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Abstract

Staphylococcus aureus are globally disseminated among farmed chickens causing skeletal muscle infections, dermatitis, and septi-

caemia. The emergence of poultry-associated lineages has involved zoonotic transmission from humans to chickens but questions

remain about the specific adaptations that promote proliferation of chicken pathogens. We characterized genetic variation in a

populationofgenome-sequencedS.aureus isolatesofpoultryandhumanorigin.Genealogicalanalysis identifiedadominantpoultry-

associated sequence cluster within the CC5 clonal complex. Poultry and human CC5 isolates were significantly distinct from each

other andmore recombination eventswere detected in the poultry isolates.We identified44 recombinationevents in 33 genes along

thebranchextending to thepoultry-specificCC5cluster, and47geneswere foundmoreoften inCC5poultry isolates comparedwith

those from humans. Many of these gene sequences were common in chicken isolates from other clonal complexes suggesting

horizontal gene transfer among poultry associated lineages. Consistent with functional predictions for putative poultry-associated

genes, poultry isolates showed enhanced growth at 42 �C and greater erythrocyte lysis on chicken blood agar in comparison with

human isolates. By combiningphenotype informationwithevolutionaryanalysesof staphylococcal genomes,weprovideevidenceof

adaptation, following a human-to-poultry host transition. This has important implications for the emergence and dissemination of

new pathogenic clones associated with modern agriculture.
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Introduction

The expansion of the global poultry industry and rapid in-

crease in the number of chickens presents opportunities for

increased incidence of zoonotic diseases. Staphylococci are

among the leading agents of bacterial infection in chickens

(Peton and Le Loir 2014) and Staphylococcus aureus causes a

wide range of chicken diseases, including septic arthritis,

subdermal abscesses, and gangrenous dermatitis (Bystron

et al. 2010). Molecular epidemiology studies have described

highly structured S. aureus populations with clusters of related

isolates, grouped into clonal complexes (CCs) that share five or

more alleles at seven MLST loci (Enright and Spratt 1999;

Urwin and Maiden 2003). Clonal complexes vary in the

range of sources from which they have been isolated. For

example, isolates belonging to CC385 have not been previ-

ously identified among human and mammalian species

samples but have been principally found in birds including

poultry (Lowder et al. 2009). Isolates from other lineages,

such as CC5 and CC398, have been frequently isolated

from chickens, humans, and other hosts (Abdelbary et al.

2014; Monecke et al. 2013; Price et al. 2012). CC5 is of par-

ticular concern in food production as it is the most frequent

disease-causing lineage in chickens (Bystron et al. 2010;

Hasman et al. 2010; Lowder et al. 2009).

Host association has previously been described in staphylo-

cocci (Shepheard et al. 2013). Global dissemination and the

high level of genetic diversity observed among CC5 isolates

from humans suggests long-term association with the human

host (Nubel et al. 2008). The emergence of CC5 as a common

lineage in poultry (Monecke et al. 2013) is thought to be the

result of a single recent human-to-poultry host jump approx-

imately 40 years ago (Lowder et al. 2009). In common with

bovine-adapted S. aureus lineages (Herron-Olson et al. 2007),

host transition of poultry CC5 isolates has been accompanied

by genetic changes, including the loss of several genes in-

volved in human disease pathogenesis and acquisition of

novel mobile genetic elements from an avian-specific acces-

sory gene pool (Lowder et al. 2009). Host-associated genetic

variation of this kind is influenced by various factors. These

include: (i) genetic bottlenecking leading to reduced genetic

diversity in the founder population; (ii) diversification in allop-

atry following isolation from the ancestral population; and (iii)

adaptation involving the acquisition of genomic elements that

provide a competitive advantage in the new niche.

There are several examples of host adaptation following

zoonotic transmission of S. aureus (Guinane et al. 2010;

Senghore et al. 2016; Viana et al. 2010, 2015; Weinert

et al. 2012), including acquisition of genes that contribute

to transmission, colonization, and virulence (Wiedenbeck

and Cohan 2011; Yan et al. 2016). For example, it is believed

that methicillin-susceptible S. aureus CC398 acquired the

methicillin resistance cassette in livestock before reinfecting

humans (Anukool et al. 2011; Lewis et al. 2008; Price et al.

2012; Verkade et al. 2014; Ward et al. 2014; Wendlandt et al.

2014a, 2014b). Identifying host adaptations becomes particu-

larly important when they promote the spread of disease. This

is the case with plasmids that have contributed to strain viru-

lence and conferred antibiotic resistance (pT181, pT127,

pC194, pC221, pC223, and pUB112) (Ehrlich 1977) among

S. aureus isolates causing a wide range of chicken diseases

that are particularly robust and difficult to treat (Bystron et al.

2010).

