed, because steroid hormones are small 

and lipophilic, peripherally derived hormones from the adrenal cortex, placenta, or gonads 

can readily cross the blood-brain barrier and plasma membrane, where they can be locally 

metabolized into neurosteroids (24). It has also been observed that some steroidogenic 

enzymes are found in more than one subcellular compartment. For instance, cytochrome 

p450c17, an important enzyme in the pathway that mediates the conversion of pregnanolone 

into DHEAS and androstenediol, is found in the cell body, axon, and dendrites of embryonic 

basal ganglia and cerebellum neurons (21, 25). Therefore, neurosteroids may be synthesized 

at some distance away from the cell body, and thus, it can by hypothesized that distantly 

synthesized or trafficked neurosteroids could mediate effects in brain regions apparently 

devoid of the necessary enzymes for neurosteroid synthesis (21). However, due to technical 

difficulties in the quantification of neurosteroids, it is difficult to directly measure local 

neurosteroid production.

Baseline circulating plasma neurosteroid levels and levels in the brain are generally low, but 

they increase in response to certain physiological triggers such as stress, the ovarian cycle, 

and pregnancy. The basal THDOC concentration in the plasma of rats (26, 27) and humans 

(28, 29) is approximately ≤5 nM at rest. However, a stressful episode activates the 

hypothalamic-pituitary-adrenal axis, resulting in the release from the adrenal gland of 

corticosterone in rats and cortisol in humans (30). Plasma levels of THDOC increase 

approximately threefold to fourfold in rats subjected to an acute swim stress (26) and in 

humans responding to panic induction with cholecystokinin-tetrapeptide (29), which 

parallels changes in corticosterone/cortisol levels. The peak THDOC response occurs 10–30 

min after the cessation of the stress and can be prevented by the 5α-reductase inhibitor, 

finasteride (23, 26, 27, 31). Allopregnanolone is also found at low nanomolar concentrations 

in the plasma of both humans (32, 33) and rats (34–36) and fluctuates in response to stress 

(23, 36, 37) stage of menstrual/estrous cycle (32, 38) and pregnancy (33, 37, 39–41), 

reflecting changes in peripheral progesterone levels. During pregnancy, plasma 

allopregnanolone levels have been shown to reach concentrations ranging from 40 nM to 

>100 nM in both rats (35) and humans (33, 37, 39–41). Similarly, allopregnanolone levels 

have been shown to increase during pregnancy in the rat cerebral cortex, peaking by day 19 

and returning to control levels upon parturition (day 21) (35). It is important to note that 

although basal and peak neurosteroids levels have been detected at nanomolar 

concentrations under normal physiological circumstances, these concentrations are sufficient 

to positively modulate GABAARs. Further, neurosteroid concentrations may be significantly 

higher at specific neuronal locations reflecting local synthesis, diffusion barriers, and 

metabolism.

Although neurosteroid concentration measurements have been made in the central nervous 

system (CNS) of both rats (23, 35, 36, 42, 43) and humans (44–46), accurately measuring 

neurosteroid concentrations is difficult and reflected in the range of neurosteroid 

concentrations reported in the literature. Radioimmunoassays are commonly used to 

measure neurosteroid levels and are highly sensitive. However, sample contamination, 

antibody cross-reactivity, and different sample extraction, and purification procedures likely 

underscore some of the variability in the literature. Alternative approaches include 

separation of cross-reacting steroids followed by enzyme-linked immunosorbent assays (47) 
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and liquid or gas chromatography coupled with mass spectrometry, which have provided 

lower estimates of brain-derived neurosteroids [for reviews, see (48, 49)]. However, despite 

the difficulties in accurately measuring neurosteroid levels in both plasma and the CNS, the 

relative changes in neurosteroid concentration during different physiological states are likely 

to be accurate (48) and will have important implications for neuronal and network 

excitability.

