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Abstract. We describe a postacquisition, attribute-based quality assessment method for brain magnetic res-
onance imaging (MRI) images. It is based on the application of Bayes theory to the relationship between entropy
and image quality attributes. The entropy feature image of a slice is segmented into low- and high-entropy
regions. For each entropy region, there are three separate observations of contrast, standard deviation, and
sharpness quality attributes. A quality index for a quality attribute is the posterior probability of an entropy region
given any corresponding region in a feature image where quality attribute is observed. Prior belief in
each entropy region is determined from normalized total clique potential (TCP) energy of the slice. For TCP
below the predefined threshold, the prior probability for a region is determined by deviation of its percentage
composition in the slice from a standard normal distribution built from 250 MRI volume data provided by
Alzheimer’s Disease Neuroimaging Initiative. For TCP above the threshold, the prior is computed using a math-
ematical model that describes the TCP–noise level relationship in brain MRI images. Our proposed method
assesses the image quality of each entropy region and the global image. Experimental results demonstrate
good correlation with subjective opinions of radiologists for different types and levels of quality distortions.
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1 Introduction
Virtually, all spheres of medicine need information contained in
medical images. Structural information based on the chemical
and physical properties that distinguish different anatomical
structures is highly desired in medical images. This requirement
makes a magnetic resonance imaging (MRI) system a popular
imaging modality for the study of human anatomy, diagnosis of
neurological diseases, clinical trials of drugs for the monitoring,
and treatment of neurological diseases.1–3 An MRI system can
display images in three different perpendicular planes and has
the potential to discriminate the constituent soft anatomical
structures with high spatial and contrast resolution.

The quality of a medical image is strongly dependent on the
acquisition procedures.4 During acquisition, there are several
factors relating to the imaging system; the actions of the operator
and the subject under investigation that limit the attainment of an
ideal quality image. Image quality in radiation-based imaging
systems is dependent on radiation dose.5 There is a trade-off

between image quality and patient safety.6 The antiscatter
grids determine the level of contrast in digital mammography
images.7 The quality of reconstructed SPECT images is influ-
enced by the number of projection angles.8 In breast ultrasound
images, artifacts are caused by improper positioning of the
nipple relative to the breast mass and loose contact between
the breast mass and the transducer.4 In MRI images, noise is the
result of trade-off between signal-to-noise ratio (SNR), image
resolution, and length of scan time.9 Bias fields are the com-
bined effects of nonuniform sensitivity of radio-frequency
coils and nonuniformity of static fields.10 Motion of the patient,
respiration, blood flow, and patient position relative to the
isocenter of the magnetic bore introduce blur and extraneous
features into the image.11,12 Chemical shift and partial volume
artifacts are the result of improper parameter settings.13 These
numerous factors that influence the acquisition procedures
make quality evaluation a nontrivial and complex task.14,15

Popular objective quality evaluation methods, such as root-
mean-square error (RMSE), SNR, and structural similarity
index,16 were designed to solve research problems that were
not related to image interpretation but on efficient compression,
storage, and transmission of images. Their formulation assumes
that all classes of medical images and all other natural images
have the same descriptive features. Medical images exhibit
characteristics, such as texture, grayscale color, noise, and
homogeneity, that distinguish them from each other and other
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classes of natural images. There are many definitions of peak
signal-to-noise ratio, SNR, and mean square error, which make
it difficult to compare quality measures from different imaging
system, modalities, and researchers.8 Quality indices derived
from these popular methods do not always correlate with the
performance of observers using the imaging system on the task
for which they are intended.8

Some of the problems associated with the popular quality
assessment methods were addressed when task-based quality
assessment methods were introduced to the medical imaging
and computer vision community.17–19 The philosophy behind
a task-based quality assessment is the belief that a rigorous
quantification of image quality should be defined by specifying
a clearly defined task and the observer who will be performing
the task. In medical imaging, the task can be a classification or
estimation task. An example of a classification task is the detec-
tion of lesions in brain MRI images of patients diagnosed with
multiple sclerosis disease. A quantification of brain atrophy in
patients diagnosed with Alzheimer’s disease is an example of an
estimation task. The observer can be human, human model, or
Bayesian ideal observer.20,21 The efficacy of task-based quality
assessment reported in Refs. 20, 22, and 23 is the motivation
behind pioneering research in the field of task-based adaptive
imaging. Task-based adaptive imaging has been applied for
the optimization of imaging systems parameters,5,8,24 optimiza-
tion of image quality in imaging systems,21,25,26 evaluation of
cardiac ejection fraction estimation algorithms,27 and the evalu-
ation of diffusion-weighted MRI segmentation algorithms.28

The mainstream approach to brain MRI image quality evalu-
ation methods such as29–35 focus on the acquisition stage. The
several parameters associated with MRI system acquisition
process are exploited to evaluate and optimize image quality.
There are few contributions on postacquisition quality assess-
ment of brain MRI images. Postacquisition quality evaluation
is an important step in the quality control procedures of clinical
research organizations (CROs) because brain measurements
derived from MRI images are susceptible to differences in
MRI system sequence parameters.36 Quality evaluation ensures
that the variations in the quality of MRI images from different
MRI system manufacturers, different clinical trial sites, and
different acquisition protocols are assessed and standardized
before they are fed to automated image analysis systems.

We identified and reviewed five contributions in the literature
on postacquisition quality evaluation of brain MRI images. The
report in Ref. 37 applies analysis of variance (ANOVA) algo-
rithm to assess the variation of several quality measures with
different levels of distortions. Mortamet et al.38 combine the
detection of artifacts and estimation of noise level to measure
the image quality. In Ref. 39, a null space analysis and just
noticeable difference scanning method were proposed as a better
quality metric compared to RMSE. The popular SNR is the
quality metric adopted in Ref. 40. Subjective quality assessment
was reported in Ref. 41.