Comparison of individual S. aureus isolates from human

and chicken has been instructive in identifying host-associated

genetic elements (Lowder et al. 2009). However, it remains

difficult to differentiate genetic changes associated with bot-

tlenecking and drift from those that confer an advantage in

the poultry niche. Evidence for a role in adaptation is provided

if specific genomic changes occur in divergent lineages that

are not present in their common ancestor (homoplasy). In this

study, we build on the work by Lowder et al. (2009) which

identified poultry-associated plasmid and phage elements,

and conduct population genomic analysis of the emergence

of disease-associated S. aureus in chickens. We: (i) conduct a

survey of disease causing S. aureus in chickens; (ii) characterize

the population structure of disease-associated strains and in-

vestigate the abundance of CC5; (iii) compare chicken-dis-

ease-associated isolate genomes with clonally related

bacteria from human hosts; (iv) identify the genetic elements

associated with the emergence of disease; and (v) quantify

homologous and accessory genome recombination in popu-

lations of S. aureus from different sources and genetic back-

grounds. By characterizing the evolutionary events in CC5

isolates that accompanied the colonization of chickens from

humans, and comparison with phylogenetically divergent

S. aureus lineages, we provide evidence for the genetic basis

of poultry adaptation. Relating adaptive hotspots to gene

function, and using laboratory phenotyping assays, we de-

scribe an evolutionary history of rapid avian host adaptation

of a globally disseminated animal pathogen.

Materials and Methods

Isolate Collection

In total, 191 isolates were sampled from diseased chickens

from various breeder farms predominantly in the UK

(n = 161), and also the USA (n = 25) and the Netherlands

(n = 5) (see supplementary table S1, Supplementary Material

online). Samples were collected from chickens suffering from

infections of the leg (153), liver (8), footpad (7), bone marrow

(4), yolk sac (4), peritoneum (3), brain (3), kidney (1), pericar-

dium (1), spleen (1), lung (1), from a day old chick, and four

samples from the surrounding environment. Samples were

collected between 2008 and 2013. S. aureus were identified,

subcultured and transported on slopes of Dorset’s egg
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medium before storing at�80 �C. All isolates were sequenced

and 165 assembled genomes were analyzed.

Genome Sequencing

Staphylococcus isolates were cultured on Columbia blood

agar plates at 37 �C for 24 h. Single-colony cultures were

harvested and resuspended in 3 ml of peptone yeast extract

medium to minimize clumping and incubated at 37 �C with

overnight shaking. DNA was extracted using the QIAamp

DNA Mini Kit (QIAGEN, UK), using manufacturer’s instructions

with the addition of 1.5mg/ml lysostaphin (Ambi Products,

USA) to facilitate cell lysis. The DNA of 224 isolates was se-

quenced at the Wellcome Trust Centre for Human Genetics

(Oxford, UK) using a HiSeq 2500 (Illumina, USA). The 100 bp

short read paired-end data was assembled using the de novo

assembly algorithm, Velvet (Zerbino and Birney 2008) (version

1.2.08). The VelvetOptimiser script (version 2.2.4) was run for

all odd k-mer values from 21 to 99. The minimum output

contig size set to 200 bp with the scaffolding option switched

off; all other program settings were left unchanged. For com-

parison, we also sequenced several human isolates from

wound infections (n = 13), prosthetic joint infections (n = 31),

nasal swabs (n = 9) and the SH1000 lab strain. Overall, the

average number of contiguous sequences (contigs) for all

224 genomes sequenced in this study was 77 which gave

rise to an average total assembled genome size of

2,893,678 bp and an average N50 of 337 Kbp. Short reads

are available from the NCBI short read archive (SRA) associ-

ated with BioProject: PRJNA312437.

Our collection of avian isolates was augmented with pub-

lished genomes from NCBI (n = 189) and further isolates were

sequenced to compliment our collection. Twenty-four addi-

tional avian isolates were sequenced by the Edinburgh geno-

mics facility at the Roslin Institute using an Illumina MiSeq

(USA), including eight isolates from CC385—a clonal complex

that has not previously been found outside of avian hosts

(ENA project accession: PRJEB18782; average number of con-

tigs: 382, average genome size: 2,967,259, average N50:

52 Kbp). In total, 432 S. aureus genomes (198 from poultry,

228 from humans, and 6 from ruminants) were used to in-

vestigate the association of genomic elements with human or

poultry hosts (individual accession numbers can be found in

supplementary table S1, Supplementary Material online).

Genealogical Studies

A reference pan-genome approach (Meric et al. 2014) with

gene-by-gene alignment (Maiden et al. 2013; Sheppard et al.

2012) was implemented using the open source Bacterial

Isolate Genome Sequence Database: BIGSdb (Jolley and

Maiden 2010), which included functionality to call MLST pro-

files defined by the pubMLST database (https://pubmlst.org/

saureus; last accessed March 10, 2017). The publicly accessible

genomes used in this study are archived in the Sheppard Lab

Staphylococcal database and can be accessed at: http://www.

sheppardlab.com/resources (last accessed March 10, 2017).

The annotated genome of ED98 (accession NC_013450.1)

and three plasmids (pAVY, pAXY, and pT181) were combined

and used as a reference genome (Meric et al. 2014). The

BLAST algorithm was used to scan all genomes for gene

orthologs at each locus in the reference genome. An ortholog

was defined as a reciprocal best hit of the sequence

with>70% nucleotide identity over 50% of the alignment

length. MAFFT software was used to align gene orthologs

on a gene-by-gene basis, and these data concatenated into

contiguous sequence for each isolate genome, including gaps

(Sheppard et al. 2013). Alignment based on the ED98 refer-

ence genome and poultry plasmids was constructed (2,780

genes) and a heuristic maximum-likelihood tree generated

using FastTree2 (version 2.1.0) (Price et al. 2010) with the

generalized time reversible substitution model enabling recon-

struction of branch lengths >0.0000005 (1,000 times higher

than the default FastTree parameters). In addition, gene-by-

gene alignments were extracted from the BIGSdb for individ-

ual genes present in CC5 poultry isolates and completely

absent from CC5 human isolates. The RAST automated an-

notation server was used to predict putative gene function

(Aziz et al. 2008).

