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Pseudomonas aeruginosa is a gram-negative bacterium that causes serious infections in immunocompromised
individuals and cystic fibrosis patients. This opportunistic pathogen controls many of its virulence factors and
cellular functions through the activity of three cell-to-cell signals, N-(3-oxododecanoyl)-L-homoserine lactone,
N-butyryl-L-homoserine lactone, and the Pseudomonas quinolone signal (PQS). The activity of these signals is
dependent upon their ability to dissolve in and freely diffuse through the aqueous solution in which P.
aeruginosa happens to reside. Despite this, our data indicated that PQS was relatively insoluble in aqueous
solutions, which led us to postulate that P. aeruginosa could be producing a PQS-solubilizing factor. In this
report, we show that the P. aeruginosa-produced biosurfactant rhamnolipid greatly enhances the solubility of
PQS in aqueous solutions. The enhanced solubility of PQS led to an increase in PQS bioactivity, as measured
by both a gene induction assay and an apoptosis assay. This is the first demonstration of the importance of a
bacterial surfactant in the solubilization and bioactivity of a cell-to-cell signal.

Pseudomonas aeruginosa is an environmental microbe that
can cause serious infections when introduced to immunocom-
promised individuals or those suffering from cystic fibrosis.
This opportunistic pathogen uses multiple cell-to-cell signals to
communicate with its siblings and thereby control a host of
bacterial functions, including virulence (33). One of these sig-
nals, the Pseudomonas quinolone signal (PQS), is a unique
cell-to-cell signal that was identified as 2-heptyl-3-hydroxy-4-
quinolone (34). Although PQS is different from the acyl-ho-
moserine lactone signals produced by P. aeruginosa, it is still a
part of the quorum-sensing signaling cascade (23).

The production of PQS is positively controlled by N-(3-
oxododecanoyl)-L-homoserine lactone (3-oxo-C,,-HSL) and
the las quorum-sensing system, while its bioactivity depends on
and can activate the ril quorum-sensing system (23, 34). Syn-
thesis of PQS requires at least seven genes (6, 12), some of
which are regulated in a complex manner. LasR and PqsR
positively control the induction of the pgsABCDE operon,
which is part of the PQS synthetic gene cluster, while RhIR
appears to repress this operon (21). PQS production is also
unusual in that it begins during the logarithmic phase of
growth (9, 19), but unlike 3-oxo-C,,-HSL and N-butyryl-L-
homoserine lactone (C,-HSL), it is not produced maximally
until late in the stationary phase of growth (23).

Why P. aeruginosa produces PQS is still unknown, but this
signal has been shown to control multiple virulence factors (4,
9, 12,23, 34) and is required for virulence in nematodes, plants,
and mice (11, 12, 35). Most interestingly, PQS is produced in
the lungs of cystic fibrosis patients infected with P. aeruginosa
(5), which implies that the signal is important for adaptation to
the lung environment.
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The ability of PQS to function as an intercellular signal in
culture media and presumably during infections implies that
this signal must be soluble in an aqueous environment. How-
ever, our studies indicated that PQS was soluble in organic
solvents but not in aqueous solutions. In this report, we explore
the ability of a P. aeruginosa-produced factor to increase the
solubility of PQS. Our results shed light on how PQS could be
functioning in seemingly nonoptimal environments.

MATERIALS AND METHODS

Bacterial culture conditions. P. aeruginosa strain PAO-R1 (lasR) (13) contain-
ing plasmid pTS400 (31) was grown in peptone Trypticase soy broth (PTSB) (30)
supplemented with carbenicillin (200 wg/ml). Plasmid pTS400 harbors a lasB'-
lacZ translational fusion that is activated in a concentration-dependent manner
by PQS (34). All experiments began with the use of freshly plated bacteria from
—70°C stocks maintained in 10% skim milk (Becton Dickinson). Liquid cultures
were grown at 37°C and shaken at 250 rpm.