The design of current postacquisition evaluation methods
regards the brain as a single region. They will be inefficient
for application in region-based brain MRI analysis. The contri-
bution by Gedamu et al.,40 which adopts SNR, is diagnostically
misleading34 because it cannot discriminate the quality of two
images that are perceptually dissimilar.39,42 A significant contri-
bution by Mortamet et al.38 is the adoption of artifacts as quality
attributes. Since several types of distortions combine with ideal
features to manifest as image quality attribute,43 the adoption of

artifacts and noise in Ref. 38 are too few attributes to evaluate
the quality of an image.44 There is a risk of ambiguity in quality
measures that are based on the use of ANOVA models.45

ANOVA limits the performance of the technique proposed in
Ref. 37 to the detection of distortion. It cannot transform the
different levels of distortion into a quality index. Trained
MRI readers, such as radiologists, vary in their subjective
evaluations.46 Intrareader as well as interreader variability can
be high. The need to reduce interreader variability through
consensus with other readers coupled with negotiation around
several types and levels of distortions34 makes the subjective
method proposed in Ref. 41 inefficient to manage the large
volume of MRI data in CRO.47

Motivated by the successful application of Bayesian
model observer in task-based quality evaluation, we propose
a postacquisition, attribute-based quality evaluation method
for brain MRI images. Section 2 describes the theory behind
our proposed method. Materials and methods are described
in Sec. 3. Results from quality measure experiments are
shown in Sec. 4 and discussed in Sec. 5. Section 6 concludes
this report.

2 Theory

2.1 Relationship between Entropy and Classical
Quality Attributes

The Shannon entropy X of an image expresses the diversity of
gray-level pixels.48 It is defined as

EQ-TARGET;temp:intralink-;e001;326;441X ¼ −
XQ−1

q¼0

pq log pq; (1)

where pq is defined as

EQ-TARGET;temp:intralink-;e002;326;378pq ¼
�
nq
N2

�
; (2)

is the probability of each gray level fq∶q ¼ 0;1; · · · ; Qg and
N2 gives the number of pixels in the image.

The classical quality attributes of a brain MRI slice include
contrast, sharpness, noise, and brightness. Several contributions
in the literature establish the relationship between entropy and
the classical quality attributes. The reports in Refs. 49 and 50
show that image contrast can be expressed using entropy.
Entropy is widely used to quantify image details by the meas-
urement of sharpness.51–53 The contributions in Refs. 54–56
establish the relationship between entropy and minimum mean
square error (MMSE). The MMSE can be regarded as a function
of SNR, a measure of noise level. The contributions in Refs. 57
and 58 demonstrate entropy as the combination of different
image quality attributes. The relationship between brightness
and entropy has been exploited to develop brightness-preserving
histogram equalization algorithms.59,60 Furthermore, entropy
maximization has been adopted in Refs. 61 and 62 to improve
the quality of tomographic images.

Our proposed method aims to predict the image quality of
a specific region-of-interest in an MRI slice. Global entropy
computed according to Eq. (1) is of no use for our proposed
method because it regards the image as a single region. Our pro-
posed method will require a segmentation task. It is necessary
to incorporate spatial information into the image before the
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segmentation task.63 We incorporate the spatial information
according to Ref. 64 by defining a small neighborhood Ωk
by window size Nk × Nk within the image so that the entropy
of Ωk can be written as

EQ-TARGET;temp:intralink-;e003;63;708XðΩkÞ ¼ −
XQ−1

l¼0

pl log pl; (3)

where pl is defined as

EQ-TARGET;temp:intralink-;e004;63;647pl ¼
�

nl
NkNk

�
; (4)

is the probability of grayscale l in the neighborhood, nl is the
number of pixels with grayscale l in the neighborhood, and
XðΩkÞ is the local entropy of neighborhood Ωk.

2.2 Bayesian Framework

2.2.1 Bayes theorem

Given that the MRI slice is a grayscale image, convolution with
a fixed-size entropy filter extracts the local entropy feature
image A. Let the entropy image be segmented into M ¼ 2 sep-
arate regions fj∶j ¼ 1;2g. The regions are the low-entropy
region A1 and the high-entropy region A2. For each entropy
region, we make K ¼ 3 separate observations fk∶k ¼ 1;2; 3g
of image quality attributes B by the use of appropriate filters
to extract the local contrast feature image B1, the local standard
deviation feature image B2, and the local sharpness feature
image B3. According to Bayes theory,

65 the posterior probability
PðAjjBkÞ of each local entropy region Aj given each observation
Bk is

EQ-TARGET;temp:intralink-;e005;63;388PðAjjBkÞ ¼
PðBkjAjÞPðAjÞP

M
m¼1 PðBkjAmÞPðAmÞ

; (5)

where PðAjÞ is the prior belief of the event Aj before the actual
observation Bk, PðBkjAjÞ is the likelihood, and the denominator
is a normalizing constant referred to as the total probability.

2.2.2 Prior belief

The prior belief PðAjÞ in each entropy region Aj is based on four
principles. First, we incorporate the initial steps for implement-
ing task-based quality assessment.66–68 Multiple estimates of
each entropy region for each patient in a given population can
be computed from slices in an MRI volume data.66 Second,
brain MRI images are geometrically similar69 across age,
gender, and race. Third, they are statistically simple70 as evident
from the few constituent homogeneous regions that can be used
to describe an ideal slice. Fourth, Rician distribution of pixels at
low SNR can be modeled as Gaussian at high SNR.71,72 Based
on these principles, we regard entropy as a random variable X
generated from each slice in an MRI volume database.
According to Ref. 73, the invocation of the central limit theorem
on n number of data gives a normally distributed data with mean
μX and variance σ2X

EQ-TARGET;temp:intralink-;e006;63;113 lim
n→∞

PðXÞ ¼ 1

σX
ffiffiffiffiffi
2π

p exp−
�ðX − μX Þ2

2σ2X

�
: (6)

