
RESEARCH ARTICLE

Hard real-time closed-loop electrophysiology

with the Real-Time eXperiment Interface

(RTXI)

Yogi A. Patel1,2, Ansel George3, Alan D. Dorval4, John A. White5, David J. Christini3‡*,

Robert J. Butera1,6‡*

1 Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, Georgia, United States of

America, 2 Department of Biomedical Engineering, Georgia Institute of Technology and Emory University,

Atlanta, Georgia, United States of America, 3 Department of Physiology and Biophysics, Weill Cornell Medical

College, New York, New York, United States of America, 4 Department of Bioengineering, University of Utah,

Salt Lake City, Utah, United States of America, 5 Department of Biomedical Engineering, Boston University,

Boston, Massachusetts, United States of America, 6 School of Electrical and Computer Engineering, Georgia

Institute of Technology, Atlanta, Georgia, United States of America

‡ These authors are joint senior authors on this work.

* dchristi@med.cornell.edu (DJC); rbutera@gatech.edu (RJB)

Abstract

The ability to experimentally perturb biological systems has traditionally been limited to

static pre-programmed or operator-controlled protocols. In contrast, real-time control allows

dynamic probing of biological systems with perturbations that are computed on-the-fly dur-

ing experimentation. Real-time control applications for biological research are available;

however, these systems are costly and often restrict the flexibility and customization of

experimental protocols. The Real-Time eXperiment Interface (RTXI) is an open source soft-

ware platform for achieving hard real-time data acquisition and closed-loop control in biologi-

cal experiments while retaining the flexibility needed for experimental settings. RTXI has

enabled users to implement complex custom closed-loop protocols in single cell, cell net-

work, animal, and human electrophysiology studies. RTXI is also used as a free and open

source, customizable electrophysiology platform in open-loop studies requiring online data

acquisition, processing, and visualization. RTXI is easy to install, can be used with an exten-

sive range of external experimentation and data acquisition hardware, and includes stan-

dard modules for implementing common electrophysiology protocols.

This is a PLOS Computational Biology Software paper.

Introduction

Advances in stimulation (electrical, optical, biochemical) and measurement (electrical, bio-

chemical, optical) techniques have increased the spatial and temporal resolution with which

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Patel YA, George A, Dorval AD, White JA,

Christini DJ, Butera RJ (2017) Hard real-time

closed-loop electrophysiology with the Real-Time

eXperiment Interface (RTXI). PLoS Comput Biol

13(5): e1005430. https://doi.org/10.1371/journal.

pcbi.1005430

Editor: Timothée Poisot, Universite de Montreal,

CANADA

Received: December 2, 2016

Accepted: February 10, 2017

Published: May 30, 2017

Copyright: © 2017 Patel et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Performance data

included within this manuscript can be found on

the RTXI website (rtxi.org). Data depicted in the

use cases section of the manuscript can only be

obtained by contacting authors of the respective

studies.

Funding: This work was funded by NIH grants

R01RR020115 and R01EB016407 to DJC. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

https://doi.org/10.1371/journal.pcbi.1005430
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005430&domain=pdf&date_stamp=2017-06-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005430&domain=pdf&date_stamp=2017-06-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005430&domain=pdf&date_stamp=2017-06-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005430&domain=pdf&date_stamp=2017-06-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005430&domain=pdf&date_stamp=2017-06-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005430&domain=pdf&date_stamp=2017-06-13
https://doi.org/10.1371/journal.pcbi.1005430
https://doi.org/10.1371/journal.pcbi.1005430
http://creativecommons.org/licenses/by/4.0/


researchers can monitor or perturb biological activity. Using such tools and techniques in a

closed-loop paradigm, where an acquired signal is used to compute the system output, can

enable observation of physiological function, development and validation of computational

models, as well as investigation of causal relationships in biological systems. This requires

closed-loop control that operates on timescales that are physiologically relevant, which span

tens of microseconds at the ion channel level to minutes at the behavioral level. Furthermore,

the closed-loop control needs to be hard real-time (RT)—operating on a strict schedule for

acquisition, processing, and yielding a computationally determined output with guaranteed

performance bounds appropriate for the timescales of interest. Such hard RT, closed-loop

control is implemented in industrial applications (e.g, aerospace, robotics, stock markets);

however its use in biological research is stymied due to the relative high cost of commercial

systems, and lack of flexibility in customizing closed-loop protocols, performance, and

features.

The Real-Time Experiment Interface (RTXI, http://www.rtxi.org, Fig 1) is an open source

software platform for hard RT, closed-loop data acquisition (DAQ) and experimental control

in biological experiments used by over 70 labs worldwide. This manuscript provides a techni-

cal and practical overview of RTXI’s architecture and features, as well as highlights select novel

applications. Functionality of RTXI’s architecture and features has been validated both compu-

tationally through load testing and performance characterization, and experimentally in multi-

ple setups of different biological systems and varying time scales.

RTXI is based on Xenomai, a Real-Time Linux framework [1, 2] and can be run or installed

on any desktop PC by using the Live CD or by manually compiling the source code. RTXI can

interface with an extensive range of external experimentation and data acquisition hardware,

and includes standard modules for implementing commonly used electrophysiology protocols.

Modules contain function-specific code that can be used in combinations to build custom

workflows, experimental protocols, and interfaces, thereby eliminating the need to code all

aspects of each experiment protocol from scratch. The power, flexibility, and stability of RTXI

has made it possible for users to implement complex custom closed-loop protocols in a variety

of cardiac [3–7] and neuronal systems at the single cell [8, 9], cell network [10], animal, and

human electrophysiology [11] levels. Dozens of publications (S3 File) have used RTXI. Exam-

ples include investigation of the contribution of specific ion channels or synaptic receptors to

spiking and bursting activity in a variety of neuronal cell types, oscillatory behavior of pace-

maker neurons [12], the effect of network topology and intrinsic neuronal properties on

population activity in a hybrid network [13], and effects of transcranial alternating current

stimulation (tACS) on cortical activity [11, 14]. Each example utilized RTXI to create a custom,

hard RT closed-loop protocol with the goal of dynamically probing the target system.

Design and implementation of the Real-Time eXperiment Interface

System architecture

An RT control system for closed-loop control typically runs in an iterative computational loop

with the smallest possible nominal cycle period, a minimum amount of cycle-to-cycle variation

(jitter) in the actual period, and the shortest possible system latency (delay from input to

computed output) determined by the specific application [15]. Standard desktop computer

operating systems, including Linux, are built upon a monolithic kernel whose scheduler is

engineered to balance distribution of resources amongst the various active threads and

respond to hardware and software triggered interrupts in a resource-efficient manner. This

results in standard desktop operating systems providing only “soft” RT performance. In soft

RT systems, occurrence and timing of data acquisition, processing, and output generation

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 2 / 22

Competing interests: The authors have declared

that no competing interests exist.

http://www.rtxi.org
https://doi.org/10.1371/journal.pcbi.1005430


Fig 1. Screenshot of arbitrary RTXI workspace with core and custom modules. The workspace is intended to demonstrate the level

of user-configurability provided by RTXI, such as channel configurations, combinations of data I/O connections, and saving virtually every

programmed element of each module. Additional custom modules are shown (e.g., Spike Detector, FIR Filter, Signal Generator, Neuron

Model, etc) to demonstrate the versatility of RTXI’s API system for creation of any utility or model to be used in hard RT, closed-loop

experiments. We refer the reader to the up-to-date user manual (S3 File) and tutorials (S3 File) available online for more information on

how to navigate the RTXI workspace.

https://doi.org/10.1371/journal.pcbi.1005430.g001

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 3 / 22

https://doi.org/10.1371/journal.pcbi.1005430.g001
https://doi.org/10.1371/journal.pcbi.1005430


events is neither guaranteed nor bounded. A lack of such guarantees can lead to substantial,

yet often unnoticed, effects in experimental control [16–18]. For example, in the case of

dynamic clamp [19–22], a soft RT system may occasionally wait so long to compute the

injected current that the actual value of the membrane potential has changed significantly in

the meantime. The resulting experimental dynamics may look acceptable but still be wrong,

since they are based on incorrect assumptions about the state of the cell. In practice, this

means that phase-dependent stimulation may be delayed or occur at the incorrect physiologi-

cally-relevant time.

To achieve hard real-time performance, RTXI uses a Real-Time Operating System (RTOS).

