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Abstract
Kidney transplantation (KTx) represents the best available treatment for patients with end-stage renal disease. Still, the full
benefits of KTx are undermined by acute rejection (AR). The diagnosis of AR ultimately relies on transplant needle biopsy.
However, such an invasive procedure is associated with a significant risk of complications and is limited by sampling error and
interobserver variability. In the present review, we summarize the current literature about non-invasive approaches for the
diagnosis of AR in kidney transplant recipients (KTRs), including in vivo imaging, gene-expression profiling and omics analyses
of blood and urine samples. Most imaging techniques, such as contrast-enhanced ultrasound andmagnetic resonance, exploit
the fact that blood flow is significantly lowered in case of AR-induced inflammation. In addition, AR-associated recruitment of
activated leucocytesmaybe detectable by 18F-fluorodeoxyglucose positron emission tomography. In parallel, urine biomarkers,
including CXCL9/CXCL10 or a three-gene signature of CD3ε, CXCL10 and 18S RNA levels, have been identified. None of these
approaches has yet been adopted in the clinical follow-up of KTRs, but standardization of analysis procedures may help assess
reproducibility and comparative diagnostic yield in large, prospective, multicentre trials.
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Introduction
Kidney transplantation (KTx) represents the best available treat-
ment for patients with end-stage renal disease. Each year, 3500
kidney transplants are performed in the EuroTransplant zone

(www.eurotransplant.org). Still, the full benefits of KTx are re-
grettably undermined by acute rejection (AR), which may be cel-
lular or antibody-mediated [1]. AR may affect kidney transplant
recipients (KTRs) throughout their lifetime, independent of age
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and gender [2]. Furthermore, subclinical AR affects 10–30% of
KTRs within the first year after KTx and is an early predictor of
subsequent graft failure [3–5]. Subclinical AR has been defined
as ‘the documentation by light histology of unexpected evidence
of AR in a stable patient’. Such a significant incidence of subclin-
ical AR has encouraged some transplant centres to perform ‘sur-
veillance’ transplant biopsies between 3 and 12 months after-
KTx. Since current immunosuppressive drugs efficiently treat
AR, diagnosing AR early is crucial. Regarding the particular case
of subclinical AR, there is still no consensus as to whether it
should be treated or not. Although there are centres that treat
subclinical AR, there are many others that do protocol biopsies
but do not compulsively treat those patients, because of the
lack of strong evidence about the risk/benefit balance of in-
creased immunosuppression. In a 10-year observational pro-
spective cohort study of 1001 consecutive non-selected KTRs
who underwent ABO-compatible, complement-dependent cyto-
toxicity-negative crossmatch KTx and who underwent screening
biopsies at 1 year, treatment of subclinical T cell–mediated AR
may result in similar long-term graft survival as in patients with-
out rejection. In contrast, subclinical antibody-mediated AR de-
tected at the 1-year screening biopsy carries a negative
prognostic value independent of initial donor-specific antibody
status, previous immunologic events, current estimated glom-
erular filtration rate (eGFR) and proteinuria [4].

In clinical practice, the detection of AR mostly relies on peri-
odic assessments of serum creatinine (SCr), an insensitivemeas-
ure of renal injury [6]. Ultimately, an AR diagnosis requires
transplant needle biopsy. Examining kidney samples by light mi-
croscopy provides well-characterized and gold-standard criteria
for renal AR, as summarized in the conventional Banff classifica-
tion [2, 7]. However, such an invasive procedure may cause graft
bleeding or arteriovenous fistula. In addition, distinct reports
highlighted sampling error and interobserver variability [8, 9].
Moreover, repeated biopsies to evaluate renal graft status pose
challenges, including practicability and cost. Therefore, alterna-
tive, less invasive but as sensitive modalities are currently
under investigation to reinforce our armamentarium in AR diag-
nosis [1, 10–16]. Likewise, it would be useful to non-invasively
predict non-rejection in KTRs with acute renal dysfunction and
suspected AR to avoid needless transplant biopsy. The term
‘acute dysfunction with no rejection’ (ADNR) has been recently
proposed by Kurian et al. [17] to reflect such a condition in
which AR is suspected on the basis of clinical and biological judg-
ments but not confirmed by histology. The mechanisms and
long-term consequences of ADNR remain unknown.