Neurosteroid modulation of GABARs

GABAA Rs are assembled from a combination of 19 sub-units (α1–6, β1–3, γ1–3, δ, ε, θ, π, 

ρ1–3) to form a heteropentameric structure around a central ion channel pore, which fluxes 

chloride (50 –52). The exact receptor subunit combination determines not only its 

pharmacological and biophysical properties but also its subcellular localization. For 

instance, receptor combinations containing the γ2 subunit are found predominantly at the 

synapse where they mediate rapid synaptic (phasic) transmission (53, 54). Meanwhile, 

assemblies containing the δ subunit have a high affinity for GABA and are found either 

perisynaptically or extrasynaptically (54 – 57). These properties make them ideally suited to 

sense the nanomolar concentrations of ambient GABA predicted to be found in the extra-

cellular space with persistent receptor activation resulting in the generation of a tonic 

chloride conductance (54, 58, 59).

Positive neurosteroids such as allopregnanolone and THDOC are potent modulators of 

GABAARs and act by increasing the open probability of the channel without changing the 

single channel conductance (60, 61). At low nanomolar concentrations, neurosteroids act as 

positive allosteric modulators. Indeed, in recombinant expression systems, neurosteroids 

have been shown to potentiate the peak current generated by the majority of GABAAR sub-

types in response to subsaturating GABA concentrations (62). Yet, at higher micromolar 

concentrations, neurosteroids directly activate the receptor in the absence of GABA (63). 

However, not all neurosteroids are positive modulators of GABAA-Rs. Adding to the 

diversity of neurosteroid mediated regulation, two members of the sulfated neurosteroid 

family, pregnanolone sulfate and DHEAS, inhibit GABAA Rs (9). The actions of these 

negative modulators of GABAARs are thought to be mediated by a binding site different 

from the one that mediates the actions of allopregnanolone and THDOC (9). Although 

pregnane neurosteroids can potentiate synaptic GABAergic responses as demonstrated by a 

prolongation of IPSC decay time, low physiological concentrations of neurosteroids 

preferentially potentiate the extrasynaptic δ-subunit-containing receptors enhancing the 

tonic component of GABAergic inhibition (64). For instance, in both dentate gyrus and 

cerebellar granule cells, 10 nM THDOC selectively potentiates the tonic conductance with 

little effect on the phasic response (64). Consistent with the action of neurosteroids on 

extrasynaptic GABAARs, neurosteroid sensitivity is greatly reduced in mice deficient in the 

GABAAR δ subunit (Gabrd−/− mice) (65). Furthermore, the neurosteroid sensitivity of 

receptors containing the δ subunit has also been confirmed in recombinant expression 

systems (62, 66, 67). GABA binds to δ-subunit-containing receptors with high affinity but 

relatively low efficacy; therefore, GABA is inefficient at promoting the open state. As 

neurosteroids increase the efficacy of the receptors by encouraging more frequent and longer 

open times, they are more effective at potentiating the effects of GABA at δ-subunit-
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containing receptors compared with other isoforms where GABA is already a potent agonist 

(68–71).

Although more efficacious at δ-subunit-containing receptors, neurosteroids can potentiate 

the effects of GABA at receptors containing most isoforms. In fact, the binding site for 

neurosteroids does not involve the δ subunit. Using a combination of site-directed 

mutagenesis, electrophysiology, and homology modeling, two neurosteroid-binding sites 

have been identified on GABAARs composed of α1β2γ2 subunits (63). First, threonine 236 

on the α subunit, which lies close to the α/β interface, and tyrosine 284 on the β subunit are 

essential for the direct activation of the receptor by allopregnanolone. Second, the α-subunit 

residue glutamine 241 located on transmembrane 1 is crucial for mediating both the 

allosteric potentiation and direct neurosteroid activation of the receptor (63, 72–74), 

although neighboring residues are also likely to be important for forming the steroid-binding 

site (75, 76). Recently, photoaffinity labeling using (3α,5β)-6-azi-pregnanolone identified 

phenylalanine 301 in the β3 subunit as a unique residue for neurosteroid binding, which 

likely forms part of the direct activation site (77). It will be of interest to modify this residue 

and examine both neurosteroid potentiation and direct activation of α1β3γ2-GABAAR 

subtypes using electrophysiology. In addition, photoaffinity labeling of native receptors 

subtypes could be used to distinguish those residues that are involved in the direct activation 

vs. allosteric modulation by neuro-steroids (75, 78).