An RTOS enables hard RT performance by modifying the operating system’s native kernel

architecture to enable priority-based pre-emption of processes, allocation of memory, and

communication with on-board hardware for data and file I/O. To enable hard RT control,

RTXI uses Xenomai, a real-time framework, which installs a micro-kernel alongside the stan-

dard Linux kernel. The micro-kernel consists of its own scheduler and interrupt handler and

places the standard Linux kernel in a low-priority state, allowing dedicated processes to be pri-

oritized. For example, Xenomai’s prioritization of RTXI enables hard RT control of periodic

tasks such as sampling from experimental equipment, performing computations, and generat-

ing output signals. The use of an RTOS also minimizes system and hardware latencies, result-

ing in faster sampling rates, computation times, and file I/O. For some experimental designs

with closed-loop feedback, a higher sampling rate also improves the stability of the protocol

[23].

Application architecture

RTXI is written in C/C++ and utilizes three threads to process: 1) hard RT data acquisition

and experimental control, 2) user interactions, and 3) data storage. Fig 2 provides an over-

view of the complete system architecture. The RT thread is instantiated with the highest sys-

tem priority and controlled by the micro-kernel. The second user interface and experience

(UI/UX) thread, powered by the Qt [24] and Qwt [25] graphical user interface (GUI) frame-

works, processes user inputs to RTXI and online data visualization in soft RT. The final soft

RT thread continuously reads and writes data to disk. With the advent of multi-core desktop

computers, users are also able to instantiate additional soft RT threads for online data pro-

cessing. All threads run in the same process address space, making it easy to share data for

processing, updating visualizations, and data storage. RTXI’s architecture allows it to be used

as an open-loop experimental control and data acquisition system [26–29], or even as a sim-

ulation environment.

The RT thread wakes on each clock cycle and executes all DAQ operations, module func-

tions, and RT system functions. Module functions refer to both base system operations, such

as transmitting data across modules and writing data to system buffers, and all RT operations

implemented within custom modules. During this step, modules can post RT events—which

notify other modules about state changes and user-initiated events, e.g., unloading or loading

of new modules—to queue. These events are then executed by the RT thread once all module

computations are complete.

An important advantage of this modular application architecture is the ability to load and

unload both core system and user-created modules, change parameters, and modify any system

variable online without halting closed-loop execution or affecting hard RT performance. Com-

mercial systems, such as Simulink (MathWorks, Natick, MA), Signal (Cambridge Electronic

Design, Cambridge, England), LabVIEW (National Instruments, Austin, TX), and Tucker

David Technologies (Alachua, FL) typically require halting execution and recompiling the

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 4 / 22

https://doi.org/10.1371/journal.pcbi.1005430


modified loop prior to being able to continue execution. Open-source platforms, such as Neu-

roRighter [29], MANTA [30], PLDAPS [31], and the Open Ephys GUI [32], provide closed-

loop control with varying degrees of flexibility, but none enable hard RT closed-loop control.

Such limitations are not ideal for investigation of causal relationships in biological systems.

Fig 2. System architecture. The bottom block depicts the hardware layer with which RTXI interfaces. RTXI is capable of interfacing with

DAQs using either PCI/PCIe, USB, or Ethernet interfaces (see Compatible hardware for more information). Hard RT communication with

hardware devices is achieved through Analogy, a set of drivers within the Xenomai framework. The top block of the diagram illustrates the

core architecture of RTXI. On each cycle of the RT period, the RT Thread wakes up, acquires new data, executes instructions defined within

the hard RT function of both core and user modules (see Custom modules and Application Programming Interface (API)), outputs data to the

DAQ, and returns to sleep (idle). Transmission of data to/from different modules is handled by the IO class. When the RT Thread is idle,

resources are made available to other system applications and functions. The GUI and Data Storage Threads continuously run with a static

period to provide a stable balance between hard RT performance and handling of user input, updating of visualizations, and data storage.

https://doi.org/10.1371/journal.pcbi.1005430.g002

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 5 / 22

https://doi.org/10.1371/journal.pcbi.1005430.g002
https://doi.org/10.1371/journal.pcbi.1005430


RTXI enables users to create custom real-time algorithms and protocols for closed-loop

processing and visualization. Debugging custom algorithms and protocols can be difficult in a

hard real-time environment, especially without expertise or knowledge on how to probe the

Linux kernel during execution. To ease the process of developing hard real-time algorithms

and protocols, RTXI can be easily configured to run in non-real-time (non-RT) mode with

debugging support. This configuration option is provided by the RTXI installation scripts and

is outlined on the RTXI website (S3 File). When run in non-RT mode, users can obtain a trace-

log of events to identify where and why the system crashed, occurrence of race conditions, and

system resource usage.

Compatible hardware

RTXI interfaces with experiments through a variety of hardware interfaces, including PCI/

PCIe based DAQs from National Instruments and Sensoray, Ethernet based devices such as

cameras and commercial amplifiers, as well as USB-based acquisition devices (S3 File). The

hardware used with RTXI should be chosen based upon the hard RT needs of the custom pro-

tocol. Devices interfacing through the PCI/PCIe and Ethernet interfaces are capable of provid-

ing hard RT closed-loop performance with the appropriate drivers. PCI/PCIe hardware can

achieve sub-millisecond latencies, while Ethernet devices can provide millisecond latencies.

USB devices can provide closed-loop functionality with the appropriate driver, but the non-

deterministic bounds of the USB protocol prevent hard RT control.

Portability and sharing

RTXI allows users to move developed and tested modules, algorithms, and entire closed-loop

protocols from one computer to another without significant overhead. Once the workflow and

protocol have been set up, the entire workspace can be saved to an XML-based workspace set-

tings file. This file saves all core system specifications set by the user, loaded modules along

with their parameter and state values, and connections between modules. The settings file can

then be used on any other computer with RTXI and the appropriate modules installed to

restore the workspace. Furthermore, existing workspace settings files can be used as a starting

point for creating new experimental protocols. This reduces the chances of errors when setting

up a complex protocol with many modules and provides an easy mechanism for sharing cus-

tom protocols. Users can share all elements of their custom protocols—modules, settings files,

screenshots, data, etc—on RTXI’s GitHub page (S3 File).

Core modules

RTXI’s base functionality (data acquisition, processing, and visualization) is achieved through

core modules designed to provide hard RT closed-loop performance. A set of core modules

with minimal computational overhead are compiled as shared object libraries during the RTXI

installation process and linked to RTXI at run-time. This approach leads to lower system over-

head and thus greater flexibility for users to define custom protocols that may require greater

computational resources.

System control panel. The System Control Panel shown in Fig 1 is the primary interface

for configuring RT system settings and DAQ I/O channels. The detected on-board DAQs are

listed in the Devices drop-down menu (e.g., analogy0). Users can set the Frequency or Period

of the RT system, which is used as the data acquisition (I/O) rate and determines the computa-

tion time available per cycle. All available AI, AO, and DIO channels are automatically

detected from the installed DAQ and listed for the user to enable and configure. For example,

users can configure the measurement mode (Ground-referenced, Differential, etc), scale the

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 6 / 22

https://doi.org/10.1371/journal.pcbi.1005430


input measurements to account for hardware gains, change the measurement range, and add

or remove offsets to each channel individually. Users can also configure available Digital I/O

channels through this panel. When the channel configurations are “applied”, an event is regis-

tered on the system stack, notifying all open modules of the changes. Users can respond to

these changes through the update function of their custom modules (see Fig 3D).

Data recorder and HDF5 files. The Data Recorder module shown in Fig 1 allows saving

of virtually anything within RTXI. Users first select the module of interest, and then have the

option of saving any module element specified within the DefaultGUIModel::vars
struct (see Fig 3B). Parameters for all modules are automatically registered at the beginning of

a recording session. If modified during execution, the updated value is registered to the data

file with a timestamp. Users can also “tag” various time points throughout their experiment to

note relevant events. Events are timestamped and registered as a list of tags within the specified

data file. A global downsampling option is available to reduce output file sizes. In between

active recording sessions, the size and number of trials present in the specified data file, and

length of the previous trial are displayed in the metadata section. If a user chooses an existing

file to write data to, the option is presented to either overwrite or append the data file.

Experiment data and metadata saved by the Data Recorder are stored in the Hierarchical

Data Format (HDF5). HDF5 [33] is an open data model that is increasingly popular for repre-

senting large and complex data, data relationships, and their associated metadata. HDF5 file

read and write operations are supported by many common analysis frameworks and languages

(e.g., MATLAB, Python, Julia, R, etc). Acquired raw and processed data, module states and

parameters, system configurations, and almost any other value can be synchronously saved to

a single HDF5 file by simply selecting the appropriate signal and adding it to the list of active

recording channels. In addition, any computed value or intermediate signal can easily be cap-

tured for offline debugging or validation of RT algorithms and processing. When a parameter

value is modified on-the-fly during data acquisition, the new value is automatically time

stamped and stored into the data file. The Data Recorder also includes the ability to timestamp

data with tags to experimental events or making notes and includes DAQ channel configura-

tion details for all active channels. For precise control of data recorder start and stop times, the

Data Recorder can easily be coupled with the Sync module, shown in Fig 1, which can be used

to control the state of numerous modules and the data recorder all at once.