Examining PQS solubility in aqueous solutions. Synthetic PQS (10 pg) was
evaporated to dryness under nitrogen in 13-ml polystyrene culture tubes. Sub-
sequently, 0.5 ml of either PTSB, distilled water, or acidified ethyl acetate was
added, and the tubes were vortexed for 30 min. A 250-ul aliquot of each aqueous
solvent was then removed and extracted with 500 pl of acidified ethyl acetate.
One half of the resulting organic phase was evaporated to dryness and reconsti-
tuted in 50 pl of 1:1 acidified ethyl acetate-acetonitrile. The tube in which
acidified ethyl acetate was used as a solvent was not extracted, but 125 pl was
removed after vortexing, dried, and reconstituted in 50 pl of 1:1 acidified ethyl
acetate-acetonitrile. This sample was used to demonstrate the maximum poten-
tial recovery of PQS in the assay. Samples were analyzed by thin-layer chroma-
tography (TLC) and photographed under long-wave UV light as described pre-
viously (5).

Determining PQS solubility in the presence of rhamnolipids. P. acruginosa
rhamnolipids were obtained from Jeneil Biosurfactant Co., Saukville, Wis.
The rhamnolipids are 99.9% pure and are a mixture of mono-rhamnolipid
(L-rhamnosyl-B-hydroxydecanoyl-B-hydroxydecanoate) and di-rhamnolipid (L-
rhamnosyl-L-rhamnosyl-B-hydroxydecanoyl-B-hydroxydecanoate). Rhamnolipids
were dissolved in acidified ethyl acetate, and appropriate amounts were evapo-
rated to dryness in 13-ml polystyrene culture tubes which already contained 5 pg
of dried PQS. Next, 0.5 ml of distilled water, PTSB, or phosphate-buffered saline
(PBS) was added, and the tubes were incubated at 37°C with shaking (250 rpm)
for 2 h. After this, a 200-pl aliquot was removed and extracted with 600 wl of
acidified ethyl acetate. The organic phase was evaporated to dryness and recon-
stituted in 50 wl of 1:1 acidified ethyl acetate-acetonitrile. Samples were analyzed
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by TLC as described above. Quantification of PQS was completed with the use
of computer densitometry to compare unknowns to synthetic standards as de-
scribed previously (3). All data are reported as the mean * standard deviation
(¢ 1) of three separate experiments.

Effect of rhamnolipids on PQS bioactivity. Freshly plated cells of P. aeruginosa
strain PAO-R1(pTS400) were used to inoculate 10-ml overnight cultures. After
20 h, overnight cultures were washed and used to inoculate 10-ml subcultures to
an absorbance of 0.05 at 660 nm. Subcultures were grown until the mid-loga-
rithmic phase, washed with fresh medium, and 1-ml aliquots (starting A0 =
0.05) were added to tubes containing synthetic PQS and P. aeruginosa rhamno-
lipids. After 18 h of growth, B-galactosidase activity was measured in duplicate
samples. All data are reported in Miller units (24) as the mean * standard
deviation (" ') of three separate experiments.

Examining PQS-induced apoptosis. Induction of apoptosis and cell viability
were measured with the annexin V and propidium iodide binding assays as
described previously (37). Cell cultures were maintained in a humidified 5% CO,
incubator. The interleukin-3-dependent murine FDC-P1 (8) and FL5.12 (22) cell
lines were cultured in the absence of growth factors in RPMI medium (Gibco)
with 5% fetal bovine serum (Atlanta Biologicals) supplemented with 10%
WEHI-3B(D ") conditioned medium (20) as a source of interleukin-3. These cell
lines were chosen because they are sensitive indicators of cell viability and are
regularly used to determine a compound’s ability to induce apoptosis (37).

For assaying PQS effects on viability and apoptosis, synthetic PQS (5.2, 2.6,
and 0.52 pg) dissolved in 1:1 ethyl acetate-acetonitrile was evaporated to dryness
in the wells of a six-well polystyrene tissue culture plate. Approximately 10° cells
in 2 ml of complete cell culture medium were added to each well, and the plates
were incubated for 3 days. Cells were then collected by gentle pipetting, and
viability and the extent of apoptosis were measured as described above.