Core Genome Recombination

Isolate genomes (n = 432) were aligned using MAFFT (Katoh

et al. 2002). Mutations found in single isolates were excluded,

as they carry no information about the shared ancestry be-

tween lineages and a total of 279,646 SNPs were recorded in

the isolates. Isolates were grouped into clusters through

hierBAPS analysis (version 6.0)(Cheng et al. 2013) of the re-

sulting core genome alignment using five replicate runs with

the upper bound for the number of clusters varying between

50 and 100. All estimation runs converged to the same esti-

mate of the posterior mode clustering, indicating strongly

peaked posterior distribution. CC5 was identified as one of

the hierBAPS clusters and subsequently, BratNextGen (BNG)

software (Marttinen et al. 2012) was used to estimate the

amount of homologous recombination in the core genome

for the 68 isolates assigned to that cluster. Within BNG, 20

iterations of hidden Markov model parameter estimation were

performed and 30 groups of isolates were identified.

Statistically significant (P value< 0.05) recombination in the

core genome was determined with 100 parallel permutation

runs. We report the ratio at which changes in nucleotide se-

quence are introduced by recombination relative to mutation

(r/m) as in McNally et al. (2013).

Inference of Recombination Regions

ClonalFrame infers the clonal relationship of bacteria and the

chromosomal position of homologous recombination events

that disrupt a clonal pattern of inheritance (Didelot and Falush
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2007). Gene-by-gene alignment (XMFA) files of all ED98 and

plasmid genes present in each of the S. aureus strains were

generated. A genealogy for these alignments was estimated

using ClonalFrame (version 1.2) on concatenated sequences

of 46 CC5 genomes with 100,000 iterations, half of which

were discarded as burn-in. Substitution mutation and recom-

bination regions were categorized from the output of

ClonalFrame. The posterior probability of recombination and

substitution at each site is calculated by ClonalFrame and re-

combination events were defined with a probability of recom-

bination more than 75%, reaching 95% at any one site.

Phenotype Assays

Growth at Human and Avian Body Temperature

Twelve S. aureus CC5 poultry isolates were selected for com-

parison with four representative S. aureus human isolates

(from clades containing poultry isolates: two CC5 and two

CC1) to assess their growth under human (37�C) and avian

body temperatures (42�C). Isolates were cultured on CBA

plates at 37�C overnight prior to inoculation of 3 ml

Mueller-Hinton broth with shaking at 37�C overnight until

stationary phase (OD600 between 1.0 and 1.5). Aliquots

were diluted 1:100 in fresh Mueller-Hinton medium and

195 ml of each sample loaded into a 96-well plate with absor-

bance read every hour using the FLUOstar Omega microplate

reader (BMG Labtech, Germany) at 600 nm. Experiments

were performed in triplicate and the average of three readings

for each run was calculated. We performed an extra sum-of-

squares F-test (P value threshold of 0.05) to test the null hy-

pothesis that a single sigmoid regression curve fits the distri-

bution of both human and poultry samples at human and

avian body temperature.

Erythrocyte Lysis Assays

The same isolates used in growth experiments were also used

to assay for their ability to digest chicken and human erythro-

cytes. Isolates were cultured on CBA plates at 37�C overnight

prior to inoculation of 3 ml Mueller-Hinton broth with shaking

at 37�C for up to 3 h until late exponential phase (OD600

~0.6). Each sample was diluted 1:10 using fresh Mueller-

Hinton broth and 2 ml added to wells of a six-well plate

containing 3 ml of defibrinated chicken blood (Rockland anti-

biotics and assays, USA #R102-0100) or pooled whole human

blood (collected using haematology tubes with EDTA from

volunteer scheme at Swansea University). Plates were incu-

bated at 37�C for 48 h and positive results recorded for eryth-

rocyte lysis if a halo (>1 mm) was measured around the

colony. Unpaired t-tests were used to evaluate the significance

of differences between human and chicken isolates, in addi-

tion to isolates with and without the Staphostatin B gene.

Results

Emergence and Rapid Clonal Expansion of CC5 in
Chicken

The majority of avian isolates collected belonged to CC5

(85%). Isolates collected from the UK (91%) and the USA

(76%) were predominantly of CC5, but no CC5 isolates

were collected from the Netherlands, although these five iso-

lates represent only a small proportion of our collection (fig.

1a). Isolates in this study are predominantly from 2012 to

2013 and are dominated by isolates from CC5 (fig. 1b).

Samples from all disease types studied contained CC5 isolates

(fig. 1c) and the only other CC detected in our collection was

the livestock-associated CC398. As in other poultry S. aureus

studies (Lowder et al. 2009), CC5 is the dominant lineage

within our collection. Further long-term surveillance is neces-

sary to establish the timescale of emergence of this lineage.