Fig 4 depicts the structure of an RTXI-generated HDF5 file. Scripts and analysis tools are

provided online for importing RTXI-generated HDF5 files into a single MATLAB structure

for post-hoc analysis. RTXI-generated HDF5 files are compatible with many commercial and

free software applications for a variety of platforms. There is no required proprietary software

for viewing or analyzing data stored in RTXI-generated HDF5 files. Much of the available soft-

ware also supports editing data in place within the HDF5 file or appending new data to an

existing file. This allows users to add associated data such as images, post-processed data, or

additional notes.

Connector. Passing of data between core and custom modules within the RTXI work-

space takes place through the Connector module shown in Fig 1. The module’s simple inter-

face allows mapping of outputs from a module or DAQ AI channel to the input of another

module in various configurations (one-to-one, one-to-many, many-to-one, etc). The specific

input and output signals available to a module are defined in the module’s code (see Fig 3). In

cases where a many-to-one connection is formed, the inputs are summed prior to passing the

data to the specified input. For example, Fig 1 shows the data from DAQ AI channel 0 and the

output of the Signal Generator module connected to the input of the Neuron module. Simulta-

neously, the output of the Neuron module is sent to the Spike Detector module as well as out

to hardware via DAQ AO channel 0.

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 7 / 22

https://doi.org/10.1371/journal.pcbi.1005430


Fig 3. Example template code available (S3 File) to users for writing custom modules, and corresponding module loaded within RTXI. (A) Basic

C++ header (plugin_template.h) for an RTXI module. (B) Users can declare inputs, outputs, states, parameters, and events for custom modules

through the DefaultGUIModel struct and (C) implement hard RT code within the execute function. (D) The update function allows execution of state-

specific code for the module. (E) The module after it is compiled with the provided Makefile and loaded into RTXI. Each element of the module GUI is tied

to a specific line of code. For example, when “Button A” is clicked, the aBttn_event() (line 35, A) code is executed. Similarly, the “GUI label” (lines 5–6,

B) and “A State” (lines 11–13, B) components of the GUI are created by the vars struct and their values are initialized from the INIT block of the update
() function (lines 8–9, C). Visit the GitHub repository (S3 File) for complete corresponding C++ implementation (plugin_template.cpp) file.

https://doi.org/10.1371/journal.pcbi.1005430.g003

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 8 / 22

https://doi.org/10.1371/journal.pcbi.1005430.g003
https://doi.org/10.1371/journal.pcbi.1005430


Fig 4. Hierarchical data format data file generated by RTXI. Each trial is represented as an ordered group

of data and metadata objects. By default, RTXI saves parameter values from all modules when recording is

started into the “Parameters” group. All enabled DAQ AI channel configuration settings are also saved into the

“System Settings” group. HDF5 files can be opened, modified, and appended to from a variety of post-hoc

analysis frameworks (e.g., HDFView, MATLAB, R, Python).

https://doi.org/10.1371/journal.pcbi.1005430.g004

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 9 / 22

https://doi.org/10.1371/journal.pcbi.1005430.g004
https://doi.org/10.1371/journal.pcbi.1005430


Oscilloscope. RTXI’s built-in real-time, high-speed, fully configurable Oscilloscope

shown in Fig 1 module allows visualization of signals, parameters, states, and events from any

loaded core or custom module. Similar to the Data Recorder and other system modules, the

Oscilloscope can access data of any kind from any loaded module within the workspace. To

visualize the signal, the user selects the block of interest on the “Channel” tab, which provides

a list of available streams along with options to customize the color, style, and vertical scale

(per division) of the selected signal. Once the modifications are “applied”, the enabled signal is

visualized with the configured settings and a legend entry is created listing the enabled chan-

nels by name along with their respective vertical scale. A second tab, titled “Display” allows

configuration of the time scale (per division), the Oscilloscope’s refresh rate, and specify trig-

ger settings. Screenshots can be saved online during experiments for quick figure generation.

Real-time benchmarks. Online evaluation of system performance is useful when design-

ing RT algorithms, debugging experimental setups, and even during experiments. The RT

Benchmarks module shown in Fig 1 (pane with blue top bar) provides key statistics about the

RT performance of the system—including the computational time, RT period, and the RT

period’s jitter—by using timestamps directly from the real-time system’s clock. These bench-

marks have been shown to be critical in evaluating hard real-time performance [18]. The

computational time is inclusive of all system and custom modules loaded into the workspace,

enabling evaluation of the full hard RT closed-loop execution time of each custom protocol.

The RT period and RT period’s jitter provide a means for viewing the actual period of the

closed-loop system. The RT period should never exceed twice the desired RT period, otherwise

hard RT behavior is compromised. Furthermore, each statistic reported by the RT Benchmarks

module can be saved to an HDF5 file through the Data Recorder for post-hoc validation and

verification of hard RT performance during the experiment. As described in the RTXI docu-

mentation (S3 File), end users are strongly advised to benchmark their hardware and modules

to ensure that the performance they require is actually being delivered.

Module wizard. There are over 50 modules available to RTXI users through the RTXI

GitHub repositories (S3 File). The Module Wizard shown in Fig 1 was created to ease the pro-

cess of downloading, installing, and updating new and existing modules. Users can quickly

synchronize with the GitHub repositories and view details about each module, including the

specific functions, how it works, and its development status. If a specific module is of interest,

the user can download and install the module directly from within the Module Wizard and

within seconds load the new module into their workspace.

User preferences. The User Preferences module shown in Fig 1 enables customization of

default file locations for various file I/O operations. Users can specify folder locations for

workspace setfiles and HDF5 data files. In addition, users can specify buffer sizes for the Data

Recorder, which can be beneficial when acquiring large amounts of data at high sampling

rates. All settings specified within the User Preferences module are set as the default values and

saved to the global RTXI configuration file.

Custom modules and Application Programming Interface (API)

One core strength of RTXI is the ability to create custom RT modules without being restricted

to hardware and software-defined boundaries, which is a common obstacle with commercial

systems. RTXI users implement custom experimental protocols by writing all aspects of their

RT protocol in C++-based modules. The use of C++ as the language of choice allows users to

incorporate a variety of established libraries, such as LAPACK, Boost, and GNU Scientific

Library for processing and data visualization, while capitalizing upon the strengths of C++ such

as recursion, object-oriented programming, and abstraction. This system for creating custom

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 10 / 22

https://doi.org/10.1371/journal.pcbi.1005430


closed-loop protocols enables complete freedom with respect to customization of closed-loop

RT protocols without any virtual limit on what can be implemented.

To get started, users are encouraged to reference the Plugin Template, which provides the

critical elements required for creating a custom RTXI module. Fig 3 provides an overview of

the Plugin Template files and code. The Plugin Template files include a Makefile, which is

used to define compilation rules on how files should be compiled, which external libraries are

to be included, and how to package the individual pieces together to form a shared library

object that is RTXI-compatible. In addition, one header (plugin_template.h, Fig 3A)

and implementation (plugin_template.cpp) file are included as examples that can be

built upon.

All custom modules are abstracted from the DefaultGUIModel class, which includes all

elements necessary for interfacing with both the RT and GUI threads. When creating a new

module, users create the various I/O elements for that module through the vars structure

(Fig 3B). To run specific code in RT, the code is placed in the execute() function (Fig 3C),

which is common to all system and custom modules and processed at each time step. Func-

tions called from within the execute function are also run in RT, while all code that is not in

or called by the DefaultGUIModel::execute function is run on the soft RT GUI thread.

This enables a simple mechanism for separating hard RT and soft RT tasks without significant

programming overhead for the end user.

Users are able to customize the GUI of the module by including a variety of labels for

model parameter and state variables, buttons and other elements for module control, as well as

plotting elements for online analysis and visualization through the customizeGUI() func-

tion. By default, each module consists of three automatically generated buttons for starting or

pausing execution, updating user-set parameters, and unloading itself from the workspace.

Customization of the GUI is achieved by using the Qt framework, which provides a variety of

GUI elements such as buttons, lists, text boxes, etc. Users can include signals and slots, which

is a mechanism for calling specific functions based upon the occurrence of an event (e.g., but-

ton press!meet threshold criteria! specific animal behavior). For example, users can

include a radio button in their module that has a signal-slot connection to a plot. When a user

clicks the radio button, a signal is emitted and tells the module to display a scatter plot of data,

which is otherwise hidden. The same signal-slot mechanism can be used to create buttons that

drive outputs via the DAQ, call specific protocol functions, or generate notifications when an

event occurs. Users are also encouraged to check the listing of available modules on the RTXI

GitHub page for examples or potentially suitable modules that can easily be adapted to meet

individual needs.