Determining whether rhamnolipids enhance PQS-induced apoptosis. For ex-
amining the effect of rhamnolipids on PQS-induced apoptosis, suspensions of
synthetic PQS (13.0 wg) and/or P. aeruginosa rhamnolipids (200 pg) were evap-
orated in 1.6-ml microcentrifuge tubes. Subsequently, 0.5 ml of distilled water
was added, and the mixtures were incubated at 37°C with shaking (250 rpm) for
2 h. A 200-pl sample from each tube was immediately added to a well of a
six-well culture plate that contained 2 ml of complete cell culture medium with
approximately 10° cells, and the cultures were incubated for 2 days. (If 100% of
the PQS was resuspended in 0.5 ml of water, then the final concentration of PQS
in each cell culture would be 10 wM.) The final concentration of rhamnolipid in
each cell culture was 63 pM. Cell viability and apoptosis induction were mea-
sured as described above. Data for cell culture experiments were normalized by
assigning a value of 1 to appropriate controls (see the figure legends). Results are
presented as the mean =+ standard deviation from at least three separate exper-
iments.

RESULTS

PQS solubility in aqueous solutions is low. During our stud-
ies of PQS, we noticed that this signal had low solubility in
aqueous solvents. To demonstrate this, PQS was dried in poly-
styrene culture tubes and various solvents were added. (Note
that stock solutions of synthetic PQS are in 1:1 acidified ethyl
acetate-acetonitrile.) After vortexing these solutions for 30
min, an aliquot of each aqueous solution was removed and
extracted with acidified ethyl acetate. The organic layer of the
extract was removed, dried, and analyzed by TLC as described
in Materials and Methods. The results of this experiment
showed that PQS did not dissolve in distilled water and that
only a very small amount of PQS dissolved in PTSB (bacterial
culture medium) (Fig. 1, lanes 1 and 2). As we have seen
before, PQS easily dissolved in acidified ethyl acetate, which
was included as a control to show maximal PQS resuspension
(Fig. 1, lane 3). These results left us with a very interesting
question. If PQS is not soluble in sterile culture medium, how
does it act as a signal which activates a bioassay in the presence
of growing P. aeruginosa cells?

Rhamnolipids increase the solubility of PQS. We felt that
the most likely answer to our question was that P. aeruginosa
produces a factor that increases PQS solubility. With this in
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FIG. 1. PQS solubility is low in aqueous solutions. PQS (10 ng) was
dried in 13-ml polystyrene tubes, and 0.5 ml of PTSB (lane 1), distilled
water (lane 2), or acidified ethyl acetate (lane 3) was added to each
tube. Mixtures were vortexed at high speed for 30 min, and aliquots
were removed for PQS extraction. Samples were analyzed by TLC as
described in Materials and Methods. The figure is a representative
TLC plate photographed under UV light. Lane 4 contains 50 ng of
synthetic PQS and was included as a standard. The arrowhead indi-
cates PQS.

mind, the effects of P. aeruginosa-produced rhamnolipids on
PQS solubility were examined. Rhamnolipids are a quorum-
sensing-controlled biosurfactant which increases the solubility
of long-chain hydrocarbons to facilitate their use as a carbon
source by P. aeruginosa (25, 28). To determine the effects of
rhamnolipids on PQS solubility, increasing amounts of P.
aeruginosa rhamnolipids were added to tubes containing dried
PQS, and cither distilled water, PBS, or PTSB was used as a
solvent. After 2 h of mixing, aliquots were removed and ethyl
acetate extractions were performed to recover the PQS that
was in solution. The organic layer of each extract was then
analyzed by TLC as described above.