Accurate measurement of entropy is limited by the presence of
noise.74 Analytically, entropy increases with sharpness but there
is no fair correlation between entropy and noise.57 The report in
Ref. 57 suggests that entropy can be considered as a quality
index only if noise can be considered as a unique type of infor-
mation, which can be distinguished from Shannon entropy. We
follow the suggestion in Ref. 57 by applying the results of the
experiment in Ref. 75 to distinguish noise from entropy and
hence determine the best estimate of PðXÞ. The MRI slice is
modeled as a Markov random field63,70,76,77 but without refer-
ence to a prior model image. Clique potential computed from
each neighborhood, according to Ref. 63, is summed to obtain
Et which we refer to as the total clique potential (TCP) for the
image. A threshold Th classifies the TCP energy of the image
into either the noise energy band or the entropy energy band so
that the prior belief is defined as
EQ-TARGET;temp:intralink-;e007;326;576

PðAjÞ ¼
(�

ΦðzjÞ
0.5

�
if Et ≤ Th

1 − Et otherwise
; (7)

where ΦðzjÞ is the cumulative probability when the z-score zj
of the entropy value for Aj is used to standardize the normal
distribution in Eq. (6), 0.5 is the maximum possible value of
ΦðzjÞ, and Et is the TCP energy of the slice.

2.2.3 Likelihood

The likelihood is the matching of the structural information in an
entropy region to the corresponding region in a feature image
where image quality attribute is observed

EQ-TARGET;temp:intralink-;e008;326;416PðBkjAmÞ ¼
PðBk ∩ AmÞ

PðAmÞ
¼

2
64
�
nBk;Am
nfg

�
�
nAm
nfg

�
3
75 ¼ nBk;Am

nAm

; (8)

where nBk;Am
is the number of pixels common to both Am and Bm

and nfg is the number of foreground pixels.

2.2.4 Posterior probability

The posterior probability is computed in a three-step hierarchi-
cal process.

1. First step

The initial step is the posterior probability of a local
entropy region given any of local contrast, local standard
deviation, and local sharpness. This gives the quality
score PBk

for each quality attribute observed from
a feature image. They are the contrast quality attribute
PðAmjB1Þ, the standard deviation quality attribute
PðAmjB2Þ, and the sharpness quality attribute PðAmjB3Þ.
These attributes can be generally expressed as

EQ-TARGET;temp:intralink-;e009;326;165PBk
¼ PðAmjBkÞ: (9)

2. Second step

The second step is the quality index PAm
for each

entropy region. It is the average of the three quality
attributes for each local entropy region
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EQ-TARGET;temp:intralink-;e010;63;752PAm
¼

�
1

K

�XK
k¼1

ðPðAmjBkÞ: (10)

3. Third step

The last step is the quality index Q for the MRI slice.
It is the average quality score for the low- and the high-
entropy regions

EQ-TARGET;temp:intralink-;e011;63;661Q ¼
�
1

M

�XM
m¼1

ðPAm
Þ: (11)

3 Materials and Methods

3.1 Materials

Data used for the performance evaluation of our proposed
method were obtained from three sources. They are from the
NeuroRx Research Inc., the BrainCare Oy, and the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database.

Thirty one MRI volume data from two sources were used as
test data. Twenty-one volume data were from NeuroRx and
10 volume data from BrainCare. Each slice from NeuroRx
has 2.4-mm thickness with a dimension of 256 × 256 pixels
in a 60-slice volume data. BrainCare data have a thickness of
7.4 mm with a dimension of 448 × 390 pixels in a 24-slice vol-
ume data. NeuroRx data consist of 10 conventional T1 images
that were originally acquired with bias fields. The remaining
data from NeuroRx were without any perceived distortion.
They are three T2, three T1, three PD, and two fluid attenuation
inversion recovery (FLAIR) images. All the 11 MRI volume
data from BrainCare had no perceived distortion. They are
three T2, three T1, two PD, and two FLAIR images. The
description of the test data is displayed in Table 1.

Two hundred and fifty MRI volume data from ADNI database
were used to build a standard normal distribution of random var-
iables. The random variable is the percentage composition of an
entropy region in a subject MRI volume data. Each volume data
from ADNI were acquired using high-resolution T1 magnetiza-
tion-prepared rapid gradient echo (MPRAGE) pulse sequence.
Images acquired usingMPRAGE pulse sequence were our choice
to build a quality model because they exhibit superior gray-white
matter contrast compared to the conventional T1 and other struc-
tural brain MRI images.78–80 Each slice in a volume data has
thickness of 1.2 mm and dimension of 190 × 160 pixels. The
details of ADNI acquisition protocol and the initial processing
steps are available in Ref. 81. We seek the opinion of radiolog-
ists in the selection of MRI volume data on the ADNI website.
This is to ensure that only MPRAGEMRI volume data that meet
the expected high-quality attributes are selected for the quality
model. Furthermore, we seek MRI data of subjects without
lesions or with very mild lesions. For each MRI data, slices
toward the most inferior and most superior sections are dis-
carded because they highlight more of scalp and bone structures
than brain structures. The number of useful slices for each sub-
ject varies between 50 and 85. A total of 12,005 slices were
derived from the 250 MRI volume data.