Updates to module variables, responding to changes in RT system settings applied through

the system control panel, and controlling the state of each module takes place through the

update() function (Fig 3D). Each module can be in one of five states—which are responsi-

ble for initializing all module elements (INIT), registering UI/UX commands to the module

(MODIFY), responding to changes in the RT system frequency (PERIOD), and controlling

whether or not the module is running (UNPAUSED) or not (PAUSED). Users can customize

any state for experiment-specific needs.

Results and discussion

System characterization and load testing

We evaluated RTXI’s performance in different I/O configurations and computational loads

(Fig 5). Tests were performed by providing a randomly triggered input signal (square wave,

50% duty cycle, 5 Vpp) to one of the DAQ AI channels. Each test case was run for 30 minutes

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 11 / 22

https://doi.org/10.1371/journal.pcbi.1005430


(1800 total input events). In Case 1 (top), 1 AI channel was used to measure the input signal,

and 1 AO channel was used to output the same signal, with no processing in the loop to evalu-

ate system performance in a single-input, single-output (SISO) configuration. Case 2 (middle)

used the same configuration as Case 1, but included 2 AI and 2 AO channels. Only one AI

channel received the input signal. The other AI channel was left floating and directly con-

nected to the second AO channel, allowing characterization of system performance in a multi-

input, multi-output (MIMO) configuration. Case 3 used the same configuration as Case 2, but

with added processing within the loop. The Hodgkin-Huxley Neuron model was configured

to receive the test input signal and the output of the Neuron model (membrane potential, Vm)

was connected to the Spike Detector module. The Spike Detector module determines if an

action potential has occurred by checking for a threshold-crossing event. When an action

potential is detected, the Spike Detector outputs a TTL pulse that is then sent out via the AO

channel.

A separate data acquisition system (MATLAB, NI USB-6341) was used to sample (250 kHz)

the AI and AO signals from each case to quantify the I/O latency with each configuration. The

RT period, RT period jitter, and computation time are measured with the Real-Time Bench-

marks module and recorded with the Data Recorder. All tests were performed with an RTXI

(v2.1) system frequency of 20 kHz on a desktop computer with an Intel Core i5 Quad Core

Processor (3.40 GHz), 32GB of physical RAM, 10,000 RPM hard drive, Radeon HD 8570

graphics card, and an NI PCIe-6259 DAQ. All system and application daemons were killed

prior to performance evaluation (recommended) because such background processes can pre-

vent resource allocation or occupy significant amounts of CPU time. All analysis was per-

formed using MATLAB 2016 (MathWorks, Natick, MA, USA). Data shown in Fig 5 is from

one RTXI installation, however additional performance characterization results are available

online from different installations (S3 File). Each test case demonstrates I/O processing of

Fig 5. System performance under different computational loads and closed-loop configurations. (A) System configurations tested.

(B) System I/O latency does not exceed twice the system period (50 μs) nor are I/O events missed in all test cases, demonstrating hard RT

performance and a delay of no more than one sample. (C) Distribution of measured RT periods in each tests case by the Real-Time

Benchmarks module. The RT period should never exceed twice the desired RT period, otherwise hard RT behavior is compromised. The

increase in RT period variability with increasing computational loads is predominantly from the initial time frame after which a protocol starts

execution. This is represented by the RT period jitter data (D), which demonstrates the RT period stabilizing within the first few minutes of

execution. (E) Time spent processing the execute() function of all loaded module on each RT loop cycle.

https://doi.org/10.1371/journal.pcbi.1005430.g005

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 12 / 22

https://doi.org/10.1371/journal.pcbi.1005430.g005
https://doi.org/10.1371/journal.pcbi.1005430


1800 events with the desired RT period, demonstrating hard RT performance and a delay of

no more than one sample.

Fig 5A summarizes each case scenario used to characterize system performance. With a sys-

tem frequency of 20 kHz, the system has 50 μs to complete input, processing, and output

events. Histograms of latencies measured by an external data acquisition system are shown in

Fig 5B. For all test cases, the system latencies are distributed around 50μs. If a latency greater

than 100μs had been measured (twice the system period), the hard aspect of the real-time sys-

tem would be lost due to the system missing deadlines for events (e.g., input not acquired, out-

put not generated).

Fig 5C–5E of show system performance metrics measured and reported by the core RT

Benchmarks module. Fig 5C demonstrates that the measured RT period is unimodal and

tightly distributed around 50μs in all I/O configurations and system loads. As the system load

increases, the variance of the RT period increases, but the mean stays closely centered at 50μs.

The RT period’s jitter is shown in Fig 5D and is consistent throughout RT execution, demon-

strating that RTXI has access to sufficient resources, is prioritized by the real-time scheduler,

and can provide the requested performance. If RTXI was unable to meet the performance

demands of the configuration, the RT period, and thus the jitter, would vary significantly over

the course of an experiment. The final column of Fig 5 represents the time taken to complete

the input, processing, and output events. As the system configuration and load increase, the

computation time also increases but without losing hard real-time performance (as shown by

Fig 5C–5D).

Use cases

Use case 1: Replication and suppression of learning-induced membrane and synaptic

plasticity. RTXI’s most common application is for the dynamic-clamp technique (of the

many examples, some include: [20–22, 34]). This has led to significant advances in fundamen-

tal concepts in neuroscience and related fields.

Feeding behavior in the mollusk Aplysia is modified by various forms of associative learn-

ing, including classical and operant conditioning, and alter the central decision-making pro-

cesses related to feeding actions. Experimental modification of intrinsic excitability and

electrical synapses of neurons in the Aplysia feeding central pattern-generating network have

been shown to correlate with compulsive-like motor output expressions induced by in vivo
operant conditioning. Despite this correlation between plasticity and operant conditioning-

induced changes, a causal relationship was not shown.

Using RTXI, Sieling et al [35] used the dynamic-clamp technique, in which simulated mem-

brane and synaptic currents are artificially added or subtracted from neurons, to examine

whether selective changes in single conductances governing cell excitability and electrical cou-

pling are responsible for the associative modification of feeding circuit output and behavior

(Fig 6). Using in vitro preparations of buccal ganglia isolated from naive and operantly trained

animals, Sieling et al either enhanced or diminished neuronal excitability and coupling

strengths in RT to test for causation and determine respective contributions of synaptic and

non-synaptic processes by which associative learning leads to expression of compulsive

behavior.

Use case 2: Real-time distorted auditory feedback for control of song bird timing. In

addition to the widely used dynamic clamp, RTXI’s flexibility and robustness are useful for a

variety of investigations testing causal relationships. One such area is Distorted Auditory Feed-

back (DAF), which is routinely used to assess the effects of auditory input on vocal production

and underlying neural activity in songbirds. Some bird species’ songs have been shown to be

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 13 / 22

https://doi.org/10.1371/journal.pcbi.1005430


highly sensitive to acoustic input, showing immediate effects on the timing and acoustic struc-

ture of the produced song. Investigation of immediate changes taking place after DAF presen-

tation often requires having a system capable of providing RT acoustic processing and

feedback. Commercial systems for RT acoustic processing are available but are expensive and

contain a significant number of constraints that must be considered during experimental

design. Furthermore, typical experiments using acoustic feedback use detection of a certain

template signal, either a certain frequency or more complex combination or sweeps of fre-

quencies, and feedback is delivered upon template detection. Template detection tasks are

computationally intensive, requiring spectrogram-based or feature-based techniques [36, 37],

comparison across detected elements and templates, and if successful, generate the appropriate

feedback signal. These computations have to be done fast enough to enable RT performance

while not interfering with other processes such as data acquisition, storage, and visualization.

