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Abstract

Drug combination is an appealing strategy for combating the heterogeneity of tumors and 

evolution of drug resistance. However, the rationale underlying combinatorial therapy is often not 

well established due to lack of understandings of the specific pathways responding to the drugs, 

and their temporal dynamics following each treatment. Here we present several emerging trends in 

harnessing properties of biological systems for the optimal design of drug combinations, including 

the type of drugs, specific concentration, sequence of addition and the temporal schedule of 

treatments. We highlight recent studies showing different approaches for efficient design of drug 

combinations including single-cell signaling dynamics, adaption and pathway crosstalk. Finally, 

we discuss novel and feasible approaches that can facilitate the optimal design of combinatorial 

therapy.

Introduction

Tumorgenesis is an evolutionary process during which a series of mutations rise and 

accumulate in cells, allowing them to grow beyond physiological limitations. Depending on 

their history, different cancer clones can use different strategies to escape growth controls. 

Even in a single tumor multiple regulatory pathways can be defective including apoptosis, 

migration, cell cycle arrest or suppression of the immune response [1]. Such heterogeneity 

among individual cancer cells often limits the efficacy of a single anticancer drug to fully 

eliminate all cells in a tumor.

One approach for overcoming therapy resistance is by combining multiple drugs. The main 

rationale behind combinatorial therapy is to suppress more than one pathway and therefore 

to synergistically eradicate the various clones that emerge in a tumor [2]. Such approaches 

have been proven successful in culture cells and in the clinic [3–7]. However, despite the 

great interest in, and potential of combinatorial therapies, the design of drug combination 

(e.g. specific concentration of each drug, sequence of addition, time interval between 

treatments) mostly relies on the knowledge from administrating each drug alone, and in 

many cases on trials and errors.
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The proper design of combinatorial treatments is critical for its success. Administration of 

one drug can lead to a dynamic response, which may increase or decrease the sensitivity of 

the cells to the second treatment. Such interactions may depend on the time interval between 

treatments, the state of the cells or the concentration of each drug. In most cases we lack the 

knowledge and understanding of how each drug impact cellular states that may interact 

epistatically with the second drug. In this review, we present recent discoveries about the 

dynamics of, and crosstalk between multiple signaling pathways that may have impacts on 

cellular states and their vulnerability, which can help rationalize the design of drug 

combination.

A. Signaling dynamics guide the design of combinatorial therapy

In response to external and internal inputs, signaling molecules act collectively to generate 

temporal changes in their level, localization or activity, here defined as “signaling 

dynamics”. Recently an increasing amount of evidence showed that quantitative features of 

signaling dynamics, such as the duration of the signal, its amplitude or accumulation rate, 

can carry biological information that is critical for cellular outcomes [8]. Specifically, 

several transcription factors have been shown to exhibit signal- and stimulus-specific 

dynamics that govern the transcriptional programs for differential cell fates. These include 

the transcription factor Msn2 in Saccharomyces cerevisiae [9], and p53 [10,11] and NF-kB 

[12] in human cells. The idea that signaling dynamics play an important role for cells was 

further strengthened by the fact that modulation of the dynamics of p53 levels and of ERK 

activity result in cell fate switch [11,13].

The processing of cellular information can vary dramatically between cells, and even 

genetically and developmentally equivalent cells may show different behaviors in response 

to the same stimulus. As a result, the average behavior of a population often represents a 

distorted version of individual patterns. For example, our studies on the p53 signaling 

pathway in single cells revealed a series of p53 pulses in response to DNA damage [14,15] 

and spontaneous p53 pulses in non-stressed conditions [16], which were masked by 

population averaging assays [17]. These newly identified behaviors of p53 led us to develop 

new models for the signaling circuits controlling p53 dynamics [10,15], and to identify a 

new information-transfer mechanism in this network [11]. These examples underscore the 

importance of tracking cellular and molecular responses at the single-cell level.