3.2 Generation of Distortions

The test data were evaluated in their original state of acquisition
and for different levels of artificially induced distortions.
Different levels of motion blur and Rician noise were artificially
induced on images that are without perceived distortion. Motion
blur was induced on a slice by convolving it with a special filter
that approximates the linear motion of a camera. The linear
motion is described by two parameters of the motion blur
point spread function Hðx; y∶L; θÞ82

EQ-TARGET;temp:intralink-;e012;326;381Hðx; y∶L;θÞ ¼
	

1
L if

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
≤ L

2

�
and

�
x
y ¼ − tan θ

�
0 otherwise

;

(12)

where L is the linear distance in pixels and θ is the angular dis-
tance in degrees. The range of the linear and angular distances is
f1 ≤ L ≤ 30g and f1 ≤ θ ≤ 60g, respectively. Both linear and
angular distances were linearly spaced into 20 data points so that
the filter generated 20 increasing levels of motion blur. Rician
noise was generated in a three-step process. Gaussian noise is
generated in the first step. The noise level is quantified as a per-
centage of the maximum pixel intensity level in the test image.
For a m percent Rician noise level, the standard deviation of the
equivalent normal distribution is given as

EQ-TARGET;temp:intralink-;e013;326;209σ ≈N
�
0;

τm
100

�
; (13)

where τ is the maximum pixel intensity.83 In the second step, we
simulate the real and imaginary components in the complex
plane of the MRI acquisition process by adding two separate
and identical Gaussian noise levels to the test image. The third
step computes the magnitude of the complex data. The Rician
noise level was scaled from 1% to 20% in steps of 1%.

Table 1 Description of test data utilized for the performance evalu-
ation of our proposed method for the quality evaluation of an MRI
slice.

Categories of experiment
Type of MRI
volume data

Number of MRI
volume data

Number
of slices

MRI volume data without
perceived distortion

T2 2 40

T1 2 30

PD 5 30

FLAIR 4 30

MRI volume data
degraded by bias fields

T1 10 100

MRI volume data
degraded by motion blur

T2 2 30

T1 2 30

MRI volume data
degraded by noise

T2 2 30

T1 2 30

Total 31 350
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3.3 Methods

The algorithm was implemented in the MATLAB® computing
environment. The flow chart in Fig. 1 and the images in
Fig. 2 explain how our proposed method works. The six stages
in the computation of quality index for an MRI slice are
explained below.

3.3.1 Foreground extraction

Foreground extractor FRX segments the test image TIM shown
in Fig. 2(a) into two regions: the foreground FRG region and
the background region. The foreground region contains only
the pixels that describe the anatomical structures in the slice.
The foreground extractor is based on the Otsu method for
a global image threshold.84

3.3.2 Feature extraction

Feature extractor FEX consists of four different local filters.
Three filters, entropy, contrast, and standard deviation, are based
on conventional filtering. The local sharpness filter was derived
from Haar wavelet.65 These local filters extract four image fea-
tures from the original slice. They are local entropy ENT in
Fig. 2(b), local contrast CON shown in Fig. 2(c), local standard
deviation STD shown in Fig. 2(d), and local sharpness feature
image shown in Fig. 2(e). The choice of filter size is determined
by trade-off between spatial accuracy and computational effi-
ciency. Generally, efficient performance of a filter is determined
by the number of neighboring pixels enclosed by its window.
Larger filter size tends to dilate the original edge thickness
that demarcates boundaries. This will cause loss of fine details
in the image during the filtering process.85 Filter size that is too
small relative to the image dimension will result in loss of spatial
coherence in the filtered image. Loss of spatial coherence

manifests as discontinuous edges in the filtered image. For
these reasons and based on our experience during the perfor-
mance evaluation, we recommend filter sizes of 3 × 3 and
5 × 5 for images with dimensions comparable to 256 × 256
and 512 × 512, respectively.

3.3.3 Binarization

A binary image transformer BIT computes the mean of each
feature image. The mean is adopted as the global threshold
to transform each feature image into a binary image. The binary
image clusters each feature image into low entropy (EL), low
contrast (CL), low standard deviation (SL), low details (DL)
regions and corresponding high energy regions; high entropy
(EH), high contrast (CH), high standard deviation (SH), and
high details (DH). The variable assigned to an energy region
is quantified by its percentage composition in the slice. The per-
centage composition is the ratio of the number of pixels in the
region to the number of pixels in the foreground.

3.3.4 Prior belief

Prior belief (PBL) in the low-entropy region (EL) and the prior
belief (PBH) in the high-entropy region (EH) are computed accord-
ing to Eq. (7). The TCP of the image Et is compared to a threshold
set at Th ¼ 0.5 to determine if the image can be classified as
belonging to the noise energy band or the entropy energy band.

For Et ≤ 0.5, the prior belief (PBL and PBH) is the deviation
of the percentage composition (EL and EH) in a slice from
a standard normal distribution of corresponding percentage
composition. The normal distribution of random variables was
built from MRI data of 250 subjects obtained from ADNI.

For Et > 0.5, there are two methods to compute the prior
belief. When a noise estimation algorithm is available, TCP
is computed according to the mathematical model that expresses
TCP–noise level relationship in Ref. 75. In the absence of a
noise estimation algorithm, the TCP is computed directly from
the test image before insertion into the mathematical model.

3.3.5 Likelihood

The pixels in the low-energy region (CL, SL, and DL) and the
high-energy region (CH, SH, and DH) of the observation images
are separately matched, without registration, with pixels in the
corresponding region (EL and EH) of the entropy image. The
ratio of the number nBk;Am

of their common elements to the
number nfg of foreground pixels is expressed by PðBk ∩ AmÞ.
The ratio of the number of pixels in each region to the
number of foreground pixel gives PðAmÞ. Both PðBk ∩ AmÞ
and PðAmÞ are inserted into Eq. (8) to derive three separate
likelihood for each entropy region.

3.3.6 Quality index

The quality index for the contrast [Fig. 2(f)], standard deviation
[Fig. 2(g)], and sharpness [Fig. 2(h)] quality attributes in each of
the low- (EL) and high- (EH) entropy regions is computed
according to Eq. (9). Quality score (PTL and PTH) for each
entropy region is computed according to Eq. (10). The quality
attributes were assigned equal weight because each attribute
complements each other. The global quality score (PG) for the
slice [Fig. 2(i)] is computed according to Eq. (11) and each
region is assigned equal weight.

