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Mesenchymal stem cells derived from adipose tissue (ASC) have immune regulatory function, which makes them interesting
candidates for cellular therapy. ASC cultures are however heterogeneous in phenotype. It is unclear whether all ASC contribute
equally to immunomodulatory processes. ASC are also responsive to cytokine stimulation, which may affect the ratio between
more and less potent ASC populations. In the present study, we determined IL-6 receptor (CD126 and CD130 subunits) and
IFN-γ receptor (CD119) expression on ASC by flow cytometry. The production of IL-6 and IFN-γ was measured by ELISA and
the frequency of IL-6 and IFN-γ secreting cells by ELISPOT. The results showed that ASC did not express CD126, and
only 10–20% of ASC expressed CD130 on their surface, whereas 18–31% of ASC expressed CD119. ASC produced high
levels of IL-6 and 100% of ASC were capable of secreting IL-6. Stimulation by IFN-γ or TGF-β had no effect on IL-6 secretion
by ASC. IFN-γ was produced by only 1.4% of ASC, and TGF-β significantly increased the frequency to 2.7%. These results
demonstrate that ASC cultures are heterogeneous in their cytokine secretion and receptor expression profiles. This knowledge
can be employed for selection of potent, cytokine-producing, or responsive ASC subsets for cellular immunotherapy.

1. Introduction

Mesenchymal stem cells (MSC) are adult stem cells with
the ability to differentiate into several lineages, such as
osteoblasts, chondrocytes, myocytes, and adipocytes [1].
Initial studies focused on MSC derived from the bone
marrow but subsequently the presence of MSC in, amongst
others, adipose tissue was demonstrated [2], so-called adi-
pose tissue-derived mesenchymal stem cells (ASC). Adipose
tissue has some advantages above the bone marrow as a
source of MSC as it is relatively easy to access, it is
abundant, and the procedure for isolating ASC is easy
[3]. It is well known that ASC have a broad immune reg-
ulatory function [4, 5], which makes them suitable for
cellular therapy.

ASC suppress the proliferation and inflammatory cyto-
kine production of activated immune cells and induce the

formation of immunoregulatory cell types, such as regulatory
T cells and alternatively activated macrophages [6, 7]. Bone
marrow and adipose tissue-derived MSC employ similar
mechanisms for immunomodulation [8]. These include
targeting immune cells via both cell contact-dependent and
cell contact-soluble interactions, such as via the inhibitory
costimulatory programmed death ligand 1 (PD-L1) pathway
[9] and via the secretion of soluble factors [10]. A multitude
of factors have been proposed to play a role in the immuno-
modulatory effect of MSC, including hepatocyte growth
factor (HGF) [11], HLA-G [10], and IL-6 [12]. Although
generally seen as a proinflammatory cytokine, IL-6 has a
clear dual function and can enforce as well as suppress
immune responses, depending on the conditions [13]. Fur-
thermore, the tryptophan-depleting enzyme indoleamine
2,3-dioxygenase (IDO) plays a major contribution to the
antiproliferative effect of MSC [14]. MSC in their turn
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respond to inflammatory cytokines, in particular IFN-γ, but
also TNF-α and IL-17, by dramatically increasing IDO
and PD-L1 expression thereby strongly enhancing their
immunosuppressive properties [15–17]. MSC are potent
secretors of anti-inflammatory TGF-β which contributes
to their immune regulatory effects [18], and in addition,
TGF-β affects the immune regulatory function of MSC
themselves too [19].

Although MSC are clearly involved in cross talk with
immune cells, not all MSC may do this in the same way as
there is considerable heterogeneity within MSC populations.
There is heterogeneity in the differentiation potential of MSC
[20, 21], and there is heterogeneity in the expression of cell
surface markers such as STRO-1 and CD271, and STRO-1
and CD271 expressing MSC have been demonstrated to pos-
sess enhanced immunomodulatory capacity [22, 23]. The
heterogeneity of MSC may impair their therapeutic efficacy
and introduce variations between studies [24]. One the other
hand, it offers opportunities to isolate super-potent MSC
from heterogenic populations.

ELISPOT assays are widely used for nonadherent lym-
phocytes and is more sensitive than ELISA. The ELISPOT
assay had not been described for adherent ASC. The
advantage of ELISPOT is the sensitive technique for detect-
ing a cytokine at single cell level and allowing frequency
analysis [25–27].

We questioned whether ASC populations are heterogenic
in their cytokine secretion and cytokine receptor expression
profile. Furthermore, we examined whether potential hetero-
geneity was affected by cytokine stimulation of ASC. In the
present study, we enumerate IL-6 and IFN-γ in single-
secreting ASC by ELISPOT assay. Furthermore, we studied
the frequency of IL-6 and IFN-γ receptor expressing ASC
and examined the effect of IFN-γ and TGF-β stimulation
on ASC cytokine production.

