
Hallucinations as top-down effects on perception

Albert R. Powers III1, Megan Kelley1, and Philip R. Corlett*,1

1Department of Psychiatry, Yale University

Abstract

The problem of whether and how information is integrated across hierarchical brain networks 

embodies a fundamental tension in contemporary cognitive neuroscience, and by extension, 

cognitive neuropsychiatry. Indeed, the penetrability of perceptual processes in a ‘top-down’ 

manner by higher-level cognition—a natural extension of hierarchical models of perception—may 

contradict a strictly modular view of mental organization. Furthermore, some in the cognitive 

science community have challenged cognitive penetration as an unlikely, if not impossible, 

process. We review the evidence for and against top-down influences in perception, informed by a 

predictive coding model of perception and drawing heavily upon the literature of computational 

neuroimaging. We extend these findings to propose a way in which these processes may be altered 

in mental illness. We propose that hallucinations - perceptions without stimulus - can be 

understood as top-down effects on perception, mediated by inappropriate perceptual priors.
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Introduction

Imagine you are walking home on a warm early summer night. The sights and sounds that 

greet you are familiar—the bark of your neighbor’s dog, the old oak tree on the corner, the 

echo of your footsteps as you get closer to your destination. Now imagine you are walking 

the same route after watching a scary movie. The same things might now seem strange and 

menacing to you. The dog’s bark might seem like a growl; the oak tree’s shadows may seem 

more prominent; those echoed footsteps might sound louder—or maybe they might not seem 

to be your own. Your aroused state makes you search for hidden threats, and your beliefs 

guide where you search (1). Could your fear even lead you to hallucinate footsteps when 

there are none? We consider these questions of how cognition alters perception, in light of 

recent advances in computational psychiatry.
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Present-day cognitive scientists have argued that cognition does not influence perception (2). 

However, work in computational neuroscience calls this claim into question. We will argue 

that hallucinations too challenge strict, encapsulated modularity. Instead, they indicate 

penetrability of perception by cognition. We will illustrate these claims with phenomenology 

as well as neuro-computational work.

Modules and the Mind

In The Modularity of Mind (1983), Jerry Fodor sketched a blueprint of mental architecture 

comprised of modules—systems that process a single specific kind of information (3). For 

example, the early vision module takes in ambient light and outputs color representations. 

Fodor never gave a specific definition of a module (nor have other modularists), which 

makes the theory difficult to falsify. Twyman and Newcombe write: “Given this lack of 
agreed-upon definition, the modularity position becomes analogous to the Hydra, the many-
headed monster that Heracles found difficult to combat because there were too many heads 
to take on simultaneously, and, worse, because other heads grew while he addressed a 
specific one” (4). Ultra-cognitive neuropsychologists even claim to shun brain localization, 

calling it mere hardware and irrelevant to the software they are interested in (5). However, 

even the most ardent ultra-cognitivists utilize some lesion location information in rendering 

their arguments (6).

A strictly modular approach focuses on functional segregation, with brain regions 

responsible for discrete mental faculties that can be damaged in isolation (7). Such an 

approach eschews functional integration, which posits that complex mental functions are 

based on interactions among distributed regions (7). Human lesion cases also support 

integration (8–10). We appeal to functional and effective connectivity data for insights into 

integration. We view this work via a model of mind and brain that itself challenges 

encapsulated modularity—namely, predictive coding (11).

Predictive Perception Implies Cognitive Penetration

An encapsulated perceptual system, kept separate from the influence of beliefs, could have 

the advantage of keeping our beliefs grounded in the truth offered by our senses (12). 