Fig. 1 The flow chart of postacquisition quality evaluation for a brain
MRI image. The event of interest, local entropy (ENT), is extracted
(FEX) from the test image. Three separate observations: local contrast
(CON), local standard deviation (STD), and local sharpness (DTL) fea-
ture images are also extracted (FEX) from the same test image. These
images, except foreground (FRG), are transformed (BIT) to the binary
domain for classification into low- and high-energy regions. Each region
(EL and EH) in the local entropy feature image (ENT) is combined with
corresponding region in the contrast (CL and CH), standard deviation
(SL and SH), and sharpness (DL and DH) feature images to obtain the
likelihood (LL and LH) for each observation. For each region, Bayes
rule combines the prior belief (PBL and PBH) with the likelihood
(LL and LH) corresponding to each feature image to compute quality
score for each quality attribute. The total quality score for each region
(PTL and PTH) is the weighted sum of the quality score of each quality
attribute. The global quality score (PG) of the slice is the weighted
sum of the total quality score (PTL and PTH) for each region.
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3.4 Validation of Results

Our proposed method was validated with subjective experi-
ments conducted with a group of human observers. The group
consists of four radiologists and one MRI reader. MRI reader is a
trained professional with experience working on MRI images
that are affected by pathology.40 The experiment was conducted
with the aid of QuickEval,86 a web-based tool for psychometric
image evaluation provided by the Norwegian Colour and Visual
Computing Laboratory at the Norwegian University of Science
and Technology, Gjøvik, Norway. We choose the mean opinion
score (MOS) subjective experiment method because of its

popularity and simplicity. MOS is the average of the quality
scores assigned to an image by multiple viewers.87 There are
four categories of the experiment. They are MRI volume data
without perceived distortion, MRI volume data originally
acquired with bias fields, MRI volume data artificially degraded
with motion blur, and MRI volume data artificially degraded by
Rician noise. Table 1 shows the categories of the experiment and
the description of the MRI volume data utilized for the experi-
ment. The observer assigns a score from 101 possible quality
scores to each low- and high-energy regions of a slice. The pos-
sible scores are between 0 and 100, in steps of 1. Each region
has equal weights, thus the global quality score is the average of

Fig. 2 Bayesian framework inspired postacquisition quality assessment of (a) a brain MRI slice (TIM) in
an MRI volume data. The event of interest, (b) the local entropy (ENT) is extracted from the test image.
Three separate observations of image quality are (c) local contrast (CON), (d) local standard deviation
(STD), (e) and local sharpness (DTL) feature images. The four feature images are transformed to the
binary domain and classified into the low- and the high-energy regions. For each region, the posterior
probability of each region given any of the observations gives quality score for (f) contrast quality
attribute, (g) standard deviation quality attribute, and (h) sharpness quality attribute. The total quality
score for each region is the average quality scores from each quality attribute. The average total quality
score from each region is the (i) global quality score.
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the low- and high-entropy regions. In the category of MRI
volume data with artificially induced distortion, each observer
was first presented with an undistorted version of an MRI slice.
This was followed by four different increasing levels of distor-
tion of the original slice. The distorted levels are 5, 10, 15, and
20. The relationship between our objective results and the score
assigned by human observers was determined using the
Spearman’s rank correlation coefficient S88

EQ-TARGET;temp:intralink-;e014;63;320S ¼ 1 −
6
P

d2

n3 − n
; (14)

where n, the number of observations is the total number of slices
contained in all the volume data in each category of the experi-
ment and d is the difference between the two ranks of each
observation.

4 Results
In this section, we provide results of the experiments on five
MRI volume data. One T2 and a conventional T1 volume data
are from NeuroRx Inc. The T1 data were originally degraded by
bias fields during acquisition. The data from BrainCare Oy are
two T2 and a conventional T1 volume data.

4.1 MRI Volume Data without Perceived Distortion

Two slices in a T2 volume data from BrainCare are shown in
Figs. 3(a) and 3(b). The slices are without perceived distortion.
The plots of the posterior probability for the low-, high-energy
region, and total probability of the contrast, standard deviation,
and sharpness quality attributes are shown in Figs. 3(c)–3(e),

respectively. Each quality attribute had average low-energy
quality score of 0.85. The high-energy region of the contrast
and standard deviation quality attributes had average of 0.7
compared to corresponding sharpness quality score of 0.6. The
global quality score for 10 successive slices in the volume data
is in Fig. 3(f).

Another two slices are shown in Figs. 4(a) and 4(b). They are
in a T1 volume data from BrainCare and are without perceived
distortion. The plots of the posterior probability shown in
Figs. 4(c)–4(e) have an average of 0.7 and 0.5 for the low- and
the high-energy regions of the contrast, standard deviation, and
sharpness quality attributes, respectively. The average total
score for each quality attribute is 0.55. Global quality scores for
10 successive slices in the volume data are shown in Fig. 4(f).

Figures 5(a) and 5(b) are two slices in a NeuroRx T2 volume
data considered to be without perceived distortion. The average
of the quality scores shown in Figs. 5(c)–5(e) for the low- and
high-entropy regions is 0.9 and 0.6, respectively. The average
quality score for 14 successive slices in the volume data [see
Fig. 5(f)] is 0.8.

4.2 MRI Volume Data Degraded by Motion Blur

The image in Fig. 6(a) was degraded by 20 different levels of
motion blur. Figure 6(b) is the degraded version of the image in
Fig. 6(a) with motion blur level of 20. The plots of the posterior
probability corresponding to the low- and the high-entropy
regions for each quality attribute are shown in Figs. 6(c)–6(e).
These plots and the plot in Fig. 6(f) show a decrease in quality
scores for different levels of degradation by motion blur. At a
insignificant level of blur, the quality score for the low-entropy

Fig. 3 Two slices (a) slice number 1 and (b) slice number 5 in a T2 MRI volume data from BrainCare Oy,
(c) contrast attribute quality scores, (d) standard deviation attribute quality scores, (e) sharpness attribute
quality scores, and (f) global quality scores for 10 successive slices in the MRI volume data.
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Fig. 4 Two slices (a) slice number 2 and (b) slice number 5 in a T1 MRI volume data from BrainCare Oy,
(c) contrast attribute quality scores (d) standard deviation attribute quality scores, (e) sharpness attribute
quality scores, and (f) global quality scores for 10 successive slices in the MRI volume data.