Skocik and Kozhevinokov [38] capitalized on the strengths of RTXI and modified it for

experimental use in RT acoustic signal processing and feedback. Acoustic measurements were

made by interfacing a microphone and amplifier to the analog inputs present on a National

Fig 6. Artificially modulating neuronal excitability mimics learning-induced increase in frequency, but not the regularity, of buccal

motor pattern (BMP) genesis. (A) Experimental protocol and equivalent electrical circuit for the addition of a dynamic-clamp-defined leak

conductance (Gleak) to the natural input conductance (Gin) of an individual neuron using RTXI. (B) Introduction of an artificial Gleak of −60 nS

(shaded panel) increased the excitability of a target B63 neuron (indicated by a decrease in spike threshold) compared with that arising from

the natural leak conductance alone (i.e., Gleak: 0 nS). Horizontal and vertical scale bars represent 2 s and 20 mV, respectively. In (C), Gleak

was introduced into one of B63, B30, or B65. In (D), Gleak was introduced into a B63 and current pulses for measuring coupling coefficients

were injected into either postjunctional B30 or B65. (For details, see [35] Fig. S1.) (E) In a control preparation, the frequency, but not the

regularity, of spontaneous BMP genesis and associated spike bursts in B63/B30/B65 increased in response to a dynamic-clamp-defined

Gleak of −60 nS (shaded panel) introduced simultaneously into the three neurons. Horizontal and vertical scale bars represent 30 s and 25

mV, respectively. (F and G) Quantification of changes in frequency (F), but not irregularity (G), of BMP generation for different values of

artificial Gleak added simultaneously to the three neurons. Group data show means ± SEM and individual sample sizes. All figures obtained

and modified with permission from [35].

https://doi.org/10.1371/journal.pcbi.1005430.g006

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 14 / 22

https://doi.org/10.1371/journal.pcbi.1005430.g006
https://doi.org/10.1371/journal.pcbi.1005430


Instruments PCIe-6251 DAQ with a system frequency of 30 kHz. Acoustic feedback was gen-

erated by custom RTXI modules and delivered via the analog outputs on the DAQ. To mini-

mize processing latency, the Data Recorder module was customized to provide two high-speed

modes of operations—triggered (active) and non-triggered (idle). The complete process flow

for the customized Data Recorder is shown in Fig 7. A circular buffer is inserted into the Data

Recorder’s processing loop to enable buffering of acquired acoustic signals. The root mean

square (RMS) is continuously quantified for the last 10ms of acquire data at a rate of 1 kHz.

Fig 7. Hard RT distorted auditory feedback system. (A) Simplified diagram of the acoustic feedback system. When not triggered (top),

the system computes the root mean square (RMS) of the input signal. When the RMS exceeds the threshold, the system is triggered. When

triggered (bottom), the system computes the spectrogram of the most recent 20ms of signal and computes the correlation coefficient of this

spectrogram with the spectrogram of the template sound (e.g., song syllable). The template sound is detected when the correlation

coefficient exceeds a threshold value; in this case, acoustic feedback can be generated. Both the input and the acoustic output are saved to

the computer hard drive. (B) Spectrogram of the song of a Bengalese finch and the times of occurrence of one of the song syllables. The

system was programmed to only detect the occurrences of the target syllable in real time, no acoustic feedback was generated. The

detection times are shown as vertical red lines. Bottom: the system is detecting the target syllables (vertical red lines) and is generating

acoustic feedback after detection. The acoustic feedback waveform is shown below. The feedback signal is one of the birdsong syllables;

the acoustic feedback pickup by the microphone is visible on the spectrogram. The zoomed-in spectrogram of the template is shown on the

right. (C) DAF increases the duration of the time interval between Bengalese finch song syllables. Histogram depicts the time intervals

between two subsequent syllables in the song in the presence of DAF (blue) and without DAF (red). The means are: Δtmean = 74.8ms

(control, N = 637 syllables) and Δtmean = 75.7ms (feedback, N = 97 syllables), the difference is statistically significant (p = 0.001, two-way

Kolmogorov—Smirnov test). All figures obtained and modified with permission from [38].

https://doi.org/10.1371/journal.pcbi.1005430.g007

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 15 / 22

https://doi.org/10.1371/journal.pcbi.1005430.g007
https://doi.org/10.1371/journal.pcbi.1005430


When the RMS exceeds the user-specified threshold, the system automatically switches to trig-

gered mode operation.

Performance was also evaluated in experiments to detect specific syllables in the song of

Bengalese finches. The finch song consists of a sequence of syllables separated by silences

(inter-syllable gaps) (Fig 7), with variability introduced by the specific sequence of syllables in

each song. Experiments were conducted to detect specific target syllables, with successful

crossing of the correlation coefficient resulting in generation of acoustic feedback (either white

noise or the song syllable). Fig 7B provides sample data demonstrating RTXI’s performance in

both open-loop (detection only) and closed-loop modes (detection and feedback). System per-

formance was characterized by comparing online syllable detection to off-line detection using

spectrogram-based techniques. Over 92% of the target syllables (n = 659) were correctly identi-

fied by RTXI, with zero false positives. The undetected 8% are believed to be due to natural

variability in acoustic structure that are not accounted for by the detection algorithm. Addi-

tional tests in Zebra finches resulted in a detection rate up to 96% (n = 756), with less than 1%

false positives. In a final round of experiments, detection of target syllables was followed by

DAF for modulation of timing between song syllables. Without DAF, the mean interval is 74.8

ms (n = 637), while with DAF the mean interval increases to 75.7 ms (n = 97).

These observations are consistent with previously published observations on the effects of

RT feedback on song structure [39]. Moreover, they demonstrate the robust hard-RT capabili-

ties of RTXI and the advantages of open-source software. Using RTXI enabled the authors to

set up interfaces with different I/O hardware and modify the RTXI source code to run custom

RT protocols.

Use case 3: EEG feedback-controlled transcranial alternating current stimulation. In

addition to in vitro and in vivo closed-loop hard RT electrophysiology, RTXI’s flexibility, cus-

tomizability, and hard RT performance has been utilized to investigate the effects of feedback-

driven tACS. Brain stimulation using transcranial Alternating Current Stimulation (tACS) has

gained significant momentum as an alternative to pharmacological methods for treatment of

neurological and psychiatric disorders. By electrically stimulating the brain, aberrant network

dynamics can be targeted with potentially higher efficacy, increasing therapeutic efficacy while

minimizing undesired off-target effects [40, 41]. Unfortunately, most clinical investigations

using tACS are conducted in a feedforward, open-loop manner. Given the success of feedback

(closed-loop) control in a variety of engineering and neuroscience applications, Boyle et al

[14] investigated the ability of electroencephalography (EEG)-measurement driven delivery of

tACS to provide better control of cerebral cortex dynamics, which is implicated in several psy-

chiatric illnesses.

tACS applies a weak sinusoidal electrical current to the scalp, resulting in a change in polar-

ization of a large number of neurons, thus effectively altering neuronal network activity. Evi-

dence from previous studies suggests that sinusoidal stimulation waveforms can be used to

selectively modulate cortical oscillations at different frequencies commonly associated with

different cognitive states. In their study, Boyle et al combined 40 Hz tACS with EEG measure-

ments to control visual cortex state dynamics and modulate high- and low-alpha states

induced by opening and closing the eyes.

RTXI was used in this investigation to measure and process incoming EEG activity, compute

the appropriate output stimulation waveform in RT, and control timing of the experimental

protocol. EEG measurements were made by interfacing with a Biopac EEG amplifier connected

to a National Instruments PCI-6221 DAQ with a system frequency of 2 kHz. Measured EEG

activity was processed online with custom C++ modules. Stimulation timing and waveforms

were generated by RTXI and delivered to an isolation unit through the DAQ’s analog output

channel. Fig 8A depicts the custom closed-loop, RT protocol engineered for this investigation.

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 16 / 22

https://doi.org/10.1371/journal.pcbi.1005430


All data processing and analysis was conducted in RT with custom modules written in

C++. The incoming EEG data was filtered with a 6th order Butterworth band-pass filter with a

bandwidth of 8–12 Hz to isolate the alpha band. Power was then computed for the alpha band

as the mean oscillation power with a 1 second window width. During the calibration period in

each experiment, the module built a distribution with the computed alpha power values to

determine the mean alpha power for both eyes-open and eyes-closed conditions. Stimulation

thresholds were set to 1.05 of the average of the two mean alpha power values. The protocol

then continued to assess mean alpha power at a rate of 0.25 Hz and modulated the stimulation

depending on the measured alpha power. If alpha power was higher than the stimulation

threshold, tACS was delivered to the subject for the first 2 seconds of the next epoch, otherwise

stimulation was turned off. Each subject completed a total of four 12 minute recording ses-

sions. Each recording started with a 2 minute calibration period. For the first 60 seconds, the

subjects were asked to relax and be still with their eyes open. For the next 60 seconds, the sub-

jects were asked to relax, be still, and close their eyes. After calibration, two recordings were

conducted in each subject. First, subjects were asked to keep their eyes open (EO) and received

Fig 8. Optimization of therapeutic benefit of tACS via closed-loop EEG feedback-controlled tACS. (A) Hard real-time closed-loop

protocol used for feedback-controlled delivery of tACS. EEG are measured and amplified prior to sampling with RTXI while the subject

opens and closes their eyes every 30 seconds. EEG data from international 10–20 system sites O2, A1, and A2 are processed in hard RT

using a custom module written to measure the alpha band power within a one second window. The computed power is validated against a

threshold criteria, which determines the tACS amplitude to be delivered. The output from RTXI is connected to an external current-controlled

stimulation and isolation unit. Sample alpha-filtered EEG traces with and without feedback-controlled tACS are shown in (B). Feedback-

controlled tACS (C) almost completely suppressed alpha band power in a targeted way (Ratio ECα to EOα = 1.03, p = 0.041). Dose-matched

random tACS (D) also suppressed alpha band power (normalized random-No Stim = −0.31, p = 0.0183), but was less effective than

feedback-controlled tACS (normalized feedbackα—randomα = −0.10, p = 0.0145). All figures obtained and modified with permission from

[14].

https://doi.org/10.1371/journal.pcbi.1005430.g008

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 17 / 22

https://doi.org/10.1371/journal.pcbi.1005430.g008
https://doi.org/10.1371/journal.pcbi.1005430


EEG feedback-controlled tACS. For the second recording, subjects were asked to open and

close their eyes when told by the experimenter every 30 seconds (EOEC) while receiving EEG-

feedback driven tACS. These two recordings were repeated, however subjects received dose-

matched randomly administered tACS.