In the present review, we summarize the current literature
about non-invasive approaches for the diagnosis of AR in KTRs,
including gene-expression profiling and omics analyses of
blood and urine samples. A large number of studies have looked
for biomarkers in the field of renal AR. In particular, the develop-
ment of omics technologies, including transcriptomics, proteo-
mics and metabolomics, that respectively quantify the
abundance of mRNA, proteins and metabolites present in cells,
tissue extracts or biofluids, has opened up new opportunities in
the non-invasive diagnosis of renal AR. Most studies have fo-
cused on T cell–mediated AR, with less information about anti-
body-mediated AR. Banham and Clatworthy [18] have recently
detailed the emerging literature about putative B cell biomarkers.
Of note, the benefits and limitations of imagingmethods, such as
magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose
positron emission computed tomography (18F-FDG-PET/CT), in
the workup of renal AR are reviewed in a complementary Part I
article.

Transcriptomics

The ‘transcriptome’ corresponds to mRNA produced in toto by a
cell or a tissue [19]. Transcriptomic analysis quantifies the ex-
pression levels of gene transcripts, thereby identifying actively
expressed genes at a given time under a given physiological or
pathological condition [20]. The most commonly used methods
for gene-expression profiling are microarray and more recently
RNA-seq [19, 20].

In urine, transcriptomics detects immune response occurring
in case of renal AR by assessing urinary cell levels of mRNA
(Table 1). Principal targets are membrane markers of cytotoxic T
lymphocytes, which play a central role in the AR process, as
well as chemokines and their corresponding receptors [13]. In par-
ticular, chemokine receptor CXCR3 and its ligand interferon (IFN)-
inducible protein-10 (IP-10, also calledCXCL10) have beendemon-
strated to play a key role in T cell activation and allograft destruc-
tion [53]. In 2010, Tatapudi et al. [24] measured the level of urinary
transcripts for IP-10 and CXCR3 in 63 urine specimens of 58 KTRs
with acute renal dysfunction, including 27 biopsy-proven ARs,
and 27 urine specimens from 24 KTRs with stable allograft func-
tion. The levels of CXCL10 and CXCR3 mRNA were significantly
higher in urinary cells from patients with AR compared with con-
trols, suggesting that CXCL10 and CXCR3 mRNA may represent
urine biomarkers of renal AR (for CXCL10: sensitivity 100%, speci-
ficity 78% for a cut-off value of 9.11 copies; for CXCR3: sensitivity
63%, specificity 83% for a cut-off value of 11.59 copies). Additional
studies of the same group focused onCD103, a cell surfacemarker
of intratubular CD8 cells. The authors found significantly higher
CD103 mRNA levels in urinary cells from 30 patients with AR
[21]. Additionally, components of the lytic equipment of cytotoxic
cells, such as perforin [54] and granzyme B [55], were investigated.
Li et al. [29] used 24 urine specimens from 22 KTRs with biopsy-
proven AR and 127 urine samples from 63 stable KTRs and
found higher levels of perforin and granzyme B mRNA in the
urine of patientswith documented AR (sensitivity 83%, specificity
83% with the use of a cut-off value of 0.9 fg of perforin mRNA/μg
total RNA; sensitivity 79%, specificity 77% with the use of a cut-
off value of 0.4 fg of granzyme B mRNA/μg total RNA, for the pre-
diction of AR). Tremendous efforts by the Clinical Trials in Organ
Transplantation (CTOT) consortium have strengthened data from
previous single-centre studies. In 2013, Suthanthiran et al. [1] pro-
spectively collected urine samples from 485 KTRs from multiple
transplant centres at different times following KTx, including at
the time of per-cause transplant biopsy. Levels of mRNA of
CD3ε, perforin, granzyme B, proteinase inhibitor 9, CD103, IP10,
CXCR3, transforming growth factor β1 (TGF-β1) and 18S ribosomal
RNA (rRNA) were quantified by PCR. A three-gene signature of
CD3ε mRNA, CXCL10 mRNA and 18S rRNA levels was defined as
the best predictive model of biopsy-proven AR, with an area
under the curve (AUC) of 0.85 (sensitivity 79%, specificity 78%).
This signature also allowed them to distinguish acute cellular-
mediated from antibody-mediated rejection and borderline rejec-
tion (AUC 0.78). Retrospectively, the authors noticed that the ex-
pression levels of CD3ε mRNA, CXCL10 mRNA and 18S rRNA
significantly increased during the 20-day period preceding the
per-cause biopsy confirming the diagnosis of AR [1]. These obser-
vations suggest that this three-gene signaturemay be a promising
tool formonitoring the immune status of KTRs. Indeed, increased
levels of urinary mRNA at follow-up may prompt transplant bi-
opsy, thereby allowing faster adjustments of immunosuppressive
therapy. The main limitations of this study include the small
number of patients with antibody-mediated rejection and the
fact that 54 of 298 urine RNA biopsy-matched samples did not
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pass quality controls [1]. Urine specimens were classified as pas-
sing quality control if the 18S rRNA copy number was ≥5 × 107/μg
total RNA isolated from the urine pellet and if the TGF-β1 mRNA