2. Materials and Methods

2.1. Isolation and Culture of ASC. ASC were isolated from
human subcutaneous adipose tissue that became available
upon donation of living kidney donors after written
informed consent (protocol number MEC-2006-190
approved by the Medical Ethics Committee of the Erasmus
MC, Rotterdam) as previously described [28]. In brief, after
mechanical disruption and enzymatic digestion of the adi-
pose tissue, the cells were collected in minimum essential
medium-α (MEM-α) (Sigma-Aldrich, St. Louis, MO); sup-
plemented with 1% penicillin/streptomycin solution (P/S;
100 IU/mL penicillin, 100 IU/mL streptomycin; Lonza,
Verviers, Belgium), 2mM L-glutamine (Lonza), and 15%
fetal bovine serum (FBS; Lonza) (MSC medium); and seeded
in T175 culture flasks (Greiner Bio-One, Kremsmunster,
Germany) at 37°C, 5% CO2, and 95% humidity. Cultures
were refreshed twice weekly. When the cultures reached
90% confluence, ASC were removed from the culture flasks
using 0.05% trypsin-EDTA (Life Technologies, Bleiswijk,
Netherlands). ASC were used for experiments between
passages 1 and 5.

2.2. Flow Cytometric Analysis.ASC were immunophenotypi-
cally characterized by staining for CD45-FITC, CD31-
FITC, CD13-PECy7, CD73-PE, and CD90-APC (all BD
Biosciences, San Jose, CA). For detection of IL-6 and
IFN-γ receptors, 400,000 ASC (n = 3) were stained for two
IL-6 receptor subunits (CD126 and CD130) and IFN-γ
receptor (CD119). The cells were incubated with anti-
CD126-PECy7 (BioLegend, San Diego, CA), anti-CD130-
BV421 (BD Biosciences, San Jose, CA), anti-CD119-APC
(SB Sino Biological Inc., Beijing, China), or isotype-
matched control antibodies (eBioscience, San Diego, CA)
in the dark for 30min at room temperature. Thereafter,
the cells were washed twice with FACSFlow (BD Biosci-
ences) and measured on a FACS Canto II flow cytometer
(BD Biosciences) and analyzed with Kaluza Analysis 1.3
software (Beckman-Coulter, Brea, CA).

2.3. Stimulation of ASC. ASC were stimulated for 72 hours
with 50ng/mL IFN-γ (Life Technologies, USA) or 10 ng/mL
TGF-β (Peprotech, USA) prior to experiments in MEM-α
with P/S, 2mM L-glutamine, and 15% FBS. Unstimulated
control cells were cultured in parallel.

2.4. IL-6 and IFN-γ ELISPOT Assay. PVDF membrane-
bottomed 96-wells plates (multiscreen, Millipore Ireland)
were incubated with 70% ethanol for 1 minute at room
temperature. After washing the wells with PBS, the wells
were precoated with anti-IL-6 mAb or anti-IFN-γ mAb
(U-CyTech Biosciences, Utrecht, Netherlands) and blocked
with PBS containing 1% BSA according to the manufac-
turer’s protocol. In brief, ASC (n = 4: unstimulated, IFN-γ
stimulated, and TGF-β stimulated) were seeded in triplicate
at a concentration of 4000, 2000, 1000, 500, 250, 125, 62.5,
and 31.25 ASC per well. Cells were incubated for 24 hours
at the coated ELISPOT plate at 37°C, 5% CO2, and 95%
humidity to allow spot formation to occur. After incubation,
the cells were lysed with ice-cold milli-Q water and the plates
washed extensively. Subsequently, the wells were incubated
with a biotinylated goat antihuman IL-6 or antihuman
IFN-γ polyclonal Ab (U-CyTech Biosciences) for 1 hour at
37°C. After washing the wells, IL-6 spots were detected by
streptavidin-HRP conjugate and an AEC substrate for IL-6
(U-Cytech Biosciences). IFN-γ spots were detected with
phi-labeled goat antibiotin Ab (U-Cytech Biosciences) and
a reagent that activates phi (reagent I + II, U-Cytech Biosci-
ences). The reactions were stopped when spots were visual-
ized by adding milli-Q water to the wells. The spots were
counted by Bioreader 6000 Elispot-reader (BioSys GmbH,
Karben, Germany).