The results of this investigation found that EEG feedback-controlled tACS can successfully

suppress alpha power as well as state transitions caused by opening and closing of eyes. Subse-

quent investigations by the same group using RTXI have also demonstrated the ability of

closed-loop tACS to boost sleep spindle activity and sleep-dependent motor memory consoli-

dation [11]. These results demonstrate the customizability, modularity, and robust closed-loop

RT performance of RTXI.

Availability

RTXI is available under the GNU GPLv3 license and is publicly accessible online via GitHub

(S3 File) along with over 50 custom modules contributed by the RTXI community. This

repository enables tracking of user-submitted bugs and requests, and makes the continued

development of RTXI publicly viewable. GitHub also allows users to watch the progress and

development of RTXI, receive notifications as new updates or patches are submitted, and easily

share custom modules built by any RTXI user. Users are encouraged to use this platform to

communicate with the RTXI team with questions, comments, feature requests, and trouble-

shooting advice.

In addition to GitHub, a website (S3 File) is maintained and routinely updated with new

troubleshooting tips and FAQs (S3 File) as well as a user manual and documentation (S3 File).

Publications utilizing RTXI are indexed and listed for users to access key details associated

with experimental setups, module use, and system parameters—enabling greater reproducibil-

ity of shared data. The RTXI team is dedicated to helping users with any aspect of RTXI—

whether it is installation, creating custom modules, or integration of addition experimental

hardware.

Future directions

Advances in measurement and stimulation technologies over the last decade have increased

both the spatial and temporal resolution at which scientists can investigate biological systems.

Enhancements in micro-fabrication technologies have enabled development of high density

silicon probes [42, 43], allowing large-scale spatial and temporal over-sampling of biological

activity [44]. Development of ASICs has led to wide adoption of systems such as the low-cost

and easy-to-use Intan headstages [45, 46]. Furthermore, recent developments in imaging tech-

nologies have made it possible to consider closed-loop applications in which the measured sig-

nal is an image representative of underlying electrical activity, rather than direct measurement

of electrical potentials.

On-going development efforts within RTXI are focused on incorporating new measure-

ment modalities (e.g., imaging) and acquiring from high channel count interfaces—all with

hard RT closed-loop performance. For example, a image acquisition and processing module

(GenICam) and a Ethernet-based data acquisition module (EthernetAcq) are now available for

use within RTXI (S3 File). In many cases, hard RT closed-loop control with image or high

channel count data processing can require more computation time than is available per cycle.

On-going RTXI development efforts are also focused on providing API calls for distributing

computational loads across dedicated processor cores and GPUs, with the goal of requiring lit-

tle to no technical know-how on the user’s end.

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 18 / 22

https://doi.org/10.1371/journal.pcbi.1005430


The advent of optogenetics has enabled tight spatial and temporal control of stimulation of

biological tissues [47–49]. These developments have spawned a significant interest in closed-

loop control of biological systems [50], such as optical clamping of network activity [51] and

optical shortening of cardiac action potential durations [52]. In most cases, delivery of optoge-

netic stimuli via a laser or diode is controlled and modulated by a voltage signal. For example,

users can generate a standard stimulus waveform using the Signal Generator module or a cus-

tom stimulus waveform by providing an ASCII file to the Waveform Maker module and use it

to control a laser or diode to achieve hard RT optogenetic stimulation. Such re-utilization of

existing code and custom modules simplifies the transition to hard RT closed-loop control.

Supporting information

S1 File. Relevant terms and definitions used throughout the manuscript.

(TEX)

S2 File. Index of abbreviations used throughout the manuscript.

(TEX)

S3 File. Links for finding source code, tutorials, data, and user manuals for RTXI.

(TEX)

Acknowledgments

All the work presented in this manuscript is a result of the effort put in by many individuals.

First, we would like to thank Calin Culianu, Jonathan Bettencourt, Risa Lin, and Francis

Ortega for their significant and valuable contributions to the development of RTXI that con-

tinue to be a part of its core. Next, we would like to thank authors of the highlighted use cases,

Michale Skocik, Romuald Nargeot, Michael Boyle, Caroline Lustenberger, Sankar Alagapan,

and Flavio Frohlich for openly providing data, figures, and feedback on this manuscript. In

addition, the authors also thank Laura O’Farrell, Brian Kim, and Will Rountree for comments

on the manuscript and how to communicate highly technical concepts in a simpler and effec-

tive manner. Most importantly, the authors would like to thank the RTXI user-community

and greater open-source hardware/software communities for continued feedback, interest,

and use of RTXI. Their contributions have helped develop a long-term, stable product that

enables new paradigms of scientific investigations.

Author Contributions

Conceptualization: RJB DJC JAW ADD YAP AG.

Data curation: YAP AG RJB.

Formal analysis: YAP RJB.

Funding acquisition: RJB DJC JAW ADD.

Investigation: RJB DJC JAW ADD YAP AG.

Methodology: RJB DJC JAW ADD YAP AG.

Project administration: RJB DJC JAW ADD.

Resources: RJB DJC JAW ADD.

Software: YAP AG.

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 19 / 22

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005430.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005430.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005430.s003
https://doi.org/10.1371/journal.pcbi.1005430


Supervision: RJB DJC JAW ADD.

Validation: RJB DJC JAW ADD YAP AG.

Visualization: YAP AG.

Writing – original draft: YAP.

Writing – review & editing: RJB DJC JAW ADD YAP AG.

References
1. Barabanov M, Yodaiken V. Real-time linux. Linux Journal. 1996; 23(4.2):1.

2. Gerum P. Xenomai—Implementing a RTOS emulation framework on GNU/Linux. White Paper, Xeno-

mai. 2004;p. 1–12.

3. Groenendaal W, Ortega FA, Krogh-Madsen T, Christini DJ. Voltage and calcium dynamics both under-

lie cellular alternans in cardiac myocytes. Biophysical Journal. 2014; 106(10):2222–2232. https://doi.

org/10.1016/j.bpj.2014.03.048 PMID: 24853751

4. Groenendaal W, Ortega FA, Kherlopian AR, Zygmunt AC, Krogh-Madsen T, Christini DJ. Cell-specific

cardiac electrophysiology models. PLoS Computational Biology. 2015; 11(4):e1004242. https://doi.org/

10.1371/journal.pcbi.1004242 PMID: 25928268

5. Brown TR, Krogh-Madsen T, Christini DJ. Illuminating Myocyte-Fibroblast Homotypic and Heterotypic

Gap Junction Dynamics Using Dynamic Clamp. Biophysical Journal. 2016; 111(4):785–797. https://doi.

org/10.1016/j.bpj.2016.06.042 PMID: 27558722

6. Devenyi RA, Ortega FA, Groenendaal W, Krogh-Madsen T, Christini DJ, Sobie EA. Differential roles of

two delayed rectifier potassium currents in regulation of ventricular action potential duration and arrhyth-

mia susceptibility. The Journal of Physiology. 2016;p. https://doi.org/10.1113/JP273191 PMID:

27779762

7. Bartolucci C, Altomare C, Bennati M, Furini S, Zaza A, Severi S. Combined action potential- and

dynamic-clamp for accurate computational modelling of the cardiac IKr current. Journal of Molecular

and Cellular Cardiology. 2015; 79(2014):187–194. https://doi.org/10.1016/j.yjmcc.2014.11.011 PMID:

25446181

8. Idoux E, Mertz J. Control of local intracellular calcium concentration with dynamic-clamp controlled 2-

photon uncaging. PLoS ONE. 2011; 6(12):e28685. https://doi.org/10.1371/journal.pone.0028685

PMID: 22216105

9. Nabi A, Stigen T, Moehlis J, Netoff T. Corrigendum: Minimum energy control for in vitro neurons. Jour-

nal of Neural Engineering. 2013; 10(4):049501. https://doi.org/10.1088/1741-2560/10/4/049501

10. Wilson CJ, Barraza D, Troyer T, Farries MA. Predicting the Responses of Repetitively Firing Neurons to

Current Noise. PLoS Computational Biology. 2014; 10(5):1–17. https://doi.org/10.1371/journal.pcbi.