A maximum-likelihood phylogenetic tree of all 432 iso-

lates was constructed using a reference pan-genome com-

bining the ED98 isolate genome and three plasmids

previously identified from poultry: pAVX (17,256 bp);

pAVY (1,442 bp); and pT181 (4,439 bp) (Lowder et al.

2009; Meric et al. 2014) (fig. 2A). Four distinct lineages

contained isolates from poultry (Price et al. 2010) and

within the CC5 sequence cluster a clear poultry sublineage

was evident (there was also a single poultry isolate belong-

ing to the CC30). Hierarchical Bayesian estimations of the

genetic population structure (hierBAPS) also grouped poul-

try and human isolates within the CC5 cluster.

Increased Recombination in CC5 Poultry Isolate Core
Genomes

The number of ancestral populations was estimated by

grouping isolates into genetically divergent clusters using

BratNextGen (Marttinen et al. 2012). The algorithm in-

ferred the positions and sizes of DNA sequence segments

with evidence of homologous recombination and grouped

isolates according to recombination pools (see supplemen-

tary fig S1, Supplementary Material online). At the highest

level of BAPS clustering there were 30 S. aureus sequence

clusters composed of 2 or more isolates (fig. 2a).

Recombination was unevenly detected across S. aureus se-

quence clusters (see supplementary fig S1, Supplementary

Material online). The rate at which recombination intro-

duced nucleotide changes, relative to mutation (r/m), in

the CC5 complex was 1.08. Disproportionally more recom-

bination events were identified in the chicken CC5 isolates

(�x = 34.6 per isolate) compared with the human CC5

isolates (�x = 18.5). In order to assess the statistical signif-

icance of this we assumed independence of the isolates and

estimated the probability of finding at least one recombi-

nation event in an isolate from each population. In human

isolates, there were 40/59 isolates with at least one
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recombination event and in poultry there were 9/9. The z-

score test statistic was 2.005 and a P value for a one-sided

test was 0.022, which was significant at 5% level.

Poultry-Associated Core-Genome Recombination

A subset of CC5 isolates (human and poultry) were selected

for further analysis with ClonalFrame (Didelot & Falush 2007),

which infers the clonal relationship of bacteria and the chro-

mosomal position of homologous recombination events.

Inferred regions of recombination were removed (and ex-

ported) prior to phylogenetic reconstruction of the clonal

frame (fig. 2b). Execution of ClonalFrame with 46 S. aureus

strains (20 CC5 poultry and 26 CC5 human) gave rise to a

genealogy that also demonstrated complete separation of the

poultry and human isolates within the CC5 complex. In

Proportion of CC 5 isolates (%)
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FIG. 1.—Samples were collected from infected breeder chickens across the UK (n =161), USA (n = 25), and the Netherlands (n = 5). Grouped bar charts

show the relative proportion of isolates belonging to CC5 by country (1a), year of collection (1b), and disease site (1c). MLST clonal complexes were assigned

based on shared sequence at five or more MLST house-keeping loci.
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comparison to the isolate phylogeny prior to the removal of

recombination, there is tighter clustering of the poultry CC5

isolates, which supports our observation that CC5 poultry iso-

lates have been subject to more recombination.

ClonalFrame inferred 196 substitution sites and 44 recom-

bination regions mapping to 33 genes (see supplementary

table S2, Supplementary Material online). BLAST was used

to locate exact matches (100% identity) of the recombination

regions (between 6 and 913 bp in length) in poultry isolates

from other clonal complexes (see supplementary table S2,

Supplementary Material online). The shortest recombination

region detected by ClonalFrame was 6 bp in length located

within SAAV_2007 (hlb, b-haemolysin) and upstream of the

phage-associated virulence factor SAAV_2008 (ornithine

cyclodeaminase) (Lowder et al. 2009; Price et al. 2012) and

was similar to a ribosome-binding site (TTATAA). This recom-

bination region was too short to be detected using a standard

BLAST search, and was manually identified in all CC1, CC5,

CC385, and CC398 poultry isolates, but was completely

absent from human isolates.

Quantification of the poultry associated recombination re-

gions in poultry and human isolates was carried out for each

clonal complex (see supplementary table S2, Supplementary

Material online). In all four lineages studied here (CC1, CC5,

CC385, and CC398), the putative recombination regions

were detected more often in isolates obtained from chicken

compared with those from humans. All recombination regions

(43/44 by BLAST plus the short 6 bp recombination region)

were found in CC5 poultry isolates (n = 177), but only 31 of

those were present in the human CC5 isolates (n = 53) (see

supplementary table S2, Supplementary Material online). In

CC1, 35 recombination regions were found in chicken isolates

(n = 3) compared with 24 in the isolates from humans (n = 11).

Many of the inferred recombination regions were found in

isolates from both chicken and human sources in the live-

stock-associated CC398 clonal complex, 38 in chicken isolates

(n = 9) and 28 in the human CC398 isolates (n = 8). Forty-three

recombination regions were found in chicken isolates (n = 8)

from the poultry ancestral clonal complex CC385 (no human

isolates). In total, 31 recombination regions were found more

often in chicken isolates in all four of the investigated clonal

complexes, consistent with ongoing poultry adaptation. A

summary of the relative abundance of all poultry-associated

genes and recombination regions found by analysis of CC5 is

presented in Table 1.