However, a cognitively penetrable perceptual apparatus may be equally adaptive, despite 

misperceiving and misbelieving, as long as the resulting behavior is adaptive (13, 14). Hume 

(15) and Helmholtz (16) appreciated this: we perceive what would need to be present in 

order for our sensations to make sense. To solve this inverse problem the brain uses an 

internal generative model of its environment to infer what it is sensing (16), combining feed-

forward “bottom-up” information from sensory organs with feedback or “top-down” 

predictions from higher-level regions to compute precision-weighted prediction errors that 

guide formation of an optimal estimation of the surroundings (17–20). Combining top-down 

expectation and bottom-up input to explain perception has a rich history. McClelland and 

Rumelhart proposed early models with this motif (21, 22). Rao and Ballard added neural 

data and Bayes theorem (23). Maia and Cleeremans proposed that perception solves a 

‘global constraint satisfaction’ problem via the interplay between current top-down 

prefrontal cortical modulation and prior knowledge through learned synaptic connections 
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across a hierarchy (24). Friston first described how these mechanisms may be generalized to 

a broad model of brain function in terms of predictive coding (25).

Contrary to encapsulated modularity, some studies claim that early visual processing (i.e., 

not “post-perceptual processing”) is influenced by non-perceptual information (27–30). For 

example, semantic priming increases the speed and accuracy of detection by minimizing 

prediction error (28). Behavioral and neurophysiological evidence shows prediction error 

signals generated in early visual regions in response to violations of semantic expectation 

(31, 32). Word contexts result in ambiguous shapes being perceived as the missing letters 

that complete a word (33, 34). Semantic categories including letters and animals improve 

accuracy and response-times in orientation identification (28, 35). Audiovisual integration 

induces response changes in primary sensory cortices, such that auditory stimuli engage V1 

and visual stimuli activate A1 (36). These activations evolve via prediction error-driven 

learning (36). These phenomena challenge the informational encapsulation of perception 

(11).

The Burden of Proof: Establishing Top-Down Influences in Perception

Studies that comprise the so-called New Look movement, purporting to demonstrate effects 

of language and culture on perception, have recently come under scrutiny. Firestone and 

Scholl (2) asserted such studies may be plagued by confounds that can be avoided by 

following these guidelines: 1) Disentangle perceptual from decisional processes; 2) 

Dissociate reaction time effects from primary perceptual changes; 3) Avoid demand 

characteristics 4) Ensure adequate low-level stimulus control; and 5) Guarantee equal 

attentional allocation across conditions.

These suggestions address issues inherent to tasks where perception guides a behavioral 

decision. However, Bayesian formulations do not accept such separation (37). Signal 

detection theory appears to sharply distinguish sensation from decision. However, it too 

allows cognition to influence perception (38). Top-down processes can even alter the 

mechanical properties of sensory organs (39) by altering the signal-to-noise ratio (40). As 

we will argue in the following sections, top-down influences may be clearest when sensory 

input is completely absent: when experiences are hallucinated.

Hallucinations as Examples of Top-Down Penetration

Hallucinations (41) can have contents consistent with one’s affective state (42). When 

people are depressed, hallucinations can contain themes like guilt and disease. Those 

experienced during mania center around extraordinary powers (43). Changes in the content 

of hallucinations can be wrought by experimental mood manipulations (44). Thus affect may 

penetrate perception. However, auditory-verbal hallucinations (AVH) represent a 

derangement of normal function. Perhaps perception is normally impenetrable.

The existence of “non-clinical voice-hearers”—who have auditory hallucinations but do not 

reach clinical criteria for a psychotic disorder—argue against this hypothesis. Hallucinations 

of a loved one are common following bereavement (45–47). They are typically comforting 

and do not impair functioning (45, 46) (although see (47)); thus, hallucinations may not be 

abnormal per se. Non-clinical hallucinations also occur in the general population (48–52). 
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Estimates of their prevalence are as high as 28% (53) and only 25% of those meet the 

diagnostic criteria for a psychotic disorder (54). Thus, hallucinations may best be described 

as an extreme of normal functioning (48) rather than a failure of modularity.

Are hallucinations top-down processes? In a recent investigation (55), prior knowledge of a 

visual scene conferred an advantage in recognizing a degraded version of that image. 