Despite being shown to potentiate the majority of GABAAR subtypes, the actions of positive 

neurosteroids at GABAAR subtypes containing the ε subunit ( ε-GABAARs) are less clear. 

Compared with other GABAAR subtypes, ε-GABAARs are relatively insensitive to the 

potentiating effects of a number of intravenous anesthetics including the neurosteroid 

allopregnanolone (62, 79, 80) [but see (81) ]. However, pregnane neurosteroids have been 

shown to directly activate ε-GABAARs in the absence of endogenous agonist (62, 82 – 84). 

As inclusion of the ε subunit has been shown to confer constitutive activity to the GABAAR 

in recombinant expression systems (81, 84, 85), it is difficult to determine whether 

neurosteroid action is mediated by allosteric potentiation of spontaneous openings or via 
steroid binding to the direct activation site (86). Furthermore, understanding the actions of 

neurosteroids at ε-GABAARs is complicated because neurosteroid actions may be 

influenced by receptor stoichiometry (83). Therefore, further studies using native receptor 

populations such as in vitro slice models are required for the actions of neurosteroids at ε-

GABAARs to be fully understood. For example, recent evidence from brain stem respiratory 

neurons of the ventral respiratory column showed an increased in ε-GABAARs subunit 

expression during pregnancy and reduced sensitivity to intravenous anesthetics. These data 

suggest that increased expression of ε-GABAARs during pregnancy might protect against 

respiratory depression despite elevated neurosteroid levels (87).

Regulation of GABAA Rs and changes in neuronal excitability

The presence of low concentrations (i.e., 10 – 30 nm) of neurosteroids results in the 

potentiation of extrasynaptic GABAARs. Although the magnitude of potentiation will 

depend on receptor subtype, local GABA concentration, and steroid metabolism, the large 

charge transfer generated by these persistently open channels means that even a small 
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increase in the tonic conductance will have a major impact on excitability. Generally, an 

increase in the tonic conductance will reduce the input resistance narrowing the temporal 

and spatial integration of synaptic events and increasing the amount of excitatory input 

required to generate an action potential (54, 88). In addition, changes in tonic inhibition can 

impact the sensitivity of a neuron to changes in inputs (the neuronal gain) by shunting the 

background synaptic noise (54, 88, 89) [but see (90) ]. Larger increases in neurosteroid 

concentration (i.e., ≥100 nm) will reduce neuronal excitability further by potentiating the 

phasic component of GABAergic inhibition by prolonging IPSPs as well as enhancing tonic 

GABAergic inhibition (64). Therefore, as neurosteroid concentrations vary under both 

physiological and pathological conditions, GABAergic signaling requires dynamic 

regulation to maintain optimal levels of inhibition [for a review, see (91) ].

Fluctuations in steroid hormones, such as those that occur during stress, the ovarian cycle, 

and pregnancy, have been shown to correspond to changes in GABAergic inhibition and 

subunit expression (8, 10, 35, 92 – 97). For example, the δ subunit has been shown to 

increase while the γ2 subunit decreases in mouse hippocampus at times of the ovarian cycle 

when progesterone levels are high, resulting in an increase in tonic inhibition and decreased 

levels of anxiety and seizure susceptibility (95). Similar changes have been observed in the 

periaqueductal gray matter (98) and the CA1 region of the hippocampus in response to 

elevated steroid levels (97). These changes in subunit expression can be prevented by 

blocking neurosteroid synthesis with finasteride and can be mimicked in males by 

progesterone administration (11). Similar changes have also been demonstrated in response 

to elevations in neurosteroids following acute stress (11). However, no changes in GABAAR 

mRNA expression levels were found in gonadotropin-releasing hormone neurons in the 

medial preoptic area in cycling mice (99), suggesting that steroid-mediated modulation of 

GABAAR expression is likely cell type-specific.