Fig. 5 Two slices (a) slice number 1 and (b) slice number 7 in a T2 MRI volume data from NeuroRx
Research Inc., (c) contrast attribute quality scores, (d) standard deviation attribute quality scores,
(e) sharpness attribute quality scores, and (f) global quality score for 10 successive slices in the MRI
volume data.
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region is close to 0.9 for the three quality attributes. The quality
scores decrease in proportion to the successive increase in blur
level to quality score of 0.4 for motion blur level of 20. In the
high-entropy region, the three quality attributes exhibit different
profiles. Contrast and standard deviation decrease from 0.6 to
0.4 and 0.6 to 0.35, respectively. There is slight increase
from 0.5 to 0.55 in the level of details for motion blur increase
from 1 to 5. This can be attributed to an increase in sharpness at
the onset of motion blur. Subsequently, there is a progressive
decrease in quality score from 0.55 to 0.3 for motion blur
level decrease from 6 to 20. The plot in Fig. 6(f) shows a general
decrease in image quality with increasing levels of motion blur.

4.3 MRI Volume Data Degraded by Noise

Figures 7(a) and 7(b) are the original image and its degraded
version, respectively. The Rician noise level varies from 1%
to 20%. The image in Fig. 7(b) is degraded by 20% Rician
noise. The plots of the posterior probabilities of the three quality
attributes for the low- and the high-entropy regions are shown in
Figs. 7(c)–7(e). The global quality score is shown in Fig. 7(f).
The plots of the contrast and standard deviation quality attrib-
utes shown in Figs. 7(c) and 7(d) have very close corresponding
quality scores. In the absence of noise, the quality score for
the high-entropy region of the sharpness quality attribute is
0.5 compared to 0.6 for the other quality attributes. At 20%
Rician noise level, quality score is about 0.3 across regions
and the three quality attributes. Loss of details is clearly evident
when the visual quality of the original image in Fig. 7(a) is com-
pared to its degraded version in Fig. 7(b). Figure 7(f) shows a
general decrease of image quality with increasing noise level.

4.4 MRI Volume Data Degraded by Bias Fields

Figures 8(a)–8(e) are five slices in a 60-slice T1 MRI volume
data. The volume data were degraded by bias fields during its
acquisition, and the slices exhibit different configurations of bias
fields. The three quality attributes of 21 successive slices in the
volume data are displayed in Figs. 8(f)–8(h). There are varia-
tions in the quality scores for the different slices. The global
quality scores of slice numbers 4, 6, 8, 14, and 19 shown in
Fig. 8 are 0.2, 0.2, 0.25, 0.3, and 0.5, respectively.

4.5 Validation of Results

The objective scores recorded by our proposed method and the
scores recorded by human observers for T2, T1, FLAIR, and PD
images without perceived distortion are shown in Table 2. In this
category, there is an average of 30%, 20%, 30%, and 30% dis-
parity between our proposed method and the scores recorded by
human observers for T2, T1, FLAIR, and PD weighted images,
respectively.

Tables 3 and 4 show that the category of images degraded by
motion blur and noise exhibit common trend. For the low, high,
and global regions, our proposed method and human observers
recorded gradual decrease in quality scores for increasing level
of motion blur. The correlation coefficient exhibits the same
trend in both categories. Thus, it can be inferred that humans
tend to agree with each other when they view high-quality
images than when viewing low-quality images.

Validation by human observers on conventional T1 images
degraded by bias fields is shown in Table 5. Objective quality
scores predicted by our proposed method and the scores

Fig. 6 (a) A slice in a T2 MRI volume data from BrainCare Oy is artificially degraded by motion blur. The
degradation was scaled from 0 to 20. (b) Degraded version of the image corresponding to motion blur
level of 20. (c) The contrast attribute quality scores, (d) standard deviation attribute quality scores,
(e) sharpness attribute quality scores, and (f) global quality scores for the different levels of motion blur.
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recorded by human observers for the low, high, and global
regions differ by 10%, 30%, and 15%, respectively.

5 Discussion
MRI image-derived region-based features can serve as strong
biomarkers for monitoring the dissemination in space and
time of neurological diseases, such as multiple sclerosis,
Alzheimer’s disease, and Parkinson’s disease. MRI-derived
region-based features include regional atrophy measurements
in multiple sclerosis patients,89–91 hippocampal volume change
in Alzheimer’s disease patients,92 substantia nigra, and the locus
ceruleus volume change within the basal ganglia for Parkinson’s
disease patients.93,94

The importance of optimized objective quality evaluation
methods for the different tasks in medical images was
highlighted in Ref. 67. The high-quality region-based quality
measurement for brain MRI images was reiterated in the recom-
mendation by the European Collaborative Research Network
that studies MRI in multiple sclerosis.95 One aspect of the rec-
ommendation is the use of high-quality brain MRI images for
clinical research to prevent inaccurate diagnosis. The second
aspect outlined region-based criteria for establishing multiple
sclerosis dissemination in space and time. They are the presence
of at least one lesion in at least two of four different regions
of T2 brain MRI images. The regions are juxtacortical, periven-
tricular, infrantentorial, and the spinal cord.

Like natural images, distortion processes have different
effects on the different homogeneous regions of the brain.96

Noise introduces isolated edges,97 resulting in unwanted details

in the smoothly varying white matter and ventricle regions. Fine
details that define the high density of edges in the cortical gray
matter region are eroded by noise. Noise reduces the sharpness
between the boundaries of different homogeneous regions.
These effects make the task of edge detection and preservation
difficult.98 The smoothen effect of blur99 makes it difficult to
characterize the texture features that distinguish the white matter
and the thalamus regions. Bias fields corrupt the natural homo-
geneity of the major anatomical structures by introducing new
smoothly varying intensity levels.100

This report addresses the need to provide high-quality
region-based quality assessment for brain MRI images. The pro-
posed method computes image quality index for the low-, high-
energy region, and the whole-brain. The low-energy region is
dominated by the white matter structure. The high-energy region
includes the high density of edges that characterize the cerebral
cortex and the boundaries that demarcate the different anatomi-
cal structures. The whole-brain is the brain regarded as a single
region. Based on the performance evaluation results, the follow-
ing subsections discuss the different characteristics of our pro-
posed method.