Can the dynamics of signaling molecules be used to guide the design of combinatorial 

therapies? In our recent work we found that when the oncogenic inhibitor of p53, MDMX, is 

suppressed, p53 shows two phases of dynamics in individual cells: an initial post mitotic 

high-amplitude pulse followed by small amplitude oscillations [18]. We further showed that 

these two phases of p53 dynamics are associated with activation of distinct p53 

transcriptional programs: the post-mitotic pulse led to a universal p53 response activating the 

transcription of genes involved in multiple programs including apoptosis and other pro-death 

signals. The second phase of small amplitude p53 oscillations led to a specific 

transcriptional activation of p21, a p53 target that regulates cell cycle progression and other 

pro-survival signals. These results suggest that MDMX suppression results in a 

transcriptional program switch regulated by biphasic p53 dynamics (Fig. 1B). Importantly, 
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these observations prompted us to examine the temporal effects in combining MDMX 

suppression with DNA damage.

MDMX is overexpressed in multiple cancers including malignant melanoma, glioma and 

breast cancer, where p53 activity is mostly suppressed [19–21]. As a result, MDMX 

suppression has been suggested as a therapeutic intervention for such cancer patients 

[22,23]. Since most patients with MDMX overexpression bear wild type p53, we designed a 

combinatorial therapy composed of MDMX suppression and chemotherapy that activates 

p53-dependent apoptotic function. The two distinct phases of p53 dynamics (Fig. 1A) and its 

transcriptional program (Fig. 1B) after MDMX suppression led to a switch in the interaction 

between chemotherapy and MDMX inhibition depending on the time interval between the 

two treatments (Fig. 1C). Specifically, when DNA damage was induced during the first 

phase of p53 dynamics, it synergized with MDMX suppression and led to more killing of 

the cancer cells. However, when DNA damage was given during the second phase of p53 

dynamics (p53 oscillations), MDMX suppression antagonized it and made the cells more 

resistance (Fig. 1C). In another recent study of p53 dynamics in response to the 

chemotherapy drug, Cisplatin, we revealed that the rate of p53 accumulation determined the 

likelihood of cell death [24]. This was caused by induction of the anti-apoptotic IAP 

pathway that antagonizes with p53-mediated apoptosis, leading to a combinatorial treatment 

where p53 is activated and the IAP pathway is inhibited, increasing the efficacy of Cisplatin. 

These studies showed that quantifying the dynamics of signaling molecules in single cells 

provide valuable temporal and spatial information on cellular status during drug treatments, 

which is critical for designing optimum schedule of drug combinations.

B. Drug combinations to counteract pathway adaptation

In order to maintain physiological homeostasis and to prevent signal overshoot, many 

signaling pathways exhibit negative feedback regulations. In many cases, negative feedbacks 

allow the system to reset itself back to the pre-stimulated state after the stimuli, a dynamic 

property also known as adaptation [25,26]. While adaptation in signaling pathways broadens 

the range of signal sensing and allows sensitive response to input change, it can also blunt 

drug response and cause drug resistance. A well-known example is the RTK-RAF-MAPK 

pathway adaptation to RAF inhibitors in tumors harboring BRAFV600E mutations [26,27].

RAF kinases (A, B and C) are major activating regulators of the mitogen-activated protein 

kinase (MAPK) cascade [28]. Growth factors active the upstream receptor tyrosine kinases 

(RTKs), which induce RAF kinases and the MAPK kinase ERK. ERK kinase then 

phosphorylates and activates transcriptional factors to promote cell cycle progression [29]. 

At the same time, ERK acts as a negative feedback to suppress upstream RTK and RAF 

kinases through direct inhibitory phosphorylations [27].

BRAF is highly mutated in various cancers including melanoma, thyroid and colorectal 

cancers [30]. The most common V600E mutation renders BRAFV600E constitutively active. 

The hyperactive BRAFV600E usually maintains strong ERK-mediated negative feedbacks 

thus low RTK activities. When treated with BRAFV600E specific inhibitor, there are three 

phases of dynamic changes in the pathway activity (Fig 2.) and [31]. Initially, the 

BRAFV600E and its downstream MAPK kinases are inactivated (Fig 2. Phase I). Thereafter, 
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the ERK-mediated negative feedback is relieved which results in activation of the upstream 

RTK and RAF kinases (Fig 2. Phase II). Finally, the RTK and RAF kinases activate ERK 

and ERK-mediated feedback and the pathway reaches a new steady state that can be close to 

pre-treatment state (Fig 2. Phase III).