Patients at risk for psychosis were particularly susceptible to this advantage. A bias toward 

top-down information is the basis for “sensory conditioning” (56–60), wherein a visual 

stimulus is established as a predictor of a difficult-to-detect auditory stimulus and 

participants begin to report auditory stimuli that were not presented on the basis of the visual 

cue. This effect is amplified in individuals who hallucinate (57). Experiences of uncertainty 

can increase top-down effects. When a participant’s sense of control over the environment is 

intentionally decreased (with spurious feedback), they tend toward illusory pattern 

perception, seeing nonexistent signal in noise and detecting illusory trends in the stock 

market (61).

The guidelines proffered by Firestone and Scholl (2) may serve as a useful roadmap for 

future studies of perceptual decision-making tasks. However, studying the penetrability of 

perception by way of hallucinatory experiences may circumvent these pitfalls. Participants 

report spontaneous, vivid experiences rich with sensory information that are unlikely to 

result from attentional biases. Neuroimaging data may likewise circumvent some critiques. 

We now try to integrate our understanding of hallucinations with notions of neural 

modularity and connectivity.

Brain lesions, modularity, connectivity and hallucinations

We propose that inter-regional effects mediate the penetration of perception by cognition. 

Some have discussed these top-down effects in terms of attention (2). Predictive coding 

theory conceives of attention in terms of the precision of priors and of prediction errors. 

Formally this could be implemented with a Kalman Filter (62, 63), which combines the 

predictive relationship between states (reliability), together with how this relationship is 

expected to change over time (the uncertainty) (64). This formalism can explain behavioral 

neuroscience observations in predictive learning (64). There are also encouraging human 

data. (65). However, precision weighting awaits more extensive empirical investigation in 

humans (particularly with regards to neurobiology and neurochemistry).

The precision of priors, in our example from the Introduction, may guide the search for 

threats in the shadows after having watched a scary movie. We contend that extremely 

precise (i.e., strongly weighted) priors could result in perception of particularly dark 

shadows, and—if priors are weighted strongly enough—could result in a hallucination. The 

supportive data are threefold: (i) a single case where a lesion caused hallucinations; (ii) 

functional connectivity between the lesion location and other regions; and (iii) effective 

(directional) connectivity in patients who suffer AVH. With these data, we will argue that 

top-down priors influence perception, thus violating a strictly encapsulated modular 

architecture.
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(i) Lesion-Induced Hallucinosis—In graph-theory approaches to network analysis, hubs 

are defined from network structure based on structural, functional or effective connectivity 

data. FMRI data analyzed using graph theoretic metrics parses the brain into hubs (sub-

networks), where a subset of regions connects those sub-networks (“connectors” in Figure 1, 

above). A module in graph theory has more within-group than between-group connections. 

A rich club is a collection of high degree hubs, more highly interconnected than predicted by 

chance. Lesions that impair cognition are more likely to be in rich-club hubs, or regions that 

mediate the long-range connectivity between connected information processing hubs (66). 

One such rich-club hub, the limbic system (including anterior insula cortex), has recently 

been implicated in the global specification of precision weighting or gain control (67) and 

has consistently been implicated in symptom capture fMRI studies of AVH (68, 69). It 

would be a challenge to call these circuits part of early perception. Rather, we will show 

regions like orbitofrontal cortex penetrate perceptual processing in primary sensory cortices 

giving rise to hallucinations.

Geddes and colleagues describe visual peduncular hallucinosis in a 66-year-old man 

following an ischemic stroke in the left pons, encompassing locus coeruleus (LC) (70). They 

found that functional connectivity between the LC and visual association cortex was reduced 

in the hallucinating patient. Conversely, functional connectivity between brainstem and 

visual association cortex, and between visual association cortex and prefrontal cortex (PFC), 

was significantly increased. In rodents, LC sends inhibitory noradrenergic inputs to visual 

cortex that improve perceptual acuity by gating target neurons (71). Norepinephrine may 

mediate the neuronal gain-control that implements this gating (72). Gain-control involves the 

weighting of conflicting cortical states to arbitrate which state governs experience (73). With 

higher gain, neuronal responses become more feature-selective and learning rate increases 

(74). This would be a candidate mechanism for our search for threatening figures on our 

walk home: if gain is driven up too high we may perceive villains where there are none.