Poultry Associated Accessory Genes

Comparison of gene content revealed that 2,716 genes from

the poultry-associated reference pan-genome were shared

between CC5 human and CC5 poultry isolates. No genes

were found exclusively in CC5 human isolates and 47 genes

were found predominantly (�95%) in CC5 poultry but absent

in human isolates (see supplementary table S2,

Supplementary Material online). Thirty-eight of the 47 genes

were also present in CC1 poultry isolates with variable

A B

CC5
CC1

CC8

CC398

CC80

CC15

CC30
CC22

CC88

CC45

CC385

Clonalcomplex

Poultry
Human
Other

Source

CC398
CC385

CC1

0.01
CC5

CC30

FIG. 2.—Genetic relatedness of S. aureus isolates from different hosts. (a) Host origin of all S. aureus isolates from chicken (blue), human (red), and other

species (yellow). Clonal complex (CC) designations are based on shared MLST housekeeping loci. Chicken isolates were found in five sequence clusters,

corresponding to CCs 1, 5, 30, 358, and 398 which are highlighted. The tree was constructed from a core genome alignment (2,789,909bp) of 1,700 genes

using an approximation of the maximum likelihood algorithm. (b) Reconstruction of the clonal frame with putative recombination regions removed of CC5,

including 20 chicken (blue) and 26 human (red) isolates (2,302,773 bp alignment in ClonalFrame).
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frequency from 33% to 100% (see supplementary table S2,

Supplementary Material online). Forty-one genes were pre-

sent in 22–89% of CC398 poultry isolates (see supplementary

table S2, Supplementary Material online). All 47 poultry-asso-

ciated genes were present in CC385 poultry isolates to some

degree (13–100%) (see supplementary table S2,

Supplementary Material online). Only one poultry-associated

gene, SAAV_0809, which belongs to the S. aureus pathoge-

nicity island (SaPI), was present in 82% of CC1 human iso-

lates. Thirteen genes were found in 13–25% of CC398

human isolates (see supplementary table S2, Supplementary

Material online). In total, 36 of the genes associated with

poultry in CC5 were present more often in poultry isolates

from all four investigated clonal complexes.

Colocalization of Poultry-Associated Genes and
Recombination Regions in Three Recombination Hotspots

Thirty-three genes containing homologous recombination re-

gions and 47 poultry-associated accessory genes were

mapped to the ED98 reference genome and to three plasmids

(pAVX, pAVY, and pT181). Where sequence mapped to re-

gions of unknown function, for example genes encoding hy-

pothetical proteins, the locus ID from ED98 was recorded and

the putative gene function was investigated using RAST and

BLAST comparison with the NCBI database (see supplemen-

tary table S2, Supplementary Material online). Three genes

(SAAV_A2, SAAV_B1, and SAAV_C17) containing recombina-

tion regions were mapped to locations on the three poultry-

associated plasmids, pAVY, pT181, and pAVX (Lowder et al.

2009). Nine poultry associated genes were mapped to pAVX

(SAAV_C01, SAAV_C03, SAAV_C04, aurT, scpB, SAAV_C12,

SAAV_C15, SAAV_C18, and the pemK-like SAAV_20). Many

of the 80 genes located on the reference genome clustered

into three distinct genomic regions (fig. 3), including genes

with putative roles in heat shock response, haemolysis, adhe-

sion, mobile elements, and transposons (see supplementary

table S2, Supplementary Material online).

A total of 58 poultry-associated genes and genetic ele-

ments are predicted to be involved in the transfer of mobile

genetic elements, phage proteins, and hypothetical proteins

(fig. 4a, see supplementary table S2, Supplementary Material

online). Putative gene function was inferred using the RAST

annotation server (Aziz et al. 2008) and BLAST sequence com-

parisons made against the NCBI database. The genes included

in region 1 map to a similar location on the ED98 reference

genomes and may form a transposon comprised of 16 genes

with predicted function including hypothetical proteins, lipo-

proteins a transposase, a plasmid-related conjugal transfer

protein (TraG, SAAV_0051) and an FtsK/SpoIIIE family protein

(SAAV_0054) (fig. 4b). Regions 2 and 3 are phage-related.

Genes encoding hypothetical proteins, phage proteins, the

fibronectin-binding protein (Fnb, SAAV_2566) and a putative

b-haemolysin (SAAV_2007) were found in region 3. The b-

toxin gene is common among S. aureus isolates, but often

truncated by insertion of a beta-converting phage in most

human infection isolates (Salgado-Pabon et al. 2014). The

three poultry-associated plasmids were composed of several

hypothetical proteins, a replication associated protein

(SAAV_C12), the staphylococcal virulence factor

Staphostatin A (ScpB, SAAV_C09), and the plasmid-retention

PemK-like protein (SAAV_C20).

Poultry Isolates Show Enhanced Growth and Erythrocyte
Lysis at Avian Body Temperature on Chicken Blood Agar

A subset of CC5 poultry (12) and human (4) isolates were

grown at mammalian (37 �C) and poultry body temperatures

(42 �C) overnight. The poultry isolates reached a peak OD600

of 1.8, whereas the human isolates grew to a similar OD600 of

1.7 when grown at 37 �C. However, when grown at 42 �C the

poultry isolates grew to a similar density (OD600 of 1.8) but the

human isolates did not (OD600 of 1.4; fig. 5). Using an extra

sum-of-squares F-test (P value threshold of 0.05) the distribu-

tion of human isolates at both temperatures could be fitted to

a single sigmoid regression curve. This null hypothesis was

rejected when comparing poultry isolates, which showed sig-

nificant difference when grown at avian and human body

temperatures.