5.1 Good Correlation with Human Observers

In all the categories of the experiment, the results show very
good correlation (≥0.6) between our proposed method and
the subjective evaluation by human observers. This indicates
that our proposed method correlates with the human visual
system. The high correlation can be attributed to four factors.
They are the efficient performance of our proposed algorithm,

Fig. 7 (a) A slice in a T2 MRI volume data from BrainCare Oy is artificially degraded by different levels of
Rician noise. The Rician noise level was scaled from 0 to 20. (b) Degraded version of the image
corresponding to Rician noise level of 20. (c) The contrast attribute quality scores, (d) standard deviation
attribute quality scores, (e) sharpness attribute quality scores, and (f) global quality scores for the
different levels of Rician noise.
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Fig. 8 Five slices (a) slice number 4, (b) slice number 6, (c) slice number 8, (d) slice number 14, and
(e) slice number 19 in a T1 MRI volume data from NeuroRx Research Inc. The data were originally
acquired with bias fields. (f) Contrast attribute quality scores, (g) standard deviation attribute quality
scores, (h) sharpness attribute quality scores, and (i) global quality scores for 21 successive slices
in the MRI volume data.

Table 2 Result of validation studies for T2, T1, FLAIR, and PD MRI
volume data without perceived distortion.

MRI
sequence

Average objective
quality score

Average subjective
quality score

Correlation
coefficientLow High Global Low High Global

T2 0.85 0.7 0.75 0.7 0.6 0.65 0.75

T1 0.7 0.65 0.6 0.6 0.55 0.6 0.7

FLAIR 0.85 0.7 0.8 0.75 0.55 0.6 0.65

PD 0.9 0.6 0.8 0.7 0.5 0.6 0.7

Table 3 Result of validation studies for T2 MRI volume data
degraded by motion blur.

Distortion
level

Average objective
quality score

Average subjective
quality score

Correlation
coefficientLow High Global Low High Global

0 0.9 0.65 0.8 0.8 0.7 0.75 0.7

5 0.75 0.6 0.65 0.7 0.6 0.65 0.8

10 0.6 0.5 0.55 0.5 0.4 0.45 0.7

15 0.5 0.3 0.4 0.4 0.3 0.35 0.65

20 0.3 0.2 0.25 0.2 0.1 0.15 0.6
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expertise of the human observers, the wide interval between dis-
tortion levels, and the number of observations. The expertise of
the observers is more likely a combination of specific visual and
cognitive skills derived from medical training and experience in
detecting and determining the diagnostic importance of radio-
graphic findings.101 The observers, by their expertise, have
knowledge of successive slices extracted from the same MRI
volume data. Their visual perception of the small variations
in the image quality between the different but successive slices
will be reflected in the subjective evaluation. The interval
between the different levels of distortion is reasonably large
for the human eye to efficiently discriminate between the differ-
ent levels of perceived distortions in the images. The number of
data points used for computation of the correlation coefficient is
reasonably high. The minimum number of data points in each
category of the experiment is 30.

5.2 Good Classification of Image Quality

The results show that our proposed method demonstrates good
classification of image quality across the slices in an MRI vol-
ume data, across MRI data acquired with different acquisition
protocols, as well as different types and levels of perceived
distortion.

5.3 Efficient Management of MRI Analysis

In CRO, quality attributes of an image are an important consid-
eration during the subjective evaluation of automated image
analysis systems. Subjective quality evaluation can be a cumber-
some task for a trained reader. The good correlation between the
outputs of our proposed method and expert human observers
indicates that our proposed method can contribute to the effi-
cient management of the large volume of data in CRO and

meet the deadline to deliver image analysis reports to the spon-
soring pharmaceutical organizations.

5.4 Reduction in Gaze Duration

In the evaluation of MRI-derived atrophy metrics, the reader’s
visual attention changes with the different metrics. Visual atten-
tion is on the white matter region during white matter atrophy
measurement. The focus changes toward the cortical gray matter
region during gray matter atrophy measurement and to the
whole-brain for whole-brain atrophy measurement. We believe
that, as in mammography, gaze duration is a useful predictor
of missed lesions in brain volumetric analysis.102 Objective
method, such as our proposed method, can reduce gaze duration,
improve the discernment, and accuracy of lesion detection by
a trained MRI reader.

5.5 Reduction in Consensus Time

Some image analysis tasks, such as semiautomated identifica-
tion of lesions, require the consensus of at least two experts.
These tasks can be time-consuming because of variability in
the visual judgment of the experts. Our proposed method can
help find a common ground between two trained MRI readers
and speed-up consensus between experts in quality assessment.
The interexpert variability is much higher when it comes to
image qualities that are considered borderline cases because
the human visual system has no clearly defined threshold of
quality index. Our proposed method can be used as a tool to
define a quality index threshold that classifies an image into
acceptable quality image and poor quality image.

5.6 Standardization of Image Quality

Daily very large volumes of MRI data are transferred from clini-
cal trial sites around the globe to CRO that manage clinical trials
for pharmaceutical organizations. This new quality evaluation
method will find useful application in CRO environments to
enforce the standardization of variations in the quality attributes
of MRI images from different manufacturers, different clinical
trial sites, and different acquisition protocols.

5.7 Computational Efficiency

The proposed quality evaluation system is computationally effi-
cient. Processing the feature images required for the computa-
tion of quality index does not require additional resources,
such as computationally intensive image registration algorithm.
Operation of the algorithm is carried out in the binary domain.