copy number was ≥100 copies/μg of total RNA isolated from the
urine pellet. if either threshold was not met, the specimen was
classified as failing quality control.

Table 1. Transcriptomics in the non-invasive diagnosis of renal acute rejection

Transcriptomics Gene Se/Sp (%) n (aRx) References

Urine CD 103 59/75 30 Ding et al. [21]
CXCL10 (IP-10) NA 54 Matz et al. [22]

NA 300 Rabant et al. [23]
100/78 27 Tatapudi et al. [24]

CXCR-3 63/83 27 Tatapudi et al. [24]
Fox P3 90/73 36 Muthukumar et al. [25]
Granulysin 80/100 14 Kotsch et al. [26]

96/67 31 Seiler et al. [27]
Granzyme A 80/100 27 Van Ham et al. [28]
Granzyme B 79/77 22 Li et al. [29]

88/79 29 Muthukumar et al. [30]
60/100 31 Seiler et al. [27]

miR-210 52/74 62 Lorenzen et al. [31]
NKG2D 77/81 31 Seiler et al. [27]
Perforin 83/83 22 Li et al. [29]

88/79 29 Muthukumar et al. [30]
PI-9 (serine proteinase inhibitor-9) 76/79 29 Muthukumar et al. [30]
Tim-3 NA 30 Renesto et al. [32]

84/96 115 Manfro et al. [33]
Combination of mRNA for OX40, OX40L, PD-1 and Fox P3 95/92 21 Afaneh et al. [34]
3-gene signature: 18S ribosomal mRNA,CD3ε mRNA and CXCL10 mRNA 79/78 47 Suthanthiran et al. [1]
6-gene signature: CD3ε, CD105, CD14, CD46 and 18S rRNA NA 52 Matignon et al. [35]

Blood and PBMCs CD40L 92/90 25 Shoker et al. [36]
CXCL10 (IP-10) NA 32 Mao et al. [37]
CXCL13 NA 32 Mao et al. [37]
Fas ligand 91/81 11 Vasconcellos et al. [38]
Fox P3 NA 28 Wang et al. [39]
Granulysin NA 53 Sarwal et al. [40]
Granzyme B 50/85 8 Dugré et al. [41]

63/96 8 Sabek et al. [42]
72/87 17 Simon et al. [43]
64/85 11 Vasconcellos et al. [38]

IFN-γ 63/85 8 Dugré et al. [41]
IL-2 NA 6 Lee et al. [44]
IL-4 50/85 8 Dugré et al. [41]

6 Lee et al. [44]
IL-5 63/92 8 Dugré et al. [41]
IL-6 50/92 8 Dugré et al. [41]
IL-10 NA 6 Lee et al. [44]
IL-15 NA 6 Lee et al. [44]
IL-18 NA NA Striz et al. [45]

64/92 17 Simon et al [46]
IFN-γ 63/85 8 Dugré et al. [41]
HLA-DRA 83/79 8 Sabek et al. [42]
miR-142-3p 100/65 17 Soltaninejad et al. [47]
miR-223 100/76 17 Soltaninejad et al. [47]
Notch-1 NA 32 Zheng et al. [48]
OX40 80/85 20 Wang et al. [49]
PD-1 NA 19 Wang et al. [50]
Perforin 50/92 8 Dugré et al. [41]