Due to this pathway adaptation, the strongest drug effect of BRAFV600E inhibitor is transient 

and only last for a few hours. In addition, it also diminishes growth dependency of tumor 

cells on BRAFV600E oncogene; and in the longer term may allow tumors to develop drug 

resistance. A potential rational drug combination design that prevents these complications is 

to suppress the pathway adaptation by targeting the negative feedback components. Indeed, 

BRAFV600E inhibitors combined with MAPK inhibitors were shown to suppress the 

pathway adaptation and the overall activity of the RTK-RAF-MAPK pathway [32]. This 

strategy is effective in increasing drug response and is currently widely used in the clinic. 

Similar strategies may be examined and tested in other oncogenic signaling pathways with 

negative feedback controls.

C. Targeting signaling crosstalk

Similar to developmental and physiological cues, drug treatments can change or “rewire” 

cellular states. In particular, recent evidence suggests that targeted pharmaceutical 

interventions of a single signaling molecule can result in enhancement of cellular functions 

in traditionally defined different pathways through their crosstalk (Fig. 3). For instance, 

pharmacological suppression of PI3K in patients bearing PIK3CA-mutant ER-positive 

tumors strengthens estrogen receptor (ER) function and tumor reliance on estrogen signal, 

which inspires a combinatorial therapy to simultaneously suppress both PI3K and ER 

pathways [33]. Additionally, other crosstalk in signaling pathways including PI3K/AKT/

mTOR axis and PI3K/AR pathways have also been used to design combinatorial therapies 

[34–38].

Just like ripples propagating from the center of the perturbation, it takes time for a crosstalk 

to take place. A recent work showed that a proper temporal design of drug combination is 

required for targeting triple-negative breast cancers (TNBC) [39]. An inhibitor of EGFR was 

combined with chemotherapy drugs to synergistically kill TNBC. The synergy only existed 

when there was at least a minimum of four hours between the treatments. The authors then 

used systems profiling and a data-driven modeling (discussed below) to further identify the 

apoptotic pathway that changes over time after EGFR inhibition and sensitizes TNBC to the 

second chemotherapy. This study exemplified that the proper design of drug combinations 

requires understanding the temporal dynamics of crosstalk between pathways.

Despite these successful examples, we are still far from a comprehensive picture of crosstalk 

among signaling pathways, especially their dynamics in cell- and disease-specific contexts. 

For example, the time-dependent changes in apoptotic pathway in response to EGFR 

suppression occurs only in TNBC but not in two other tested cell types. In addition, the 

mechanism through which this crosstalk occur remains to be characterized [39]. Thus, there 

is a critical need to develop integrated approaches to identify cell- and tissue-specific 

regulatory mechanisms underlying pathway crosstalk in various diseases.
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D. Toward rational design of drug combinations

The preceding examples show how specific properties of signaling pathways, including their 

dynamics, adaptation and crosstalk can help identify companion drug combinations and the 

optimal temporal design of drug treatments. However, in the face of the daunting complexity 

of signaling pathways, what approaches would be most suitable and feasible to guide us 

toward an optimal design of combinatorial therapy?

One potential approach is to focus on well-characterized signaling molecules that are known 

to regulate critical cellular behaviors such as DNA damage response, inflammation and 

nutrient sensing. For example p53, NF-kB, mTOR, AKT, and ERK are hubs of signaling 

networks that integrate multiple upstream signals and in turn carry out multiple downstream 

outcomes. In this regard, their dynamics can be markers for cellular state as well as 

important clues for mechanistic dissection. In certain biological contexts, the dynamics 

themselves can be potential drug targets [40]. One illuminating example is the alternation of 

p53 dynamics to switch cellular decision from cell cycle arrest to senescence [11]. In this 

case, the construction of a kinetic model based on biochemical mechanisms of the p53 

pathway provides direct links between p53 dynamics and their underlying mechanisms. 