1003612

11. Lustenberger C, Boyle MR, Alagapan S, Mellin JM, Vaughn BV, Frohlich F. Feedback-Controlled Tran-

scranial Alternating Current Stimulation Reveals a Functional Role of Sleep Spindles in Motor Memory

Consolidation. Current Biology. 2016; 26:1–10. https://doi.org/10.1016/j.cub.2016.06.044

12. Norman SE, Butera RJ, Canavier CC. Stochastic Slowly Adapting Ionic Currents May Provide a Decorr-

elation Mechanism For Neural Oscillators by Causing Wander in the Intrinsic Period. Journal of Neuro-

physiology. 2016;p. https://doi.org/10.1152/jn.00193.2016 PMID: 27281746

13. Kispersky TJ, Economo MN, Randeria P, White Ja. GenNet: A Platform for Hybrid Network Experi-

ments. Frontiers in Neuroinformatics. 2011; 5(July):11. https://doi.org/10.3389/fninf.2011.00011 PMID:

21845179

14. Boyle MR, Frohlich F. EEG feedback-controlled transcranial alternating current stimulation. In: Interna-

tional IEEE/EMBS Conference on Neural Engineering, NER; 2013. p. 140–143.

15. Bettencourt JC, Lillis KP, Stupin LR, White JA. Effects of imperfect dynamic clamp: computational and

experimental results. Journal of Neuroscience Methods. 2008; 169(2):282–289. https://doi.org/10.

1016/j.jneumeth.2007.10.009 PMID: 18076999

16. Economo MN, Fernandez FR, White JA. Dynamic clamp: alteration of response properties and creation

of virtual realities in neurophysiology. The Journal of Neuroscience. 2010; 30(7):2407–2413. https://doi.

org/10.1523/JNEUROSCI.5954-09.2010 PMID: 20164323

17. Butera RJ, Wilson CG, DelNegro CA, Smith JC. A methodology for achieving high-speed rates for artifi-

cial conductance injection in electrically excitable biological cells. IEEE Transactions on Biomedical

Engineering. 2001; 48(12):1460–1470. https://doi.org/10.1109/10.966605 PMID: 11759927

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 20 / 22

https://doi.org/10.1016/j.bpj.2014.03.048
https://doi.org/10.1016/j.bpj.2014.03.048
http://www.ncbi.nlm.nih.gov/pubmed/24853751
https://doi.org/10.1371/journal.pcbi.1004242
https://doi.org/10.1371/journal.pcbi.1004242
http://www.ncbi.nlm.nih.gov/pubmed/25928268
https://doi.org/10.1016/j.bpj.2016.06.042
https://doi.org/10.1016/j.bpj.2016.06.042
http://www.ncbi.nlm.nih.gov/pubmed/27558722
https://doi.org/10.1113/JP273191
http://www.ncbi.nlm.nih.gov/pubmed/27779762
https://doi.org/10.1016/j.yjmcc.2014.11.011
http://www.ncbi.nlm.nih.gov/pubmed/25446181
https://doi.org/10.1371/journal.pone.0028685
http://www.ncbi.nlm.nih.gov/pubmed/22216105
https://doi.org/10.1088/1741-2560/10/4/049501
https://doi.org/10.1371/journal.pcbi.1003612
https://doi.org/10.1371/journal.pcbi.1003612
https://doi.org/10.1016/j.cub.2016.06.044
https://doi.org/10.1152/jn.00193.2016
http://www.ncbi.nlm.nih.gov/pubmed/27281746
https://doi.org/10.3389/fninf.2011.00011
http://www.ncbi.nlm.nih.gov/pubmed/21845179
https://doi.org/10.1016/j.jneumeth.2007.10.009
https://doi.org/10.1016/j.jneumeth.2007.10.009
http://www.ncbi.nlm.nih.gov/pubmed/18076999
https://doi.org/10.1523/JNEUROSCI.5954-09.2010
https://doi.org/10.1523/JNEUROSCI.5954-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20164323
https://doi.org/10.1109/10.966605
http://www.ncbi.nlm.nih.gov/pubmed/11759927
https://doi.org/10.1371/journal.pcbi.1005430


18. Raikov I, Preyer A, Butera RJ. MRCI: a flexible real-time dynamic clamp system for electrophysiology

experiments. Journal of Neuroscience Methods. 2004; 132(2):109–123. https://doi.org/10.1016/j.

jneumeth.2003.08.002 PMID: 14706709

19. Bettencourt JC, Lillis KP, Stupin LR, White JA. Effects of imperfect dynamic clamp: computational and

experimental results. Journal of neuroscience methods. 2008; 169(2):282–289. https://doi.org/10.1016/

j.jneumeth.2007.10.009 PMID: 18076999

20. Dorval AD, Christini DJ, White JA. Real-time linux dynamic clamp: A fast and flexible way to construct

virtual ion channels in living cells. Annals of Biomedical Engineering. 2001; 29(10):897–907. https://doi.

org/10.1114/1.1408929 PMID: 11764320

21. Prinz AA, Abbott LF, Marder E. The dynamic clamp comes of age. Trends in Neurosciences. 2004; 27

(4):218–224. https://doi.org/10.1016/j.tins.2004.02.004 PMID: 15046881

22. Sharp AA, O’Neil MB, Abbott LF, Marder E. The dynamic clamp: artificial conductances in biological

neurons. Trends in Neurosciences. 1993; 16(10):389–394. https://doi.org/10.1016/0166-2236(93)

90004-6 PMID: 7504352

23. Preyer AJ, Butera RJ. Causes of transient instabilities in the dynamic clamp. IEEE Transactions on

Neural Systems and Rehabilitation Engineering. 2009; 17(2):190–198. https://doi.org/10.1109/TNSRE.

2009.2015205 PMID: 19228559

24. Qt;. Available from: https://www.qt.io/.

25. Qwt—Qt Widgets for Technical Applications;. Available from: http://qwt.sourceforge.net/.

26. Patel YA, Butera RJ. Differential fiber-specific block of nerve conduction in mammalian peripheral

nerves using kilohertz electrical stimulation. Journal of Neurophysiology. 2015; 113(10):3923–9. https://

doi.org/10.1152/jn.00529.2014 PMID: 25878155

27. Patel YA, Saxena T, Bellamkonda RV, Butera RJ. Kilohertz frequency nerve block enhances anti-

inflammatory effects of vagus nerve stimulation. Scientific Reports. 2017; 7:39810. https://doi.org/10.

1038/srep39810 PMID: 28054557

28. Patel YA, Willsie A, Clements IP, Aguilar R, Rajaraman S, Butera RJ. Microneedle cuff electrodes for

extrafascicular peripheral nerve interfacing. In: 38th Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society; 2016. p. 1741–1744.

29. Newman JP, Zeller-Townson R, Fong MF, Arcot Desai S, Gross RE, Potter SM. Closed-Loop, Multi-

channel Experimentation Using the Open-Source NeuroRighter Electrophysiology Platform. Frontiers

in Neural Circuits. 2013; 6:98. https://doi.org/10.3389/fncir.2012.00098 PMID: 23346047

30. Englitz B, David SV, Sorenson MD, Shamma SA. MANTA—an open-source, high density electrophysi-

ology recording suite for MATLAB. Frontiers in Neural Circuits. 2013; 7:69. https://doi.org/10.3389/fncir.

2013.00069 PMID: 23653593

31. Eastman KM, Huk AC. PLDAPS: a hardware architecture and software toolbox for neurophysiology

requiring complex visual stimuli and online behavioral control. Frontiers in Neuroinformatics. 2012; 6.

https://doi.org/10.3389/fninf.2012.00001 PMID: 22319490

32. Siegle JH, López AC, Patel YA, Abramov K, Ohayon S, Voigts J. Open Ephys: An open-source, plugin-

based platform for multichannel electrophysiology. Journal of Neural Engineering. 2017;. https://doi.

org/10.1088/1741-2552/aa5eea PMID: 28169219

33. HDF5;. Available from: https://www.hdfgroup.org/hdf5/.

34. Lin RJ, Bettencourt J, White JA, Christini DJ, Butera RJ. Real-time Experiment Interface for biological

control applications. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and

Biology Society, EMBC’10; 2010. p. 4160–4163.