The conditions in which there are prolonged changes in neurosteroid levels, such as during 

pregnancy, has been shown to induce alterations in the cerebrocortical and hippocampal 

expression of the GABAAR γ2 subunit (35, 94, 100, 101) and the hippocampal GABAAR δ 
subunit (94), which can be prevented by blocking the neurosteroid synthesis with finasteride 

(35, 100, 101). These changes in GABAAR subunit expression during pregnancy are 

correlated with alterations in network excitability (10). Further, hippocampal expression of 

the α 4 subunit has also been shown to fluctuate in response to changes in progesterone 

concentration (8, 96, 102, 103). Therefore, neurosteroids can alter GABAergic inhibition via 
the direct modulation of GABAergic inhibition as well as by altering GABAAR subunit 

expression, which exerts dramatic effects on neuronal excitability. Thus, the neurosteroid 

regulation of GABAergic inhibition has significant implications for neuronal excitability in 

health and disease.

Role of neurosteroids in disease

Neurosteroids have been implicated in numerous disorders, including, but not limited to, 

depression, anxiety, alcohol abuse, epilepsy, and neurodegenerative diseases (104 – 111). 

The evidence of altered neurosteroid levels associated with several neuropsychiatric and 

neurological disorders has generated a great deal of enthusiasm for targeting neurosteroids 
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or their site of action for treatment [for a review, see (9) ]. Furthermore, the actions of 

neurosteroids on specific GABAAR subtypes have further increased enthusiasm for the 

therapeutic potential of these compounds. The following section will review the role of 

neurosteroids in disease as well as the therapeutic potential of targeting neurosteroids, 

focusing specifically on neurosteroids that exhibit positive modulation of GABAARs.

Depression

Neurosteroid levels are abnormal in patients with major depression [for a review, see (112) ]. 

For example, allopregnanolone levels are decreased in patients with major depression 

compared with healthy controls [for a review, see (112) ]. Conversely, the levels of the 

stress-derived neurosteroid, THDOC, are elevated in patients with major depression [for a 

review, see (112) ]. Antidepressant treatment normalizes the neurosteroid levels in depressed 

patients (106, 107, 112 – 114), which is thought to mediate the antidepressant effects of 

these drugs (107, 113, 114). These data implicate altered neurosteroid levels in the 

pathophysiology of depression as well as a role in the effectiveness of antidepressant 

treatment. Selective serotonin reuptake inhibitors (SSRIs) enhance the antidepressant effects 

of neurosteroids via increasing GABAergic tone (115), which are independent of effects on 

serotonergic transmission (113 – 115), suggesting that the antidepressant effects of SSRIs 

and allopregnanolone are mediated via the GABAergic system rather than the serotonergic 

system. Consistent with the role of neurosteroids in depression, exogenous administration of 

allopregnanolone exerts antidepressant effects in animal models (115, 116). Further, mice 

with deficits in the primary target for neurosteroid action in the brain, the δ-subunit-

containing GABAARs ( Gabrd−/− mice), exhibit depression-like behavior during the 

postpartum period (10, 94).

Neurosteroids have also been implicated in mood disorders associated with the ovarian 

cycle. Allopregnanolone levels during the luteal phase are associated with symptom severity 

in patients with premenstrual dysphoric disorder (PMDD) (117) [for a review, see (118) ], 

and increased levels are correlated with symptom improvement (119) [for reviews, see (120, 

121) ]. However, there are conflicting results regarding alterations in neurosteroid levels in 

patients with PMDD. Many studies suggest that there is no significant difference in 

allopregnanolone levels in patients with PMDD compared with controls, whereas other 

studies suggest that allopregnanolone levels are decreased or increased in patients with 

PMDD [for a review, see (118) ]. Given that there are no clear differences in neurosteroid 

levels in patients with PMDD, it has been proposed that these patients have altered responses 

to neurosteroids or the site of action of neurosteroids (95). Although the exact nature of the 

relationship remains unclear, these data demonstrate a role for neurosteroids and their site of 

action in the pathophysiology of depression.

Anxiety

Patients with generalized anxiety disorders have altered neurosteroid levels. 

Allopregnanolone levels are significantly decreased in patients with posttraumatic stress 

disorder (122) and in patients with panic disorder (123). Following experimentally induced 

panic attacks, allopregnanolone levels are decreased in patients with a history of panic 

disorders compared with healthy controls (124, 125), suggesting that there are deficits in 
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neurosteroid signaling in patients with anxiety disorders. Together, these findings suggest 

that neurosteroids play a role in the pathophysiology of anxiety and panic disorders (126). 