2.5. ELISA. After pretreating ASC (n = 5) with IFN-γ or
TGF-β for 72 hours, the cells were trypsinised and seeded
at 50 (IL-6 ELISA) and 4000 (IFN-γ ELISA) cells per well
in 96-well plates (Greiner Bio-One, Kremsmünster, Austria).
After 24 hours, conditioned medium was collected. The
production of IL-6 and IFN-γ was determined using ELISA
kits (U-CyTech Biosciences, Utrecht, Netherlands) according
to the manufacturer’s instructions.
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2.6. Statistical Analysis. The effect of ASC pretreated with
IFN-γ or TGF-β were analyzed by one-way ANOVA to
compare differences in number of cytokine producing
IFN-γ and IL-6 producing ASC and by two-tailed paired
t-test to compare differences in IFN-γ and IL-6 ELISA.
p values < 0.05 were considered significant.

3. Results

3.1. Immunophenotype of ASC. ASC showed a typical
spindle-shaped morphology (data not shown) and lacked
expression of the hematopoietic cell marker CD45 and of
the endothelial cell marker CD31 (Figure 1). Nearly all cells
expressed the markers CD13, CD73, and CD90, confirming
the ASC phenotype of the cells.

3.2. Heterogeneity in ASC Cytokine Secretion Profiles. To
determine whether control ASC and ASC pretreated with
IFN-γ or TGF-β were capable of secreting IL-6 and IFN-γ,
ELISA were performed on conditioned medium samples.
IL-6 was detectable in a conditioned medium from 96-well
plates containing as few as 50 ASC per well, demonstrating
that IL-6 was abundantly secreted by ASC. There was no
difference between control ASC and IFN-γ- or TGF-β-pre-
treated cultures in the level of IL-6 secretion (Figure 2).
IFN-γ secretion by 4000 ASC was hardly detectable. TGF-β

treatment of MSC significantly increased IFN-γ secretion
(mean± SD, OD 0.0248± 0.0102 versus 0.1035± 0.0268;
p = 0 02: Figure 2).
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Figure 1: Immunophenotype of ASC. Flow cytometric analysis of the immunophenotype of ASC, demonstrating a lack of CD31 and CD45
expression and positive expression of CD13, CD73, and CD90.
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Figure 2: Secretion of IL-6 and IFN-γ by ASC. ASC (n = 5) (50 ASC
for IL-6, 4000 ASC for IFN-γ) were cultured without or in the
presence of IFN-γ or TGF-β for 72 h and washed and reseeded.
IL-6 and IFN-γ ELISA were performed in 20 h conditioned
medium. Data is presented as box and whisker plot (median and
range). More IFN-γ was produced after pretreatment with TGF-β
(p = 0 02, two-tailed paired t-test).
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To examine whether IL-6 is secreted by all ASC, or
whether a subpopulation of the cells is responsible for the
IL-6 levels found, ELISPOT assay was performed. ASC were
seeded in 96-well plates at different densities, ranging from
31 to 1000 cells per well to determine the frequency of IL-6
producing cells. At the lower ranges (31–125 ASC), we found
approximately one IL-6 spot per ASC seeded (Figure 3(a)).
At higher ASC ranges, the relative number of spots declined
to less than 400 spots per 1000 ASC seeded. This is probably
due to the crowding of spots at higher ASC numbers, which
will start to overlap and subsequently be read as a single spot
[29]. Pretreatment of ASC with IFN-γ or TGF-β had no
effect on the frequency of IL-6 producing ASC. Although
IFN-γ secretion by ASC was hardly detectable by ELISA,
we detected a frequency of 1.2%, 1.4%, and 1.7% of IFN-γ
secreting ASC, detectable for the 4000, 2000, and 1000 seeded
ASC, respectively (Figure 3(b)). After TGF-β treatment, a
significantly higher frequency of IFN-γ producing ASC were
found; 1.9%, 2.7%, and 2.8%, respectively (p = 0 03). These
results demonstrate that whereas all ASC secrete IL-6, a small
subpopulation secretes IFN-γ, thereby demonstrating
heterogeneity in ASC cultures concerning cytokine secretion.

3.3. Heterogeneity in ASC Cytokine Receptor Expression. IL-6
secreted by ASC may have a paracrine and/or an autocrine
function. To examine whether ASC-secreted IL-6 has an