The ability to lyse chicken erythrocytes was tested on a

subset of isolates. Most of the isolates from chicken (11/12)

lysed chicken erythrocytes compared with only one (out of

Table 1

Prevalence of Chicken-Associated Genes and Recombination Regions as Defined by Clonal Frame Analysis of CC5 Isolates

Poultry-Associated

Genetic Variationa

Prevalence (%)

CC5 CC398 CC1 CC385

Poultry

(n = 177)

Human

(n = 50)

Poultry

(n = 9)

Human

(n = 9)

Poultry

(n = 3)

Human

(n = 18)

Poultry

(n = 8)

Human

(n = 0)

Genes 98 0 65 4 55 2 62 —

Recombination regions 90 15 49 45 70 12 62 —

aGenes and recombination regions found to be associated with CC5 poultry isolates.
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four) of the isolates from humans. Conversely, most of the

human isolates (3/4), but only around half (7/12) of the poultry

isolates were able to lyse erythrocytes on blood agar plates

with human blood (Table 2). The differences observed be-

tween human and poultry isolates on chicken blood agar

were statistically significant (P value = 0.0048, unpaired t-

test), but the results using human blood agar were not (P

value> 0.05). Several poultry-associated genes have been

implicated in increased pathogenicity in chicken

(Abdalrahman et al. 2015; Lowder and Fitzgerald 2010), in-

cluding scpB (Staphostatin A) which encodes a putative cyste-

ine protease (Lowder et al. 2009; Takeuchi et al. 1999) and is

located on the pAVX plasmid (Takeuchi et al. 2002) previously

identified in studies of poultry infection. All eight isolates con-

taining this gene lysed chicken blood in Columbia Blood Agar

(Cheung et al. 2012). Half of the isolates (1/4 human and 3/4
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FIG. 3.—Genes and recombination regions identified as poultry-associated in ClonalFrame analysis mapped to the ED98 reference genome and three

plasmids (pAVX, pAVY, and pT181). The frequency of these genes (red circles) and recombination regions (black crosses) in chicken and human isolate

genomes is shown for CC5, CC398, CC1, and CC385 (chicken only). The relative abundance of these genes/recombination regions was calculated as
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poultry) not carrying the gene lysed chicken blood (Table 1).

Only the differences observed on chicken blood agar were

statistically significant (P value = 0.0192, unpaired t-test).

The Poultry Ancestral Lineage CC385 Exhibits More
Genetic Diversity than CC5

All of the 47 poultry-associated genes and alleles identified in

CC5 were also found in at least one other clonal complex.

Individual gene phylogenies were constructed for all 47 genes

from all 197 poultry isolates, including isolates from CC1,

CC5, CC385, and CC398 (see supplementary fig S2,

Supplementary Material online). The average branch length

per isolate was estimated for each clonal complex (see sup-

plementary table S3, Supplementary Material online). CC385

is considered an avian-associated lineage, only isolated from

bird species. Longer association with the host results in in-

creased genetic diversity through mutation and genetic drift.

We therefore tested if average branch length is shorter in CC5

isolates, which are believed to have colonized more recently.

In total, the number of polymorphic sites per isolate was much

lower for CC5 (867) than for isolates from CC385 (2012) and

CC398 (2505). The total number of unique/shared alleles for

the 47 poultry-associated genes was similar across all clonal

complexes where there was more than one isolate in this

study (see supplementary table S3, Supplementary Material

online).

Discussion

Genealogical analysis of the isolates in CC5 identified a sublin-

eage of poultry-associated isolates. This is consistent with a

scenario where chicken colonization by CC5 resulted from a

host transition event from a human ancestral population

(Lowder et al. 2009). The majority of poultry disease isolates

in this study belonged to CC5 and the widespread distribution
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FIG. 5.—Growth of S. aureus isolates from poultry (red) and human

(black) in TSB medium. Curves represent growth levels in vitro (OD600) over

a period of 20 h at 37 �C (dashed lines) and 42 �C (solid lines) in medium.

Mean growth levels and standard deviation (dotted lines) was calculated

for 12 poultry and four human clinical samples.
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of this clonal complex among poultry is consistent with the

emergence of an important disease-causing lineage following

the human-to-poultry host jump (fig. 1) (Bystron et al. 2010;

Hasman et al. 2010; Lowder et al. 2009).

Reconstruction of the clonal frame following removal of

inferred recombination regions, further supports this hypoth-

esis demonstrating complete segregation of the poultry and

human CC5 isolates in this study and the emergence of a

single lineage from an ancestral genetically diverse human

CC5 population (fig. 2). This pattern of genetic bottlenecking

and the emergence of epidemic clones from a founder pop-

ulation are well established in S. aureus, for example in the

spread of globally disseminated healthcare-associated methi-

cillin-resistant S. aureus (MRSA) clones (Hsu et al. 2015).

Although the impact of clinical practice and antibiotic usage

have been well studied in relation to the evolution of nosoco-

mial pathogen populations (Enright et al. 2000; Gill et al.