Most interestingly, our data showed that P. aeruginosa
rhamnolipids increased the solubility of PQS in all three aque-
ous solutions, and this increased solubility was dependent on
the rhamnolipid concentration (Fig. 2). In distilled water or
PBS, the addition of 50 wg of rhamnolipid per ml resulted in
solubilization of approximately 50% of the total PQS added to
the sample tube (Fig. 2). Exposing PQS in distilled water or
PBS to a rhamnolipid concentration of 200 pg/ml resulted in a
maximum recovery of approximately 65% of the total PQS
added to the assay (Fig. 2). In PTSB, a slightly lower concen-
tration of rhamnolipid solubilized 50% of the PQS, and max-
imum solubilization was reached when 100 pg of rhamnolipid
per ml was present (Fig. 2). Overall, these data show that
P. aeruginosa-produced rhamnolipids greatly increased the sol-
ubility of the cell-to-cell signal PQS.

Rhamnolipids enhance the ability of PQS to activate a P.
aeruginosa bioassay. The discovery that PQS solubility in-
creased in the presence of rhamnolipids led us to hypothesize
that this surfactant would also increase the bioactivity of PQS.
To test this, we used our PQS bioassay (34) to determine the
effect of increasing rhamnolipid concentrations on three phys-
iological concentrations of PQS. These results showed that the
ability of PQS to induce a lasB’-lacZ fusion in P. aeruginosa
was greatly enhanced by the presence of rhamnolipids (Fig. 3).
This effect was maximized as the rhamnolipid concentration
increased to 40 pg/ml (69 wM) and then the effect decreased as
higher rhamnolipid concentrations were tested (Fig. 3). [A P.
aeruginosa wild-type strain produced rhamnolipids at a con-
centration of approximately 22 pg/ml (38 wM) and 35 pg/ml
(61 wM) after 24 and 48 h of growth, respectively (data not
shown)]. At a concentration of 1 mg of rhamnolipid per ml (1.7
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FIG. 2. Rhamnolipids increase PQS solubility in aqueous solutions.
Synthetic PQS (5 pg) and increasing amounts of rhamnolipids were
dried in 13-ml polystyrene tubes. Distilled water (circles), phosphate-
buffered saline (triangles), or PTSB (squares) (0.5 ml of each) was then
added to produce the indicated concentrations of rhamnolipid, and the
mixture was incubated at 37°C with vigorous shaking (250 rpm) for 2 h.
Aliquots removed from each tube were then organically extracted and
analyzed as described in Materials and Methods. The amount of PQS
in solution in each mixture was calculated and is presented as the mean
+ standard deviation from three separate experiments. The insert is a
representative TLC plate photographed under UV light. Numbers
within the inset indicate rhamnolipid concentration, and the arrow-
head indicates PQS. The PQS solubility assay was performed as in Fig.
1, and the photograph is included to visually show the effects of lower
rhamnolipid concentrations on PQS solubility in distilled water.

mM), nearly all bioactivity was inhibited (Fig. 3). The mecha-
nism of this inhibition is not known, but we speculate that a
high concentration of rhamnolipid could produce an excess of
micelles that sequester PQS from bioassay cells and thereby
lower the concentration of available PQS.

Rhamnolipids augment PQS-induced apoptosis. Although
PQS acts as a bacterial cell-to-cell signal, its production during
infections led us to wonder whether this compound could also
effect eukaryotic cells. To begin such studies, two murine cell
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FIG. 3. Rhamnolipids enhance a PQS bioassay. P. aeruginosa strain
PAO-R1(pTS400) (lasR) was grown in the presence of 10 uM (white
bars), 20 uM (black bars), or 30 uM (hatched bars) synthetic PQS and
increasing amounts of rhamnolipids for 18 h. B-Galactosidase activity
was subsequently assayed, and data are presented as the mean in
Miller units * standard deviation of duplicate assays from three sep-
arate experiments.
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FIG. 4. PQS induces apoptosis. The indicated cell lines were ex-
posed to various physiological concentrations of PQS for 3 days, and
the extent of apoptosis was determined by staining with annexin V and
propidium iodide. (A) The percentage of viable cells was normalized
to 1 for the no-addition control (lane 1) of each cell line. This repre-
sents cells which did not stain with either annexin V or propidium
iodide. Lane 2 contained 5.2 pl (the maximum amount of solvent used
in PQS-containing wells) of dried 1:1 acidified ethyl acetate-acetoni-
trile as a solvent control. Lanes 3, 4, and 5 contained dried PQS that
would produce final concentrations of 1 uM, 5 uM, and 10 uM PQS,
respectively, when 2 ml of cell culture was added. Results are pre-
sented as the mean = standard deviation from at least three separate
experiments. (B and C) Representative dot plots are included to show
the apoptotic shift induced by PQS in the FL5.12 cell line. Panel B
shows cells that were grown without PQS (no addition), and panel C
shows cells grown in the presence of 10 wM PQS. The percentages
given within each panel indicate the percentage of cells in that panel.
The lower left panel of each dot plot contains viable cells, as indicated
by the lack of staining with either annexin V or propidium iodide. The
upper left and upper right panels contain apoptotic cells, which stained
with annexin V, and the lower right panels contain dead cells, which
stained with propidium iodide only.