63/74 8 Sabek et al. [42]
NA 7 Shin et al. [51]
88/82 17 Simon et al. [43]
82/75 11 Vasconcellos et al. [38]

Tim-3 100/87.5 24 Luo et al. [52]
87/95 115 Manfro et al. [33]

Se, sensitivity; Sp, specificity; n (AR), number of patients with acute rejection; NA, not available.
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T regulatory lymphocytes (Tregs) represent a subpopulation
of T cells characterized by the expression of the transcription fac-
tor Foxp3, which participates in restraining the expansion of ef-
fector T cells [56]. Tregs are potentially involved in the
promotion of kidney transplant tolerance [57]. Muthukumar
et al. [25] reported that the urinary abundance of Foxp3mRNA, ex-
pressed as the ratio of FOXP3mRNA copies to 18S ribosomal RNA
copies, was significantly higher in 36 patientswith biopsy-proven
AR (3.8 ± 0.5) than in patients with chronic allograft nephropathy
(1.3 ± 0.7) or normal histology (1.6 ± 0.4). The optimal cut-off for
FOXP3 mRNA reached 3.46 [25]. High levels of FOXP3 mRNA
were independently predictive of reversible AR and lower risk
of graft failure. These findings are consistent with the hypothesis
that Treg cells serve to limit anti-allograft immunity and that the
lack of counterregulation by Treg cells during an episode of AR re-
sults in unrestrained effector cell activity, impaired allograft
function and even graft failure.

Finally, microRNAs (miRNAs) are small, non-coding RNAmo-
lecules implicated in the post-transcriptional regulation of gene
expression [58, 59]. Lorenzen et al. [31] compared the urinary pro-
file of miRNAs of stable KTRs (n = 19) and KTRs with biopsy-
proven AR (n = 62) and identified one miRNA as a potential
biomarker for AR:miR-210. Low levels ofmiR-210were independ-
ently associated with poorer kidney function at 1 year post-KTx.
Accumulating evidence underlines a critical function formiRNAs
in the modulation of innate and adaptive immune responses.
Anglicheau et al. [60] identified a set of miRNAs highly dysregu-
lated in renal biopsy samples and peripheral blood mononuclear
cells (PBMCs) of patients with AR. As opposed to circulating plas-
ma or serum miRNAs, dysregulated urinary miRNAs might be a
better estimate of local intrarenal changes. Circulating miRNAs,
in contrast, might be released by a variety of renal and extrarenal
tissues. The fact that miR-210 decreases specifically with the de-
velopment of AR and increases to control levels after successful
anti-rejection therapy provides evidence that miR-210 may
serve as a novel biomarker of AR.

In blood, gene transcripts have also been considered as poten-
tial sources for biomarkers of AR (Table 1). Transcriptomics of
PBMCs seems to be more comprehensive since it most likely re-
flects the immune cells infiltrating the allograft at the time of
AR [13]. An interesting recent multicentre prospective study per-
formed by Kurian et al. [17] highlighted that global gene-expres-
sion profiling of PBMCs by DNA microarrays can be achieved to
distinguish KTRs with normal renal function and biopsy hist-
ology (n = 46) from those with AR (n = 63) and those with ADNR (n
= 39). Genome-wide profiling was executed on whole blood sam-
ples and collected at the same time as kidney biopsies. Multiple
three-way classifier tools determined the 200 highest-value
probe sets, with sensitivity ranging from 82 to 100% and specifi-
city ranging from 76 to 95%. The authors acknowledged that their
study design did not actually allow them to associate these gene
signatures as predictive markers, but only as a part of a serial
blood monitoring protocol. A prospective serial monitoring
study is ongoing to validate these three-way classifiers [17].