Furthermore, it enables the possibility of “drugging the signaling dynamics” by designing 

pharmaceutical perturbations that reshape p53 dynamics decisively with precise doses and 

timing of drug treatments. Thus, the construction of a mechanism-based kinetic model 

allows precise control of signaling dynamics for pharmaceutical purposes.

With the advance of high-throughput technologies, it is now feasible to profile cancer cells 

with their genomes, transcriptomes and proteomes during drug responses. A recent study set 

an important example of using a data-driven modeling approach to identify potential 

combination drug targets [39]. A data set composed of transcriptional profiles, protein levels 

and their modification states at multiple time points after the first drug treatment was 

collected. By applying an unbiased, data-driven modeling analysis to this data set [41], they 

successfully identified signaling molecules that are mostly associated with change in cellular 

state, which are potential drug targets for a second treatment.

In many cases, however, there is little prior information on cellular drug response and the 

corresponding molecular events. In such cases the challenge is to predict the effects of drug 

combinations when the information is sparse and limited. A recent in silico competition of 

the “AstraZeneca-Sanger Drug Combination Prediction Challenge [42]” advocates the use of 

integrated statistical modeling and machine learning approaches to identify data features in a 

large but sparse data set wherein more than ten thousand drug combinations were 

experimentally tested measuring cell viability over a hundred drugs. While it remains to be 

examined how general this approach is in predicting drug synergy, it has the potential of 

pointing to specific new strategies for designing optimal combination therapies.

While we begin to grasp the nature of biological systems for better cancer therapy, it is 

evidence that a proper design of drug combinations requires multiple lines of information, 

including human cancer genetics, cross talk between pathways, inter-cellular signaling in the 

cancer microenvironment and dynamic drug responses in individual cells. In addition, 

quantitative and reproducible measurements of drug responses are fundamentally important. 
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A recent study showed that the conventional drug response measurements using IC50 or 

Emax can be confounding due to different division rates of cells [43]. New drug-response 

metrics were derived to estimate drug-induced growth rate inhibition (GR), which can be 

critical in quantifying and predicting the effects of drug combinations. With the 

accumulation of such context-specific measures, our ultimate goal will be to search for 

general principles that can catalyze the rational design of drug combinations in multiple 

disease contexts.
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Highlights

• Optimal scheduling of drug combinations requires understanding of the 

changes in cellular states after each drug.

• The dynamics of signaling molecules are useful for assessing the changes in 

cellular states and can be potential drug targets.

• Signaling adaptation due to feedback control often blunts drug responses and 

can be suppressed using combinatorial therapy.

• Understanding the crosstalk between signaling pathways is critical for 

designing efficient combinatorial therapy.
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Figure 1. Schedule dependent interaction between MDMX suppression and DNA damage
(A) Mdmx suppression leads to two phases of p53 dynamics in single cells; post-mitotic 

pulse (blue) followed by low amplitude oscillations (yellow).

(B) The first phase of p53 activates pro-apoptotic signals, and the second phase activates 

pro-survival signals.

(C) The time interval between Mdmx suppression and DNA damage determines their 

interaction. A short interval leads to a synergistic effect and to more cell death. A long 

interval leads to an antagonistic effect and protect cells from death.
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Figure 2. RTK-RAF-MAPK pathway adaptation after BRAFV600E inhibitor treatment
Administration of the BRAFV600E inhibitor leads to three phases of ERK activity. The 

corresponding states of the underlying molecular mechanism for each phase are shown. The 

dominating interactions at each phase are marked by bold arrows. High activity levels of 

signaling molecules are shown in bold colored circles, while low activity levels are marked 

by faint circles.
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Figure 3. Pathway crosstalk after drug treatment
Drug administration leads to a gradual decrease in the drug-inhibited pathway (blue) 

followed by the activation of another signaling pathway (red) through their crosstalk 

reflected by the black inhibitory arrow.
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