lines which are sensitive indicators of cell viability and apopto-
sis induction were grown in the presence of various physiolog-
ical concentrations of PQS. After 3 days of growth, cells were
harvested, and viability and the extent of apoptosis were mea-
sured as described in Materials and Methods. These data
showed that PQS caused the induction of apoptosis and a
decrease in cell viability for both cell lines (Fig. 4). This effect
was dose dependent, with increasing PQS concentrations caus-
ing lower viability (Fig. 4).

The ability of rhamnolipids to augment PQS-induced cell
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FIG. 5. Rhamnolipids enhance PQS-induced apoptosis. PQS
and/or rhamnolipids were dried in polystyrene tubes and resuspended
in distilled water as described in Material and Methods. The final
concentration of rhamnolipid in each tube was 40 pg/ml, and if all PQS
became soluble, the final concentration of PQS would be 10 uM. A
200-pl aliquot of suspension (or distilled water as a control) was then
added to the indicated cell cultures, which were incubated for 2 days
before assaying for apoptosis induction and cell viability as in Fig. 4.
Lanes: 1, water; 2, rhamnolipid suspension; 3, PQS suspension; 4,
rhamnolipid and PQS suspension. Data were normalized by assigning
avalue of 1 to the percentage of viable cells found in the distilled-water
control (lane 1).

killing was then examined. To do this, dried PQS was sus-
pended in distilled water in the presence or absence of rham-
nolipids. This suspension was then added to cell cultures which
were incubated for 2 days before measuring apoptosis induc-
tion and cell viability. The results of this experiment showed
that when resuspended in water, neither rhamnolipids nor PQS
alone affected cells (Fig. 5, lanes 2 and 3). This would presum-
ably be due to the small amount of PQS that was solubilized in
the solution (see Fig. 1) added to the cells. However, when
PQS was resuspended in water in the presence of rhamnolip-
ids, this solution caused apoptosis induction with a concurrent
decrease in cell viability (Fig. 5, lane 4). Taken together, these
data suggest that PQS and rhamnolipids could be a potent
virulence team during P. aeruginosa infections.

DISCUSSION

In this report, we show that the solubility of a P. aeruginosa
cell-to-cell signal is increased in aqueous solutions by rhamno-
lipids, a P. aeruginosa-produced biosurfactant. The increase in
solubility of the signal led to a concurrent increase in signal
bioactivity in two different assays. This is the first report of a
cell-to-cell signal being solubilized and made more active by
the organism which produced it.

Rhamnolipids are natural surfactants produced by P. aerugi-
nosa and are widely used for industrial purposes, such as biore-
mediation and biotransformation (26). By forming micelles,
rhamnolipids are able to increase the solubility of many hydro-
phobic compounds. Such is apparently the case with the cell-
to-cell signal PQS (Fig. 2). In addition, rhamnolipids increase
the uptake of hydrophobic compounds by P. aeruginosa (25).
This is believed to occur because rhamnolipids can extract
lipopolysaccharide from the P. aeruginosa outer membrane
and thereby increase the hydrophobicity of the cell surface (1).
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Our results suggest that rhamnolipids are also facilitating the
uptake of PQS by P. aeruginosa, as evidenced by the rhamno-
lipid-associated increase in PQS bioactivity in our P. aeruginosa
bioassay (Fig. 3).