autocrine function, we measured the expression of the IL-6
receptor α-chain (CD126) and the IL-6 receptor β-chain
(CD130) by flow cytometry (Figure 4). CD126 was not
detected on the surface of ASC. A subpopulation (10%) of
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Figure 3: Frequency of IL-6 and IFN-γ secreting ASC. ASC (n = 4) were cultured without or in the presence of IFN-γ or TGF-β for 72 h and
washed and reseeded at different cell densities. Frequencies of IL-6 (a) and IFN-γ (b) secreting ASC were determined by ELISPOT assay.
Representative examples of the ELISPOT assay are shown. After TGF-β treatment, a higher frequency of IFN-γ producing ASC was found
(p = 0 03, one-way ANOVA).
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Figure 4: Expression of IL-6 receptor and IFN-γ receptor on ASC.
ASC (n = 3) were cultured without or in the presence of IFN-γ or
TGF-β for 72 h and trypsinised and analyzed by flow cytometry.
The IL-6 receptor subunit CD126 was not detected, and CD130
was detected in a small percentage of the ASC. The IFN-γ receptor
(CD119) was detected on a subpopulation of ASC. Presented as
mean and SEM.
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ASC expressed CD130, and pretreatment with IFN-γ
resulted in an increased expression of CD130 to 18% of
ASC (Figure 4). However, the absence of CD126 indicates
that no functional IL-6 receptors are present on ASC. We
also measured the expression of the IFN-γ receptor 1
(CD119). CD119 was expressed on a subpopulation of 18%
of ASC. Pretreatment with IFN-γ or TGF-β resulted in a
higher percentage of CD119 positive ASC, 26% and 31%,
respectively (Figure 4).

4. Discussion

MSC are found in all tissues [30] and in the search of finding
the most assessable, best expandable, and most effective MSC
type for therapy, remarkable similarities concerning surface
antigen expression, immunosuppressive activity, and differ-
entiation ability betweenMSC of different tissue sources have
been observed [3, 31]. There are, however, subtle differences
between MSC of different sources, such as in levels of chemo-
kine receptor expression and paracrine factor production,
and in the resistance to apoptosis, which may reflect different
therapeutic efficacy [32–34].

Even within populations of MSC from one tissue
source subpopulations of MSC can be identified. For
instance, LNGFR+THY-1+VCAM-1hi+ MSC have been
identified as a population of MSC with enhanced clono-
genic properties [35]. James et al. have demonstrated that
bone marrow MSC contain distinct immunomodulatory
and differentiation-competent subtypes [36] and, for exam-
ple, STRO-1-enriched MSC display a more suppressive effect
on lymphocyte proliferation than MSC [22]. Data from the
present study suggests that within populations of ASC there
is variation in the immunoregulatory function of ASC. A
small fraction of ASC produced IFN-γ, and a subpopulation
of ASC expressed the IFN-γ receptor, which distinguishes
these cells from other ASC with respect to their response to
inflammatory conditions where IFN-γ is around. It is very
likely that similar selective expression patterns are found
for other receptors and soluble factors. We found no selective
secretion of IL-6. All ASC secreted IL-6 at single cell level
whereas no expression of the IL-6 receptor α-chain was
found on ASC and only 10% expressed the IL-6 receptor
β-chain. This demonstrates that IL-6 secreted by ASC has
a paracrine signaling role. This has been demonstrated in
studies showing that IL-6 secreted by MSC plays a role in
the regulation of monocytes [37] and dendritic cells [38].

It is well established that ASC change their immunomod-
ulatory function after exposure to cytokines. It is therefore
surprising that the secretion of IFN-γ and expression of
IFN-γ receptor or IL-6 receptor was only slightly affected
by pretreatment of the ASC with IFN-γ or TGF-β. We
furthermore found no changes in the level of IL-6 secretion,
while significantly more IFN-γ was produced after pretreat-
ment with TGF-β. This effect of TGF-β was also found in
the IFN-γ ELISPOT. It is possible that pretreatment with
IFN-γ or TGF-β affects the secretion by ASC of other
cytokines that were not examined in the present study or that
pretreatment with other cytokines has a more profound
effect on ASC. Ageing of ASC in culture may be another

factor influencing the function of ASC. We recently demon-
strated that the MSC phenotype remains stable until passage
12 and that the immunosuppressive capacity of MSC was
reduced from passage 8 onwards [39]. In the present study,
ASC between passages 1–5 were used. At these passages,
there is no evidence of effects on the phenotype and function
of MSC.

This preliminary study demonstrates to our knowledge
for the first time that the ELISPOT assay can be used to
determine the heterogeneity of MSC with respect to their
cytokine secretion. Although MSC are adherent cells and
thus physically block patches of the ELISPOT plates, the
cytokines secreted by MSC do form spots that are detectable
after lysis of the MSC. At high-seeding densities, it was
observed that the frequency of IL-6 secreting ASC was
decreased. This could have a biological origin stemming from
an inhibitory effect of MSC on their neighbors’ cytokine
secretion. Alternatively, the reason for this observation may
be that spots start to overlap at high cell densities leading to
an underestimation of spots. It is therefore important to take
different seeding densities of MSC in consideration.

5. Conclusions

The ASC population is heterogenic in their cytokine secre-
tion and cytokine receptor expression profile. Determining
the frequency of cytokine or growth factor producing ASC
by ELISPOT assay is a useful novel tool in the character-
ization of (clinical) ASC batches that can be used as a
potency assay.
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