The hallucinating patient had hyper-connectivity between visual association cortex and 

orbitofrontal cortex, a region that specifies top-down priors (75). PFC stimulation produces 

(76)—and frontal leucotomy ameliorates—hallucinations (77). These regions are outside of 

early perceptual modules.

(ii) Lesion effects on graph-theory metrics—Cognitive neuropsychology depends on 

the assumption that brain damage predominantly affects only the function of the damaged 

region. However, focal damage can disrupt whole-brain network organization (78). 

Intriguingly, damage to between-module connections (so-called rich club hubs, 

characterized as especially densely connected nodes (79) – see Figure 1) has more profound 

effects on cognitive performance (78) and, crucially, lesions alter connectivity in the 

opposing, un-lesioned hemisphere (78). The latter finding is difficult to reconcile with 

cognitive neuropsychology, which depends on very circumscribed damage effects (7).

We suggest that the rich-club hubs that alter global network function (and renounce 

encapsulation) are also the hubs involved in specifying global precision and therefore 

updating of inference in predictive coding (67). Patients with schizophrenia do have 

perturbed connectivity in rich club hubs in regions of the Default Mode Network and 
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salience network (80), which themselves have been linked to predictive coding (81). 

However, hallucinations have not been specifically related to these metrics (82), and this will 

be an important direction for future inquiry. Rich club hubs seem well placed to mediate the 

top-down influence of one module on another (83). Dehaene and Changeux embrace this 

idea in their global workspace model of conscious cognitive functions, in which connector 

hub brain regions mediate informational integration into a coherent whole (84). Dysfunction 

of this process has been extended to understand some of the problems in schizophrenia 

(although not hallucinations per se (85)).

In our predictive coding approach informational integration (between modules) is mediated 

via precision weighting of priors and prediction errors, perhaps through rich club hubs. 

Others before us have asserted congruence between neural and mental modules (88). 

However, the exact relationship between psychological modularity (86) and modularity in 

functional connectivity (87) remains an open empirical question.

(iii) Directional effects—Thus far, the lesion effects we have discussed do not say 

anything about directionality. Dynamic causal modeling (DCM) is a means of making 

inferences about directional or effective connectivity of fMRI data as a function of extrinsic 

inputs (e.g., tasks) or intrinsic network states (89). Curcic-Blake and colleagues (90) 

examined inner speech processing in patients with schizophrenia with and without auditory 

hallucinations using DCM. They found a relative dearth of connectivity from Wernicke’s to 

Broca’s areas in patients with auditory hallucinations, suggesting that the precision of 

processing in Broca’s was higher than in Wernicke’s, consistent with a relative reliance on 

top-down versus bottom-up signals in those who were hallucinations. These data suggest 

information from higher regions is penetrating lower region. On a finer scale, single unit 

recording data have demonstrated rich-club architecture between groups of cells and that 

rich-clubs are key mediators of transfer entropy (directional information flow) between other 

hubs (83).

Chanes and Barrett (83) observe that predictions flow from less to more laminated cortices 

(top-down) and prediction errors flow in opposite direction (bottom-up) (91). Limbic regions 

like the insula have the simplest laminar structure and as such they represent good 

candidates for the specification of priors. Insula may be a rich club hub (92), given its 

membership in a number of intrinsic circuits it is well placed to mediate the communication 

between intrinsic networks in the brain (92). Eldar, Cohen and Niv showed that perceptual 

gain (as measured by pupilometry) was correlated with clustering coefficients in functional 

connectivity of fMRI data (74). Correlations were particularly strong in regions with high 

clustering coefficients; voxels that had higher inter-correlation with other voxels (like rich 

club hubs). Taking these findings together, we speculate that rich club hubs are by virtue of 

their connectivity and functional activation, well placed to implement changes in gain 

control as a function of the precision of predictions and prediction errors.