However, the most convincing evidence for neurosteroid involvement in anxiety disorders is 

the potent anxiolytic actions of neurosteroids (127 – 131). Allopregnanolone (129, 132 – 

134) and THDOC (127, 134) have been shown to exhibit anxiolytic properties in many 

different behavioral paradigms. However, the anxiolytic effects of neurosteroids appear to be 

state-dependent because neurosteroids do not exhibit anxiolytic properties following stress 

(135).

Epilepsy

Neurosteroids exhibit robust anticonvulsant actions in the pentylenetetrazol (PTZ), 

pilocarpine, kindling, bicuculline, and maximal electroshock models of epilepsy [for 

reviews, see (9, 38) ]. In addition to their ability to decrease seizure susceptibility, 

neurosteroids also delay the progression of epileptogenesis (136, 137) and are 

neuroprotective against seizure-induced cell death (138). Furthermore, alterations in the 

expression of δ-subunit-containing GABAARs, the primary target of neurosteroids, have 

been observed in the pilocarpine model of temporal lobe epilepsy (139) and have been 

proposed to play a role in the process of epileptogenesis. Consistent with the anticonvulsant 

role of neurosteroids, neurosteroid withdrawal has been demonstrated to increase seizure 

frequency and decrease the anticonvulsant effects of GABA agonists (140 – 142). These data 

implicate alterations in neurosteroid levels and/or their site of action in epileptogenesis and 

seizure susceptibility.

It has been proposed that neurosteroids are particularly therapeutically relevant for the 

treatment of catamenial epilepsy. Catamenial epilepsy is thought to result from changes in 

hormone levels during the menstrual cycle, resulting in increased seizure frequency at 

certain stages of the cycle (143). Progesterone has been used as an add-on therapy for the 

treatment of catamenial epilepsy (144, 145), with some success. Interestingly, simultaneous 

treatment with finasteride blocks the anticonvulsant actions of progesterone (146), 

demonstrating that the anticonvulsant effects of progesterone are mediated by neurosteroids. 

Progesterone withdrawal (147) and neurosteroid withdrawal (148) increases seizure 

susceptibility, which is thought to represent an animal model of catamenial epilepsy. 

Interestingly, following neurosteroid withdrawal, the anticonvulsant actions of the synthetic 

neuroactive steroid ganaxolone are enhanced (149), which may be due to alterations in the 

expression of neurosteroid-sensitive GABAARs (150). Animal models have demonstrated 

alterations in GABAARs associated with changes in hormone levels, which are thought to 

underlie the changes in neuronal excitability related to the estrous cycle (95, 96). Therefore, 

the evidence supports a role for altered neurosteroid levels and/or their site of action in the 

pathophysiology of epilepsy, particularly catamenial epilepsy.

Alcohol

Both neurosteroids and ethanol have a shared pharmacological target, GABAARs (7, 151, 

152). A neurosteroid-binding site has been identified on the α/β interface of GABAARs 

(72), demonstrating the direct modulation of GABAARs by neurosteroids. Further, 

GABAAR δ-subunit-containing receptors confer sensitivity to neurosteroids and are thought 
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to mediate the majority of their effects on GABAergic inhibition (62, 64, 65, 67) (see 

Neurosteroid Modulation of GABAARs). Because ethanol does not interfere with 

neurosteroid actions, it is thought to exert its actions on GABAARs via a site independent of 

the neurosteroid-binding site [for a review, see (153) ]. However, the direct actions of 

ethanol on specific GABAAR subtypes have been more controversial. Studies have 

demonstrated that ethanol enhances tonic GABAergic inhibition (154 – 156) likely via 
actions on GABAAR δ-subunit-containing receptors (157 – 159). However, as stated, these 

findings remain controversial and have not been able to be replicated by other investigators 

[for reviews, see (160, 161) ].

Ethanol has been shown to increase circulating concentrations of neurosteroids (162 – 166), 

which plays a role in modulating the sensitivity to ethanol [for reviews, see (167 – 169) ]. 