35. Sieling F, Bédécarrats A, Simmers J, Prinz AA, Nargeot R. Differential roles of nonsynaptic and synaptic

plasticity in operant reward learning-induced compulsive behavior. Current Biology. 2014; 24(9):941–

950. https://doi.org/10.1016/j.cub.2014.03.004 PMID: 24704077

36. Tchernichovski O, Nottebohm F, Ho CE, Pesaran B, Mitra PP. A procedure for an automated measure-

ment of song similarity. Animal Behaviour. 2000; 59(6):1167–1176. https://doi.org/10.1006/anbe.1999.

1416 PMID: 10877896

37. Leonardo A, Fee MS. Ensemble coding of vocal control in birdsong. The Journal of Neuroscience.

2005; 25(3):652–661. https://doi.org/10.1523/JNEUROSCI.3036-04.2005 PMID: 15659602

38. Skocik M, Kozhevnikov A. Real-time system for studies of the effects of acoustic feedback on animal

vocalizations. Frontiers in Neural Circuits. 2012; 6:111. https://doi.org/10.3389/fncir.2012.00111 PMID:

23316137

39. Sakata JT, S BM. Real-time contributions of auditory feedback to avian vocal motor control. The Journal

of Neuroscience. 2006; 26:9619–9628. https://doi.org/10.1523/JNEUROSCI.2027-06.2006 PMID:

16988032

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 21 / 22

https://doi.org/10.1016/j.jneumeth.2003.08.002
https://doi.org/10.1016/j.jneumeth.2003.08.002
http://www.ncbi.nlm.nih.gov/pubmed/14706709
https://doi.org/10.1016/j.jneumeth.2007.10.009
https://doi.org/10.1016/j.jneumeth.2007.10.009
http://www.ncbi.nlm.nih.gov/pubmed/18076999
https://doi.org/10.1114/1.1408929
https://doi.org/10.1114/1.1408929
http://www.ncbi.nlm.nih.gov/pubmed/11764320
https://doi.org/10.1016/j.tins.2004.02.004
http://www.ncbi.nlm.nih.gov/pubmed/15046881
https://doi.org/10.1016/0166-2236(93)90004-6
https://doi.org/10.1016/0166-2236(93)90004-6
http://www.ncbi.nlm.nih.gov/pubmed/7504352
https://doi.org/10.1109/TNSRE.2009.2015205
https://doi.org/10.1109/TNSRE.2009.2015205
http://www.ncbi.nlm.nih.gov/pubmed/19228559
https://www.qt.io/
http://qwt.sourceforge.net/
https://doi.org/10.1152/jn.00529.2014
https://doi.org/10.1152/jn.00529.2014
http://www.ncbi.nlm.nih.gov/pubmed/25878155
https://doi.org/10.1038/srep39810
https://doi.org/10.1038/srep39810
http://www.ncbi.nlm.nih.gov/pubmed/28054557
https://doi.org/10.3389/fncir.2012.00098
http://www.ncbi.nlm.nih.gov/pubmed/23346047
https://doi.org/10.3389/fncir.2013.00069
https://doi.org/10.3389/fncir.2013.00069
http://www.ncbi.nlm.nih.gov/pubmed/23653593
https://doi.org/10.3389/fninf.2012.00001
http://www.ncbi.nlm.nih.gov/pubmed/22319490
https://doi.org/10.1088/1741-2552/aa5eea
https://doi.org/10.1088/1741-2552/aa5eea
http://www.ncbi.nlm.nih.gov/pubmed/28169219
https://www.hdfgroup.org/hdf5/
https://doi.org/10.1016/j.cub.2014.03.004
http://www.ncbi.nlm.nih.gov/pubmed/24704077
https://doi.org/10.1006/anbe.1999.1416
https://doi.org/10.1006/anbe.1999.1416
http://www.ncbi.nlm.nih.gov/pubmed/10877896
https://doi.org/10.1523/JNEUROSCI.3036-04.2005
http://www.ncbi.nlm.nih.gov/pubmed/15659602
https://doi.org/10.3389/fncir.2012.00111
http://www.ncbi.nlm.nih.gov/pubmed/23316137
https://doi.org/10.1523/JNEUROSCI.2027-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16988032
https://doi.org/10.1371/journal.pcbi.1005430


40. Fröhlich F. Endogenous and exogenous electric fields as modifiers of brain activity: rational design of

noninvasive brain stimulation with transcranial alternating current stimulation. Dialogues in Clinical Neu-

roscience. 2014; 16(1):93–102. PMID: 24733974

41. Fröhlich F. Experiments and models of cortical oscillations as a target for noninvasive brain stimulation.

Progress in Brain Research. 2015; 222:41–73. https://doi.org/10.1016/bs.pbr.2015.07.025 PMID:

26541376

42. Scholvin J, Kinney JP, Bernstein JG, Moore-Kochlacs C, Kopell N, Fonstad CG, et al. Close-packed sili-

con microelectrodes for scalable spatially oversampled neural recording. IEEE Transactions on Bio-

medical Engineering. 2016; 63(1):120–130. https://doi.org/10.1109/TBME.2015.2406113 PMID:

26699649

43. Frey U, Sedivy J, Heer F, Pedron R, Ballini M, Mueller J, et al. Switch-matrix-based high-density micro-

electrode array in CMOS technology. IEEE Journal of Solid-State Circuits. 2010; 45(2):467–482.

https://doi.org/10.1109/JSSC.2009.2035196

44. Buzsáki G. Large-scale recording of neuronal ensembles. Nature Neuroscience. 2004; 7(5):446–451.

https://doi.org/10.1038/nn1233 PMID: 15114356

45. Harrison RR. A versatile integrated circuit for the acquisition of biopotentials. In: 2007 IEEE Custom

Integrated Circuits Conference. IEEE; 2007. p. 115–122.

46. Harrison RR, Kolb I, Kodandaramaiah SB, Chubykin AA, Yang A, Bear MF, et al. Microchip amplifier for

in vitro, in vivo, and automated whole cell patch-clamp recording. Journal of Neurophysiology. 2015;

113(4):1275–1282. https://doi.org/10.1152/jn.00629.2014 PMID: 25429119

47. Zhang F, Wang LP, Boyden ES, Deisseroth K. Channelrhodopsin-2 and optical control of excitable

cells. Nature Methods. 2006; 3(10):785–792. https://doi.org/10.1038/nmeth936 PMID: 16990810

48. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. Optogenetics in neural systems. Neuron.

2011; 71(1):9–34. https://doi.org/10.1016/j.neuron.2011.06.004 PMID: 21745635

49. Arrenberg AB, Stainier DY, Baier H, Huisken J. Optogenetic control of cardiac function. Science. 2010;

330(6006):971–974. https://doi.org/10.1126/science.1195929 PMID: 21071670

50. Grosenick L, Marshel JH, Deisseroth K. Closed-loop and activity-guided optogenetic control. Neuron.

2015; 86(1):106–139. https://doi.org/10.1016/j.neuron.2015.03.034 PMID: 25856490

51. Newman JP, Fong Mf, Millard DC, Whitmire CJ, Stanley GB, Potter SM. Optogenetic feedback control

of neural activity. eLife. 2015; 4:e07192. https://doi.org/10.7554/eLife.07192 PMID: 26140329

52. Govorunova EG, Cunha SR, Sineshchekov OA, Spudich JL. Anion channelrhodopsins for inhibitory

cardiac optogenetics. Scientific Reports. 2016; 6. https://doi.org/10.1038/srep33530 PMID: 27628215

The Real-Time eXperiment Interface (RTXI)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005430 May 30, 2017 22 / 22

http://www.ncbi.nlm.nih.gov/pubmed/24733974
https://doi.org/10.1016/bs.pbr.2015.07.025
http://www.ncbi.nlm.nih.gov/pubmed/26541376
https://doi.org/10.1109/TBME.2015.2406113
http://www.ncbi.nlm.nih.gov/pubmed/26699649
https://doi.org/10.1109/JSSC.2009.2035196
https://doi.org/10.1038/nn1233
http://www.ncbi.nlm.nih.gov/pubmed/15114356
https://doi.org/10.1152/jn.00629.2014
http://www.ncbi.nlm.nih.gov/pubmed/25429119
https://doi.org/10.1038/nmeth936
http://www.ncbi.nlm.nih.gov/pubmed/16990810
https://doi.org/10.1016/j.neuron.2011.06.004
http://www.ncbi.nlm.nih.gov/pubmed/21745635
https://doi.org/10.1126/science.1195929
http://www.ncbi.nlm.nih.gov/pubmed/21071670
https://doi.org/10.1016/j.neuron.2015.03.034
http://www.ncbi.nlm.nih.gov/pubmed/25856490
https://doi.org/10.7554/eLife.07192
http://www.ncbi.nlm.nih.gov/pubmed/26140329
https://doi.org/10.1038/srep33530
http://www.ncbi.nlm.nih.gov/pubmed/27628215
https://doi.org/10.1371/journal.pcbi.1005430