In parallel, Dugré et al. [41] studied gene-expression profiling
in PBMCs of 61 KTRs, including 8 with biopsy-proven AR. The
authors detected higher levels of IL-4, IL-5, IL-6, IFN-γ, perforin
and granzyme B mRNA in patients with AR. Interestingly, up-
regulation of at least two of these markers is detectable in 75%
of patients with AR, but only 25% of patients with ADNR. Further-
more, Vasconcellos et al. [38] analysed cytotoxic lymphocyte gene
expression in 25 patients: up-regulation of any of two genes
among perforin, granzyme B and Fas ligand had excellent posi-
tive predictive value (100%) and negative predictive value (NPV;

95%) of biopsy-proven AR [38]. Wang et al. [49] compared the
level of costimulatory molecules OX4O and OX40L mRNA in
PBMCs from KTRs with biopsy-confirmed AR (n = 20) and KTRs
with normal renal function and histology (n = 20). OX40 is mainly
expressed on T lymphocytes while OX40L is transiently ex-
pressed on antigen-presenting cells. Their interaction is critical
for antigen-specific T cell expansion and survival [61]. The
authors found a significant increase in OX40 mRNA and a
non-significant increase in OX40L mRNA in PBMCs in AR
[49, 62]. Similarly, in the Assessment of Acute Rejection in Renal
Transplantation (AART) study, a 17-gene set (kSORT) inblood sam-
ples allowed identification of patients at high risk for AR [63].

Various studies have focused on cytokine gene expression
[64], considering the fact that they are crucial mediators in
renal AR. Lee et al. [44] analysedmRNA cytokine transcripts in se-
quential blood samples of six KTRs. The authors observed an in-
creased expression of genes encoding IL-2, IL-4 and IL-15 and a
decreased expression of the IL-10 gene in pre-rejection samples
compared with controls (post-KTx samples). In another study
of 51 patients among whom 32 had biopsy-proven AR, Mao et al.
[37] concluded that gene expressions of chemokines C and
CXCL13 were highly up-regulated in PBMCs in case of renal AR,
with, intriguingly, even higher levels in AR-resistant patients (n =
10, poor response to anti-rejection therapy) compared with
AR-sensitive patients (n = 22, good response to anti-rejection
therapy) [37]. However, there was no difference in CXCL10 levels
between AR and ATN.

Finally, the expression of miRNA in the serum and PBMCs of
KTRs with AR has also been investigated. In a recent study per-
formed on 17 patients with AR and 18 patients with normal allo-
grafts, Soltaninejad et al. [47] showed a differential expression
pattern of microRNAs in PBMCs of KTRs with T cell–mediated
AR, with a significant increase of miR-142-3p and miR-223. This
was not confirmed in serum samples by Betts et al. [65].

Proteomics

Proteomics refer to the detection and functional investigation of
proteins present in a cell, tissue, organ or organism at a definite
moment [66]. Thismethodcanbeapplied toestablishprotein iden-
tity and/or to characterize protein–protein interactions [66]. Ac-
quiring proteomic data is complex and can be achieved using a
wide range of procedures, such as protein electrophoresis, en-
zyme-linked immunosorbent assay (ELISA) or mass spectrometry.

In urine, several biomarkers have been identified in renal AR
(Table 2). These include cytokines and their binding receptors,
extracellular matrix proteins and renal tubular cell components,
such as CXCL9, CXCL10, NGAL, KIM-1, IL-1R and IL-20 [13]. Cur-
rently, themost promising biomarkers are IFN-γ-induced protein
10 kDa (IP-10, also known as CXCL10) and monokine induced by
IFN-γ (MIG, also known as CXCL9). CXCL9 and CXCL10 are impli-
cated in the recruitment of activated T cells to the site of inflam-
mation, thereby promoting tissue infiltration and inflammation
[88]. In a study of 75 KTRs, Schaub et al. [74] demonstrated that
urinary CXCL9 and CXCL10 levels were significantly higher in
subclinical tubulitis Ia/Ib than in subclinical borderline tubulitis
and normal tubular histology, which indicates a correlation be-
tween chemokine levels and the extent of subclinical tubulitis.
In contrast, Jackson et al. [73] performed a cross-sectional urinaly-
sis of 110 adult and 46 pediatric KTRs across multiple diagnoses,
including inflammatory and non-inflammatory conditions. The
authors found that urine CXCL9 and CXCL10 were equivalently
elevated, without statistically significant distinction, in both
adults and children with acute kidney injury (AKI) and BK virus
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infection. These observations suggest that urine CXCL9 and
CXCL10 actually detects inflammation in kidney allografts, but
do not point towards a specific cause [73, 89]. Another prospect-
ive, multicentre observational study of 280 KTRs designed by Hri-
cik et al. [71] compared the diagnostic and predictive utility of
non-invasive biomarkers for transplant outcomes. The investiga-
tors found that urinary levels of CXCL9 were significantly higher
in patients with greater than Banff 1a AR, with an elevation de-
tectable up to 30 days before per-cause biopsy. The authors sug-
gested that low urinary CXCL9 in KTRs presenting with acute
renal dysfunction could be used to rule out AR with a NPV of
>92%. In a recent review paper, Hirt-Minkowki et al. [15] con-
cluded that urinary CXCR3 chemokines may help detect subclin-
ical rejection since their levels increase before clinical
manifestations of AR.