2005; Hiramatsu et al. 2001; Mwangi et al. 2007; Wertheim

et al. 2005), less is known about the emergence of disease-

associated staphylococci in agriculture. Rapid dissemination of

clones is likely facilitated by global food production networks,

but to identify the specific genomic changes related to the

emergence of pathogenic lineages, it is instructive to use a

comparative functional genomics approach.

Adaptation is mediated by recombination in S. aureus and

our estimate of the rate at which recombination is introducing

nucleotide changes, relative to mutation in CC5 (r/m = 1.08),

is consistent with previous estimates based on core genomes

in ST-239 (r/m = 1.13 Castillo-Ramirez et al. 2012) and several

lineages (STs 38, 36, 22, and 12) by MLST (r/m = 1.1 by Feil

et al. 2003). Different recombination rates have been ob-

served between S. aureus lineages with admixture occurring

between some, but not all clonal complexes (Castillo-Ramirez

et al. 2012; Meric et al. 2015). There is also variation in re-

combination estimates within CC5 human isolates (Duchêne

et al. 2016; Everitt et al. 2014; Meric et al. 2015). In this study,

the amount of realized recombination in CC5 poultry isolates

is almost double that inferred in isolates from humans. This is

consistent with a scenario of adaptation mediated by recom-

bination following colonization of a new niche.

Characterization of the genetic changes associated with

the divergence of CC5 poultry isolates from human CC5 iso-

lates identified genomic variations that may have been in-

volved in adaptation to poultry. Broadly, these can be

considered as differences in the core and accessory genome

compared with CC5 isolates from humans. Whole genome

comparison of CC5 isolates identified 47 genes found

in>95% of poultry isolates but absent from human isolate

genomes (see supplementary table S2, Supplementary

Material online). The predicted function of these genes in-

cluded staphylococcal virulence factors, such as toxin produc-

tion, adhesion, stress response, plasmid maintenance and

antibiotic resistance, as well as mobile genetic elements. For

accessory genome characterization, it was necessary to com-

pare CC5 genomes with the chicken S. aureus reference strain

ED98. Although this is less well annotated than some human

reference strains, comparison allowed genes with orthologues

of known function to be associated with the CC5 poultry

accessory genome. These included: the hlb toxin gene

which contributes to tissue damage and can influence disease

severity (Bramley et al. 1989; Guinane et al. 2008); the gene

encoding fibronectin-binding protein fnbB, which facilitates

colonization and attachment (Foster and Hook 1998;

Peacock et al. 2002), and mobile genetic elements involved

Table 2

Lysis of Chicken and Human Erythrocytes on Columbia Blood Agar (Cheung et al. 2012) Plates with S. aureus Isolates from Humans (n = 4) and

Poultry (n = 12)

Isolate ID Alias Host

Species

Clonal

Complex

Staphostatin

B (SAAV_C21) Gene Presence

Lysis on Human

Blood Agar

Lysis on Chicken

Blood Agar

4 N315 Human 5 x � x

343 SS_0499 Human 5 x X x

437 SS_0017 Human 1 x � x

529 SS_0119 Human 1 x � �

349 SS_0542 Poultry 5 � x �

351 SS_0544 Poultry 5 � � �

385 SS_0578 Poultry 5 � x �

386 SS_0579 Poultry 5 � x �

388 SS_0581 Poultry 5 x x �

815 SS_0593 Poultry 5 x � �

845 SS_0623 Poultry 5 x � �

853 SS_0631 Poultry 5 � � �

875 SS_0653 Poultry 5 x x x

907 SS_0684 Poultry 5 � � �

911 SS_0688 Poultry 5 � � �

930 SS_0707 Poultry 5 � � �

NOTE.—A positive result was recorded if a halo of lysis was observed around the colony after 24 h, experiments were performed in triplicate.
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in DNA transfer (Everitt et al. 2014; Malachowa and DeLeo

2010). Several other accessory genes (SAAV_0806,

SAAV_0807, SAAV_0808, and SAAV_0809) have been iden-

tified as components of S. aureus pathogenicity islands (SaPI)

(Viana et al. 2010). In addition to variation in accessory genes,

recombination in homologous sequence can be associated

with host adaptation (Didelot and Falush 2007; Sheppard

et al. 2013). Inferred recombination regions (n = 44) in the

poultry-associated CC5 isolates were mapped to 33 genes

in the reference pan-genome. A total of 9% (3/33) mapped

to plasmid genes, with the remaining recombinant sequences

mapping to 30 chromosomal genes. The function of these

genes varied including those associated with hypothetical pro-

teins, transposition and DNA regulation.