5.8 Comparison with Task-Based Quality Evaluation
without Ground Truth

Imaging methods can be referred to as any combination of
image acquisition protocol, system, or parameters and image
reconstruction, processing, or analysis methods used to obtain
some quantitative value.67 It is often difficult and even impos-
sible to have access to an ideal reference also referred to as a
gold standard.103,104 In specific applications, few images or im-
aging methods selected to act as reference image are far from
ideal because in the real-world, an ideal image or imaging
method does not exist.66,105 The use of phantom is not an effec-
tive approach for evaluation because it lacks the ability to model
the complex anatomy and physiology of the human system as

Table 4 Result of validation studies for T2 MRI volume data
degraded by Rician noise

Distortion
level

Average objective
quality score

Average subjective
quality score

Correlation
coefficientLow High Global Low High Global

0 0.9 0.6 0.75 0.75 0.6 0.65 0.8

5 0.6 0.5 0.55 0.7 0.6 0.65 0.7

10 0.45 0.55 0.5 0.5 0.5 0.5 0.65

15 0.4 0.3 0.35 0.3 0.3 0.3 0.6

20 0.35 0.3 0.3 0.3 0.2 0.25 0.6

Table 5 Result of validation studies for conventional T1 MRI volume
data degraded by bias fields.

Region
Average objective
quality score

Average subjective
quality score

Correlation
coefficient

Low 0.45 0.4 0.8

High 0.4 0.3 0.7

Global 0.4 0.35 0.65
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well as image acquisition artifacts that are usually encountered
in real images.67,104

Six characteristics are common to our proposed method and
task-based methods such as in Ref. 66. First, both methods have
three requirements. The requirements for our proposed method
are quality attributes, Bayes model of an observer expressed by
the prior belief, and figure of merit expressed by the posterior
probability. The requirements for task-based methods are a task
of interest, an observer performing the task and figure of merit.
Second, they adopt statistical techniques. Our proposed method
is based on Bayes framework while the task-based approach
adopts linear regression. Third, the statistical techniques incor-
porate features for optimizing objective quality. Optimization in
the task-based method requires an initial guess as the midpoint
of the search space followed by maximum likelihood optimiza-
tion. Our proposed method also requires an initial guess
expressed by a prior belief in the entropy of specific image
region. The prior belief is updated using Bayes rule. Fourth, both
methods require a large number of patient data from a given
population to attain the no-gold standard, although this can be
regarded as a setback for both techniques. Fifth, both techniques
assume that the statistical distribution for the ideal values of the
parameter under investigation belong to a given family of para-
meterized distribution. Sixth, the lack of ground truth has been
addressed by our proposed method and existing task-based qual-
ity evaluation methods, such as Refs. 66–68, 103, and 106.

There are three differences between our proposed method
and task-based quality evaluation methods. First, there is differ-
ence in one of their three requirements. Our proposed method
requires specification of image quality attributes while a task of
interest is needed to be specified in task-based quality evalu-
ation. Second, the specification of image quality attributes limits
the application of our proposed method to images. Assessment
methods change with the task at hand.107 For this reason, task-
based method is considered as a rigorous approach to quality
evaluation. Third, both methods have different roles in some
specific image processing and image analysis task. An example
is an estimation task such as brain atrophy measurement. Brain
MRI images are the inputs to the algorithms. Our proposed
method is related to the task-based method in same manner
as the input images are related to the algorithms for processing
and analysis task. Our proposed method can be said to play a
primary role by assessing the input images. Task-based method
can be considered playing a tertiary role by assessing the algo-
rithms with its input images.

5.9 Recommended Quality Score for Images of
Acceptable Quality

The quality index is based on a probability scale. An ideal MRI
slice will have quality score of 1. A perfectly bad slice will have
quality index of 0. The quality score for a real MRI slice will lie
between 0 and 1. We recommend a quality score threshold of
0.4 to determine if a slice is of acceptable quality or without
acceptable quality. This recommendation is with reference to
the horizontal asymptote of 0.5 for the mathematical model
that expresses the relationship between TCP and noise level.75

The reasoning here is that the asymptote is a natural threshold
that separates the energy band into two separate regions domi-
nated by noise and entropy, respectively. Furthermore, a slice
monotonically losses its sharpness quality with increasing dis-
tance on either of the thresholds. The recommended threshold is
20% less than the horizontal asymptote.

6 Conclusions
We hereby propose a postacquisition quality assessment method
for structural brain MRI images. Our proposed method is
significant because of the increasing interest in the use of the
MRI system for monitoring disease progression in multiple
sclerosis, Alzheimer’s disease, and other neurological diseases.
We exploit the relationship between entropy and the classical
image quality attributes to develop quality measures for brain
MRI images. Entropy is regarded as the aggregate of image
quality attributes. Local contrast, local standard deviation,
and local sharpness are the tests of quality attribute. Quality
measure is formulated as a probability problem with focus on
the different homogeneous regions of the brain. Bayes theorem
is applied to compute the quality scores. Experimental results
demonstrate that our proposed method gave good quality mea-
sures across images with different acquisition protocols, differ-
ent types, and levels of distortion and correlates with subjective
evaluation by human observers. It will be suitable for automated
environments and in applications where specific regions of the
brain are required for image analysis. This method will encour-
age the use of MRI images of acceptable quality in MRI-based
clinical trials, ensure accurate diagnosis, and improve the per-
formance of a trained reader in the performance evaluation of
image analysis systems. The algorithm does not require image
registration. It operates on binary images and thus has the poten-
tial of real-time operation. Current work regards the brain as
consisting of the low- and the high-entropy regions. In the
future, the low-entropy region will be segmented into five
separate regions: white matter, thalamus, ventricle, cortical gray
matter, and basal ganglia. This will increase the utility of our
proposed method for the monitoring and diagnosis of multiple
sclerosis disease, Alzheimer’s disease, and Parkinson’s disease.
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