Neutrophil gelatinase–associated lipocalin (NGAL) has also
been assessed as an indicator of AKI in KTRs [64]. Heyne et al.
[78] measured urinary NGAL in 182 KTRs on maintenance im-
munosuppression with stable allograft function (n = 138), AR (n =

9) or AKI fromother causes (n = 44). In this cohort, levels of urinary
NGAL (with a cut-off at 100 ng/mL) were able to discriminate AR
fromADNR,with anAUCof 0.98 (sensitivity 100%, specificity 93%).

In blood, the identification of biomarkers appears even more
challenging, considering the ratio between the abundance of
plasma proteins and the putative low concentration of the pro-
teins of interest [13, 90]. Blood proteome is largely composite
and complex since it reflects the secretion and absorption of pro-
teins from every tissue in the body, which therefore requires
highly resolving fractionation methods [91]. Preliminary results
in a study conducted by Cibrik et al. [92] using cohorts of healthy
subjects, stable KTRs and KTRs with biopsy-proven AR suggest
that a specific pattern of protein expressionmay help distinguish
KTRswith AR. By Luminex, Xu et al. [87] retrospectively compared
the levels of 95 cytokines/chemokines and their soluble receptors
in the serum of 526 patients with versus without AR. They de-
tected different expression patterns in 26 proteins in pre-AR pa-
tients compared with stable controls. The combination of IL-1
receptor antagonist, IL-20 and sCD40L showed the most accurate

Table 2. Proteomics in the non-invasive diagnosis of renal acute rejection

Proteomics Protein Se/Sp (%)
n
(AR) References

Urine ANXA11 NA 10 Srivastava et al. [67]
β2-microglobulin 83.3/80 30 Oetting et al. [68]
β-Defensin-1/α1-antichymotrypsin NA 42 O’Riordan et al. [69]
C4d NA 26 Lederer et al. [70]
CXCL9 83/84 53 Hricik et al. [71]
CXCL9:Cr 86.4/91.3 28 Hu et al. [72]

86/80 25 Jackson et al. [73]
86/64 22 Schaub et al. [74]
93/89 15 Hauser et al. [75]
81.2/34.5 300 Rabant et al. [23]

CXCL10 (IP-10) 86.4/91.3 28 Hu et al. [72]
CXCL10:Cr 80/76 25 Jackson et al. [73]

68/90 22 Schaub et al. [74]
77/60 35 Blydt-Hansen et al.

[76]
81.6/50.8 300 Rabant et al. [23]

Fractalkine 74.4/75 67 Peng et al. [77]
Integrin α3 NA 10 Srivastava et al. [67]
Integrin β3 NA 10 Srivastava et al. [67]
NGAL 90 (cut-off = 30 ng/mL)/91

(cut-off >130 ng/mL)
9 Heyne et al. [78]

TNF-α NA 10 Srivastava et al. [67]
sVCAM NA 26 Lederer et al. [70]
9 urine proteins (HLA class II protein HLA-DRB1, KRT14, HIST1H4B,
FGG, ACTB, FGB, FGA, KRT7, DPP4)

NA 74 Sigdel et al. [79]

Blood CXCL10 (IP-10) 73.3/68 15 Zhang et al. [80]
CXCR3 80/76 15 Zhang et al. [80]
CD30 70/71.7 23 Nafar et al. [81]

88/100 25 Pelzl et al. [82]
70/73.6 10 Shooshtarizadeh et al.