PQS and rhamnolipids have both been shown to act as
virulence factors (11, 12, 35, 36), and both are known to be
produced in the lungs of P. aeruginosa-infected cystic fibrosis
patients (5, 18). Our data indicate that PQS alone caused
apoptosis to be induced in eukaryotic cells (Fig. 4). This sug-
gests that PQS may act independently as a virulence factor that
affects eukaryotic cells, as seen with another P. aeruginosa
cell-to-cell signal, 3-oxo-C,,-HSL (10, 38, 39). Some fluoro-
quinolone compounds with antibiotic activity have cytotoxic
effects on eukaryotic cells (2, 15). This activity is believed to
occur through effects on topoisomerase II, which is homolo-
gous to DNA gyrase, the bacterial target of fluoroquinolone
antibiotics (2). Whether PQS, which has not exhibited antibi-
otic activity (34), is acting similarly is not known.

The data from the eukaryotic cell experiments also imply
that PQS must be at least partially soluble in the absence of
rhamnolipids, since the experiments in Fig. 4 amounted to
placing eukaryotic cell cultures onto dried PQS. Only 2% of
the PQS dried in the well became soluble after 3 days of
incubation in cell culture medium without cells (data not
shown). This implies that eukaryotic cells themselves are al-
lowing enough PQS to become soluble for bioactivity (apopto-
sis/cell death) to be seen. Most importantly, when PQS was
mixed with rhamnolipids in water before being added to eu-
karyotic cells, apoptosis was induced and cell viability was
greatly decreased (Fig. 5). PQS in water alone had no effect on
cell viability (Fig. 5), presumably due to the low solubility of
PQS in water (Fig. 1). Overall, our data suggest that PQS and
rhamnolipids are acting in concert to increase P. aeruginosa
virulence.

The control of rhamnolipid production is strongly influenced
by multiple cell-to-cell signals. P. aeruginosa rhamnolipids are
produced through the action of the RhIA/RhIB rhamnosyl-
transferases (27). The operon that encodes these enzymes,
rhIAB, is positively controlled at the transcriptional and trans-
lational levels by RhIR and C,-HSL (28, 29, 32, 40), and the
small RNA RsmA (16), respectively. In addition, PQS can
induce the gene which encodes the C,-HSL synthase (rhil)
(23). This is probably why a PQS mutant makes less rhamno-
lipid than the wild-type strain (9). While the effect of PQS on
the rhl quorum-sensing system has not been completely de-
fined, it appears that PQS does increase the ability of RhIR to
induce at least some of the genes that it controls (9, 23, 34).
Taking all of these factors into consideration with the data
presented here, it can be suggested that PQS may have a
positive effect on the rhl quorum-sensing system, and thus
rhamnolipid production, in order to ensure its own solubility in
the extracellular environment.

Several converging lines of research indicate that rhamno-
lipid activity is multifaceted. First, as mentioned above, it will
solubilize hydrophobic molecules such as long-chain hydrocar-
bons and allow their use as a carbon source by P. aeruginosa.
Second, it is apparently important for interactions between
cells. This is supported by the findings that the addition of
rhamnolipids can cause cells to aggregate, or “clump” (14), and
a rhamnolipid mutant no longer exhibits swarming motility
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(17). In addition, rhamnolipid mutants form thick biofilms
without typical fluid channels (7). Our findings add another
function for rhamnolipids and indicate that this surfactant is
not only controlled by cell-to-cell communication, but is im-
portant for the function of at least one cell-to-cell signal, PQS.
While previous studies have shown that P. aeruginosa rhamno-
lipids have activities associated with virulence, our results in-
dicate a novel mechanism whereby rhamnolipids assist another
virulence factor and enhance its activity.
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