The absence, or relative scarcity, of the 80 poultry-associ-

ated accessory genes (n = 47) and genes containing poultry-

associated recombination regions (n = 33) in the ancestral

human CC5 population suggests that acquisition of these el-

ements was associated with chicken colonization. However,

this alone is not confirmation of adaptation. Evidence for sig-

nificance of these genes in poultry adaptation is supported by

their differential presence in poultry and human isolates from

other clonal complexes. The majority of CC5 poultry-associ-

ated genes/alleles were more commonly present in poultry

isolates from CC398 and CC1 with only 15% being more

common among isolates from humans (see supplementary

table S2, Supplementary Material online). All of the CC5 poul-

try-associated accessory genes, and 96% of associated homol-

ogous recombination segments, were present in the analyzed

CC385 isolates that have only been isolated from birds. This is

consistent with an evolutionary scenario where horizontal

gene transfer (HGT) occurred, introducing genetic material

that has evolved in a different genetic background to S.

aureus strains colonizing chickens. CC385 has not been pre-

viously associated with humans or mammals but has been

isolated from various wild and reared birds suggesting that

the CC385 lineage has had long-term avian host restriction

(Lowder et al. 2009). Consistent with this, most of the genetic

variation in poultry-associated genes and alleles, identified in

CC5, is present within isolate genomes from other complexes

(Table 2). Furthermore, in these genes there were more than

twice as many polymorphisms per isolate in CC385 compared

with CC5 (see supplementary and table S3, Supplementary

Material online). It is possible that each CC could have ac-

quired the genes from a human-associated lineage and then

transferred to each CC at different times. However, the ab-

sence of CC structuring on individual genes phylogenies (see

supplementary fig S2, Supplementary Material online), where

avian alleles cluster together, implies that poultry isolates from

different CCs have acquired the genes necessary for adaption

to the poultry niche from preexisting avian-associated

lineages.

Some evidence of the functional significance of poultry-

associated genes was investigated in laboratory phenotyping

assays. Three genes located in the three poultry-associated

CC5 hotspots had putative functions related to chicken colo-

nization (beta-haemolysin, SAAV_2007, and SAAV_C21).

Among the most obvious environmental challenges for S.

aureus colonizing chickens is the higher host body tempera-

ture of 42 �C in chickens compared with 37 �C in mammals.

Two poultry-associated genes in CC5 isolates (SAAV_0062

and SAAV_0064) had>85% nucleotide identity to genes in-

volved in temperature-dependent growth, including dnaK and

dnaE which have been shown to be important for growth at

42 �C in S. aureus poultry strains (Inoue et al. 2001; Singh et al.

2007). In laboratory assays, chicken CC5 isolates containing

these thermo-tolerance genes demonstrated enhanced

growth at avian body temperature compared with growth

at 37 �C (fig. 5).

A number of the chicken associated genes potentially had a

role in pathogenicity including beta-haemolysin, SAAV_2007

and SAAV_C21 putatively involved in haemolysis contributing

to S. aureus pathogenicity (Kuroda et al. 2007). In laboratory

assays, CC5 isolates of human origin showed very little hae-

molytic activity when grown on agar plates containing chicken

blood. However, 11 of 12 poultry strains lysed chicken blood

in agar under the same conditions (Table 1). The pAVX plas-

mid has previously been implicated in lysis of avian erythro-

cytes and contains a putative thiol protease, scpA

(SAAV_C10), which—when expressed—contributes to S.

aureus virulence (Bonar et al. 2016). Other protease genes

are also likely to contribute to lysis of erythrocytes as S.

aureus has several orthologous haemolytic genes (Jusko

et al. 2014).

Sustainable food production in intensive agricultural sys-

tems is threatened by the spread of zoonotic pathogens.

The recent host transition of CC5 S. aureus from humans to

poultry has resulted in the emergence of a major pathogen

that causes various diseases in chickens in agricultural systems.

Comparative genomics of commensal and pathogenic staph-

ylococci offers considerable opportunities to improve under-

standing of the epidemiology and evolution of these

organisms (Yahara et al. 2016). Here, by identifying the evo-

lutionary events associated with chicken colonization, we pro-

vide evidence for the role of lateral gene transfer and

homologous recombination in the emergence of CC5 as a

major poultry pathogen. Many of the genes involved have

putative functions that could be related to adaptation to

chicken, but all were present in other S. aureus clonal com-

plexes isolated from chickens. This is consistent with adapta-

tion though HGT within the resident poultry staphylococcal

community, potentially leading to convergent evolution. The

importance of HGT in pathogen emergence is well docu-

mented in staphylococci, for example in the emergence of

MRSA in hospitals. Although it may be difficult or impossible

to prevent adaptation through HGT in recombining bacteria,

characterizing the genes associated with adaptation can pro-

vide important information about the genetic basis of

Murray et al. GBE
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pathogen emergence. A clearer understanding of this may

provide opportunities for improving agricultural practices

and targeting interventions to reduce animal disease.

Data deposition: Accession numbers can be found in sup-

plementary table S1, Supplementary Material online, for all

genomes used in this study. Short reads of all isolates se-

quenced have been deposited in the short read archive

under BioProject accession PRJNA312437 (http://www.ncbi.

nlm.nih.gov/bioproject/PRJNA312437). Additional genomes

sequenced at the Edinburgh Genomics facility at the Roslin

Institute, Edinburgh have been deposited on the European

Nucleotide Archive under project accession PRJEB18782.

Assembled genomes can also be accessed via the resource

section of our group website (https://sheppardlab.com/re-

sources/; last accessed March 10, 2017) in the public

Sheppard Staphylococcal BIGS database server.

Supplementary figures and tables have been deposited

on figshare: https://figshare.com/articles/Recombination-med

iated_host-adaptation_by_avian_Staphylococcus_aureus/

3863736 (last accessed March 10, 2017).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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