For example, ethanol-induced elevations in neurosteroid levels mediate the sedative 

properties of ethanol (170), ethanol-induced impairments in memory (171, 172), the 

anxiolytic and antidepressant properties of ethanol (173, 174), as well as the anticonvulsant 

effects (165). However, neurosteroids do not mediate the ethanol-induced motor 

impairments (175). These data demonstrate that ethanol induces elevations in neurosteroid 

levels, which, in part, mediate the behavioral effects of alcohol.

Neurodegeneration

Decreased levels of neurosteroids have been observed in patients with neurodegenerative 

diseases [for a review, see (176) ]. Allopregnanolone levels are decreased in patients with 

Alzheimer disease (AD), Parkinson disease (PD), multiple sclerosis (MS), and Niemann-

Pick type C disease [for reviews, see (176, 177) ]. The expression of StAR, (178) one of the 

major neurosteroidogenic enzymes, is elevated in patients with AD. Similarly, there are 

changes in the expression of neurosteroidogenic enzymes in PD, MS, and Niemann-Pick 

type C disease [for a review, see (177) ]. Increased expression of the enzymes involved in 

neurosteroidogenesis has been proposed to reflect compensatory changes due to the 

decreased levels of neurosteroids related to neurodegeneration (176). Consistent with the 

involvement of neurosteroid deficits in neurodegenerative diseases, neurosteroids have been 

shown to have neuroprotective properties in numerous different animal models [for a review, 

see (179) ]. For instance, in a rodent model of Niemann-Pick type C disease, a lysosomal 

storage disorder with neuronal loss and a reduction in neurosteroidogenesis, administration 

of a single dose of allopregnanolone in the neonatal period significantly prevented neuronal 

cell death and a delay in the development in neurological symptoms. Although the exact 

mechanisms underlying the protective effects of allopregnanolone are unclear, these studies 

demonstrate the therapeutic potential of neurosteroids for some neurodegenerative disorders 

(180, 181) [for a review, see (182) ]. Thus, several studies implicate neurosteroids in the 

pathophysiology of several neurodegenerative disorders, including AD, PD, MS, and 

Niemann-Pick type C disease.

Therapeutic potential of neurosteroids

Neurosteroids have been demonstrated to have a therapeutic potential, particularly in 

patients with epilepsy (144, 145). However, naturally occurring neurosteroids have several 
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limitations, which minimize their therapeutic potential. First, neurosteroids are rapidly 

metabolized and thus have low bioavailability [for a review, see (9) ]. In addition, 

neurosteroids can be converted to compounds that can act on steroid hormone receptors 

(183), thus mediating unwanted actions that may offset the desired effects of these 

compounds. Due to these limitations, synthetic neurosteroids have been designed that exhibit 

a better pharmacological profile than endogenous neurosteroids. For example, ganaxolone is 

a synthetic analogue of allopregnanolone developed as a potential therapeutic agent [for 

reviews, see (184, 185) ]. Ganaxolone has been shown to be effective in animal models of, 

infantile spasms (186), catamenial epilepsy (149), PTZ-induced seizures (187, 188), and 

kindling (140). In clinical trials, ganaxolone has shown to significantly improve seizure 

frequency in epileptic adults and infants/children (184, 186, 189) and was explored as a 

sleep aide [for reviews, see (184, 185) ]. However, the enthusiasm for the therapeutic 

potential of ganaxolone has diminished due to the adverse side effects, the most common of 

which were somnolence and nausea [for reviews, see (69, 184) ].
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Figure 1. 
The major biosynthetic pathways in the synthesis of allopregnanolone (3α,5α-

tetrahydroprogesterone, 5α-pregnan-3α-ol-20-one, 3α-hydroxy-5α-pregnan-20-one, or 

5α3α-THPROG), THDOC (allotetrahydrodeoxycorticosterone, 5α-pregnane-3α,21-diol-20-

one, or 5α3α-THDOC), and androstanediol (5α-androstane-3α,17β-diol or 3α-diol).

The corresponding neurosteroidogenic enzymes are shown in italics adjacent to each 

reaction.
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