[83]
Fractalkine 73.3/65 15 Zhang et al. [80]
IL-2 NA 7 Kutukculer et al. [84]
IL-4 NA 7 Kutukculer et al. [84]
IL-6 NA 7 Kutukculer et al. [84]
M-CSF 80/NA 25 Le Meur et al. [85]
18 plasma proteins (titin, lipopolysaccharide-binding protein,
peptidase inhibitor 16, complement factor D, etc.)

80/90a 27 Freue et al. [86]

Combination: IL-1r antagonist, IL-20 and sCD40L 91/96 NA Xu et al. [87]

Se, sensitivity; Sp, specificity; n (AR), number of patients with acute rejection; NA, not available.
aClassification of BCAR based on a four-protein ELISA classifier: CFD, LCAT, SHBG and F9.
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discrimination for AR (sensitivity 91%, specificity 96%). Further-
more, this signature was able to distinguish patients with AR
from those with non-immunological delayed graft function
(DGF). Freue et al. [86] used isobaric tag for relative and absolute
quantification (iTRAQ) technology to identify proteomic signa-
tures in plasma during early AR in a case–control discovery co-
hort of 305 patients, including 27 cases of AR. A panel of 18
plasma proteins discriminating AR biopsy was identified and in-
cluded titin, lipopolysaccharide-binding protein, peptidase in-
hibitor 16, complement factor D, mannose-binding lectin,
protein Z-dependent protease, β2-microglobulin, kininogen-1,
afamin, serine protease inhibitor, phosphatidylcholine-sterol
acyltransferase and sex hormone–binding globulin [86].

Finally, a prospective study including 77 KTRs was performed
by Shooshtarizadeh et al. [93] using serum samples collected 24 h
before KTx and analysed for CD30 by ELISA. CD30 is a co-stimula-
tory molecule, notably expressed by a subgroup of activated T
cells, with pleiotropic functions. The authors found a significant
correlation between pre-transplant serum levels of CD30 and AR
(PPV = 29.1%, NPV = 94.3%) [83]. Similarly, Trailin et al. [94] ob-
served a significant decrease in the level of sCD30 measured by
ELISA 4 days after KTx in non-rejecting patients, in strong con-
trast to rejecting patients. Nafar et al. [81] compared the pre-
transplant and post-transplant serum levels of CD30 in 203
KTRs and found that post-transplant sCD30 was higher in the
AR group than in controls (cut-off value at 41 U/mL).

Metabolomics

The term ‘metabolomics’ refers to ‘the comprehensive charac-
terization of small molecules in biological systems which
provides an overview of the metabolic status and global
biochemical events associated with a cellular or biological sys-
tem’ (www.metabolomicssociety.org). Such global profiling ap-
pears particularly useful to identify novel prognosis and
diagnosis markers. In nephrology, metabolomics has been ap-
plied to study drug-induced AKI and ischaemia–reperfusion
injury [95, 96].

In urine, Blydt-Hansen et al. [12] retrospectively used quanti-
tative mass spectrometry (MS) to assay samples (n = 277) from 57
paediatric KTRs with surveillance or per-cause kidney biopsies
(Table 3). Samples without cellular-mediated AR (n = 183) were
comparedwith borderline tubulitis (n = 54) and cellular-mediated
AR (n = 30). This pilot study established sensitive and specific cor-
relations of urine MS metabolome with cellular-mediated AR.
Most important, urinarymetabolites contributing to the discrim-
inant score for cellular-mediated AR included proline, produced
by activated macrophages, and kynurenine (Kyn), implicated in