Studies of bi-stable perception – percepts that switch in dominance, apparently under the 

influence of intrinsic factors (since nothing changes in the sensory input (93)), also support 

this notion. Pupil dilation predicts switches in bi-stable perception (both auditory and visual) 

(94). Bi-stable percepts switch more frequently in manic patients (95) and patients with 
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schizophrenia have less volitional control over the switches between bi-stable percepts (96). 

With regards binocular rivalry, Tononi and Edelman made similar observations in patients 

with schizophrenia (97), linking their observation to alterations in functional integration and 

segregation in the nervous system (98). Thus far, neither changes in bistability nor rivalry 

correlate with hallucinations. This will be a key empirical focus in future work.

DISCUSSION & FUTURE DIRECTIONS

We have argued that hallucinations demonstrate the top-down penetration of perception by 

cognitive processes. We presented behavioral and lesion data as well as functional and 

effective connectivity neuroimaging data that support our thesis. These data seem 

incommensurate with an encapsulated modularity of mind.

We take seriously the criticisms and failed replications of New Look experiments (2). 

However, we argue that the data we raise here cannot be dismissed in terms of demand 

characteristics or changes to post-perceptual judgment. Furthermore, we support our case 

with neural connectivity suggesting that those who hallucinate have enhanced directional 

top-down connectivity that modulate gain control mechanisms in sensory cortices. These 

mechanisms go beyond enhancement of selected inputs. They may sculpt percepts in the 

absence of sensation.

We framed these observations in terms of predictive coding, whose broad computational 

goal is to minimize prediction error (25). Predictive perception is penetrable to the extent 

that penetration minimizes overall long-term prediction error (99), and what we know will 

change what we see (99): that I know the lines in the Muller-Lyer illusion are identical does 

not render my perception veridical, because in the long term, the illusion is Bayes optimal 

(99), and knowing in this case does not minimize prediction error.

At odds with our theory, there are empirical data that demonstrate a reduced sensitivity to 

some illusions in patients with schizophrenia (100, 101). On the other hand, there is 

evidence that the influence of top-down priors is enhanced in psychotic states (102). These 

seem to be contradictory observations. Neither behavioral effect correlated with 

hallucinations specifically (weakened hollow-mask illusion correlates with disorganization 

symptoms, release from contextual suppression correlates with schizotypy, and enhanced 

impact of prior experience with stimuli correlates with schizotypal symptoms (102)).

Furthermore, other illusions may be enhanced in people with schizophrenia (for example the 

three flash illusion – in a manner that correlates with positive symptoms (103)). Clearly, a 

simple explanation of psychosis in terms of weak priors does not apply and illusions don’t 

consistently fail in these patients. Likewise, our proposal challenges theories that posit a 

failure of prediction or corollary discharge in generating hallucinations. These theories have 

not fared well when tested empirically. Patients with schizophrenia have impaired corollary 

discharge, but that effect is not related specifically to hallucinations (104).

Again, hierarchy may be crucial here (105). Whilst we eschew a strict informational 

separation between perception and cognition, we appreciate that perceptual systems are 

hierarchically arranged and that information processing can be impaired at different levels of 
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the hierarchy. Even staunch modularists allow for priors to influence perception within the 

perceptual module and argue that these processes mediate illusions (86). It is possible that 

illusions could fail at this level and hallucinations could be generated higher in the hierarchy.

Our own work with ketamine may also adjudicate. Ketamine does not usually engender 

hallucinations, but rather, illusions (alterations of stimuli that are present). We recently 

reported actual hallucinations (of music and voices) on ketamine (106). These hallucinations 

occurred in the MRI scanner, which is perceptually denuded (dark, still, rhythmically noisy). 

In prior work, we suggested (based on our functional imaging data) that ketamine enhances 

bottom up noise (107). In the same work, we argued sensory deprivation induces 

hallucinations, via top-down priors. This is similar to the paradoxical effect of hearing loss 

and vision loss on hallucinations. In response to low-level prediction errors (108) higher-

level precision increases to accommodate, producing non-veridical percepts. The isolation of 

the scanner provides an ambient sensory context that interacts with the bottom-up noise 

under ketamine, culminating in hallucinations.

Taken together, we argue that the dynamic interaction between priors and prediction errors 

give rise to hallucinations (109). This dynamic interaction is weighted differently at different 

levels of different hierarchies. Low-level impairments may give rise to illusions (and their 

failure in patients with schizophrenia) and higher-level perturbations may portend 

hallucinations. A brain hungry for priors (102) at the lowest levels of sensory input may try 

to satisfy that hunger by imposing more precise priors higher in the hierarchy—weighting 

perception towards expectation (rather than input) in a “listening attitude,” as Arieti put it 

(110)—which produces hallucinations (111). Critically, these effects high and low in the 

hierarchy, could be somewhat separated. Similar arguments have been put forth by Deneve 

& Jardri (112).

Recent apologists for Fodorian modularity do allow for attention to function as a back door 

through which some top-down effects can occur (2). In the predictive coding framework, 

attention involves the precision-weighting of predictions and prediction error (17). These 

gain-control mechanisms may be mediated by LC noradrenergic signaling as well as 

corticopetal cholinergic signals, which have also been implicated in hallucinatory 

phenomena (113). On the other hand, GABA and glutamate signaling may be involved in 

divisive normalization processes within a region or set of regions (114); this processing 

gates the impact of particular signals (114). Thus, within-module gain control is also 

possible. Our contention is that over-engagement of these processes renders priors overly 

precise, creating percepts in the absence of stimulus. Modulating noradrenergic, cholinergic, 

glutamatergic and GABAergic function may, therefore, have antipsychotic effects (115).

One criticism of cognitive penetration is that it is not under volitional control: we cannot 

conjure villains before our eyes at will. Some of the earliest phenomenological descriptions 

of schizophrenia actually describe such conjuring (of large insects for example) (116). A 

more recent example is found in the rise in popularity of the Tibetan spiritual practice of 

creating tulpas—a created companion which, through meditative practice, the creator is able 

to actually perceive (117). So-called ‘tulpamancy’ appears to involve a volitional choice to 

perceive specific agents (117). Whether tulpamancers are to be believed and whether 
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objective evidence can be provided will require further work. By using functional imaging 

data and multi-voxel-pattern analysis (MVPA) to train classifiers, it may be possible to 

discern the neural correlates of perception from imagination (118). If tulpamancy and, more 

broadly, hallucinations involve truly perceptual rather than imaginative or malingering 

processes, they ought to engage perceptual neural correlates and be classified as such.

Further, hallucinations often involve a lack of insight although in Charles-Bonnet Syndrome 

they are often recognized as lacking reality (119). Seth and others have argued that the sense 

of perceptual presence entails not only sensory but also motor predictions (120). Even in 

mice, motor cortical representations modulate gain control in primary sensory cortices (121). 

If a percept has affordances—signifiers for action—and if those signifiers interact 

appropriately with our sensory feedback, then we perceive it as present (120). In this way, 

some hallucinations have a presence whereas others do not (119). Comparing and 

contrasting these phenomena is a key direction for future work. Furthermore, behavioral 

tasks could be devised that explore the impact of tulpas and hallucinations on behavior – 

rather like the studies of synesthetes that rendered them a population who may illuminate 

how perception is organized (122, 123).

CONCLUSION

Using functional imaging data that focus on inter-regional connectivity, a computational 

perspective, and focusing on hallucinations, we have made the case that perception is not 

encapsulated. Rather, it can be penetrated by expectations, beliefs and emotions. While this 

may seem an academic exercise, a deeper understanding of the neural and cognitive 

architecture is essential for the more precise treatment of symptoms that are distressing and 

portend poor functional outcome.
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Figure 1. Hubs, Connectors and Modules
Connectors (black circles) and hubs (white squares) in modules. Hubs have many within-

module connections. Connectors have many between module connections
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