the Th1 immune response. Significant limits of this non-
prospective study need to be acknowledged, including (i) the
lack of timed samples immediately before or after transplant bi-
opsy, (ii) the late profile post-KTx of most AR episodes, (iii) the
limitation to paediatric KTRs and (iv) the lack of documentation
in antibody-mediated AR. In adult KTRs, anMS-basedmetabolite
signature of the ratio of 3-sialyllactose to xanthosine in urine
supernatants was able to discriminate cellular-mediated AR
from non-rejection in 1516 urine samples from the multicentre
CTOT-04 study [97]. It should be emphasized, however, that this
studyonly focused onpatientswith biopsy-confirmedAR andpa-
tients with normal histology, and did not systematically evaluate
the diagnostic performance in ‘real-life’ patients with allograft
dysfunction due to any cause, including antibody-mediated AR,
ADNR or BK virus nephropathy. Furthermore, urine samples
were cell-free supernatants collected after centrifugation,
which significantly influence metabolomics results [100]. Nu-
clear magnetic resonance (NMR)-based metabolomics of the
urine has never been applied to urine from KTRs with AR. Com-
pared with MS, NMR-based metabolomics has the benefits of
being non-destructive, quantitative, highly reproducible and
less time consuming, with minimal sample preparation [101].
This technique is particularly adapted to analyse biofluids such
as urine [102].

In blood, Zhao et al. [98] investigatedmetabolic changes linked
to AR in KTRs with (n = 11) and without (n = 16) AR by applying a
non-targeted liquid chromatography (LC)-MS approach (Table 3).
The investigators detected discriminative metabolites of AR, in-
cluding creatinine, kynurenine, uric acid, polyunsaturated fatty
acid, phosphatidylcholines, sphingomyelins and lysophosphati-
dylcholines. More specifically, the serum level of tryptophan
(Trp) was decreased in the non-AR group, whereas Kyn was in-
creased. The increase in the Kyn:Trp ratio may be caused by in-
creased activity of indoleamine 2,3-dioxygenase, which may be
graft protective. Another study designed by Mao et al. [99] using
gas chromatography-MS analysed serum metabolome in 22
KTRs with AR versus 15 stable KTRs and highlighted a metabolo-
mic pattern of rejection. The levels of 17 metabolites, including
amino acids, carbohydrates, carboxylic acids and lipids, as well
as lactate, urea and myo-inositol, were significantly higher in
the AR group than in controls, whereas the levels of alanine, ly-
sine, leucine, aminomalonic acid and tetradecanoic acid were
lower in the AR group.

Conclusions
Renal AR remains one of the leading causes of reversible acute
dysfunction in KTRs and is an early predictor of subsequent

Table 3. Metabolomics in the non-invasive diagnosis of renal acute rejection

Metabolomics Metabolite Se/Sp (%) n (aRX) References

Urine Kynurenine 83/83 183 Blydt-Hansen et al. [12]
Proline 83/83 183 Blydt-Hansen et al. [12]
mRNA signature + 1.1164*log(3-sialyllactose/xanthosine) kynurenine 82/87 242 Suhre et al. [97]

Blood Creatinine, kynurenine, uric acid, polyunsaturated fatty acid,
phosphatidylcholines, sphingomyelins, lysophosphatidylcholines and
more specifically Kyn/trp

NA 11 Zhao et al. [98]

Levels of 17 metabolites, including amino acids, carbohydrates, carboxylic
acids, lipids, lactate, urea and myo-inositol

NA 22 Mao et al. [99]

Levels of alanine, lysine, leucine, aminomalonic acid and tetradecanoic acid NA 22 Mao et al. [99]

Se, sensitivity; Sp, specificity; n (AR), number of patients with acute rejection; NA, not available.
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graft failure [3, 4]. The diagnosis and classification of AR ultimate-
ly rely on transplant needle biopsy. However, the rapid develop-
ment of innovative imaging techniques and biofluid analysis by
omics may help non-invasively detect AR, thereby hastening
and improving KTR management. Furthermore, non-invasively
discriminating AR from ADNR would help avoid needless and
risky transplant biopsies. On the basis of the current literature,
pioneering imaging approaches, including MRI and 18F-FDG-
PET/CT [16, 103], and urine biomarkers, including CXCL9,
CXCL10 or a three-gene signature of CD3ε, CXCL10 and 18S RNA
levels, appear most promising. Nevertheless, none of these ap-
proaches has been adopted yet in the clinical follow-up of
KTRs. This may be partly explained by methodological limita-
tions, cost and biological plausibility [104, 105]. Standardization
and validation of analysis procedures are urgently required to as-
sess reproducibility in prospective multicentric trials. Further-
more, additional studies should focus on the comparative
diagnostic yield of imaging versus omics methods, as well as
on the benefits of combining both approaches.
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