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Abstract

Next-generation sequencing (NGS) approaches are highly applicable to clinical studies. We review 

recent advances in sequencing technologies, as well as their benefits and tradeoffs, to provide an 

overview of clinical genomics from study design to computational analysis. Sequencing 

technologies enable genomic, transcriptomic, and epigenomic evaluations. Studies that use a 

combination of whole genome, exome, mRNA, and bisulfite sequencing are now feasible due to 

decreasing sequencing costs. Single-molecule sequencing increases read length, with the 

MinION™ nanopore sequencer, which offers a uniquely portable option at a lower cost. Many of 

the published comparisons we review here address the challenges associated with different 

sequencing methods. Overall, NGS techniques, coupled with continually improving analysis 

algorithms, are useful for clinical studies in many realms, including cancer, chronic illness, and 

neurobiology. We, and others in the field, anticipate the clinical use of NGS approaches will 

continue to grow, especially as we shift into an era of precision medicine.
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I. INTRODUCTION

Next-generation sequencing (NGS) has become ubiquitous over the past few years, 

producing a deluge of new data at an unprecedented rate. However, how to incorporate the 

novel insights from these data into clinical practice is not always obvious. Here, we review 

the current challenges associated with different genomic, transcriptomic, and epigenomic 
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sequencing approaches and platforms, as well as important considerations when designing 

sequencing studies to maximize statistical power and clinical utility. We also describe the 

current applications of these technologies across a range of topics including cancer 

genomics and precision medicine, with a focus on integrative study design and 

computational analyses. Collectively, this review provides a guide to experimental and 

computational methods of using NGS in clinical research. NGS technologies have already 

improved medical interventions and will continue to transform medicine in the clinic and at 

a personal level by offering individuals increased opportunities to manage their health 

throughout a lifetime.

II. CHALLENGES

A. Sequencing Has Promising Clinical Utility

The development of NGS has lowered the cost of sequencing from $100 million in 2001 to 

$1000 in 2014. The lower cost has made sequencing more accessible to the medical 

community for diagnostic support (Fig. 1). Sequencing can generate a wide variety of data 

types, which favors its use over other existing techniques to characterize nucleic acids, 

including PCR and microarrays. Traditional NGS platforms, such as the Illumina HiSeq 

sequencer, are widely used for DNA sequencing, RNA sequencing, and bisulfite sequencing. 

Emerging sequencing techniques from the past few years provide alternatives to the short 

reads produced by these platforms. Together, the analysis of patients’ genomes, 

transcriptomes, and DNA methylomes can aid diagnosis and prognostic classifications.

B. Single-Molecule Sequencing

Both the PacBio RS and the MinION™ nanopore sequencer offer longer read lengths than 

other sequencing technologies, on the order of kilobases or tens of kilobases.1 Pacific 

Biosciences released the PacBio RS sequencer in 2010, and although accuracy was initially 

poor at 86%, repeated sequencing of each strand can increase accuracy to 99%. While 

specific bioinformatics tools have been developed over the past few years to cope with the 

error rate,2 the high cost of the instrument has limited its adoption.

Oxford Nanopore Technologies began distributing the MinION™ sequencer to researchers 

through an early-access program in 2014 before releasing the sequencer commercially in 

2015. Unlike the PacBio RS, the MinION™ is highly portable, at the size of a large USB 

stick, and requires a relatively small investment of approximately $1000. These features 

could help avoid the time and cost of sending samples to reference laboratories by bringing 

sequencing to clinics themselves, particularly in remote locations. However, nanopore 

technology is still in the nascent stages of development. Estimates have placed perbase error 

rates at 10–15%,3 which needs to improve drastically before nanopore sequencers can be 

considered a viable tool for many diagnostic applications. Efforts to demonstrate the clinical 

potential of the MinION™ have focused on pathogen identification and characterization, 

including sequencing of the influenza virus,4 antibiotic resistance genes in Salmonella 
enterica serovar Typhi,5, and the Ebola virus to identify transmission patterns during the 

recent outbreak.6 Researchers have also taken advantage of long read lengths to analyze 

isoform expression of alternatively spliced RNA using cDNA libraries.7 Current coverage 
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depths and error rates best facilitate targeted studies of specific genes or RNA isoforms but 

not whole-genome or whole-transcriptome analysis. Yet, as the chemistry and analysis 

continue to evolve, nanopore sequencing shows increasing promise as an accessible and 

powerful means of evaluating patients and the pathogens that affect them.

C. DNA Sequencing for Clinical Applications

Many consortiums are devoted to standardizing sequencing performance. Accuracy and 

reproducibility are the two key factors necessary for sequencing technology that are widely 

used in clinical practice. DNA sequencing enables the detection of germline and somatic 

mutations. Whole-genome sequencing (WGS) is an approach to determining the complete 

DNA sequence of a genome with a single assay. A cross-platform WGS performance 

comparison revealed that 88.1% of SNVs detected were shared by Illumina and Complete 

Genomics.8 The concordance of insertion and deletion (indel) calling is much lower, with 

just 26% shared.8 Another study comparing Illumina MiSeq, 454 GS Junior and Ion Torrent 

PGM from Life Technology for bacteria genome sequencing showed that Illumina has the 

lowest error rate and no homopolymer-associated indel errors.9

Whole-exome sequencing (WES), which captures only genic regions, provides a cost-

efficient alternative to whole genome sequencing. WES shows high accuracy for detecting 

single-nucleotide variants (SNVs) and short indels; however, when compared to high-

coverage WGS, WES has limited power for detecting copy-number variation (CNV).10 A 

recent assessment of WES and exome array comparative genomic hybridization (CGH) 

using clinical samples has shown that WES has the potential for clinical CNV detection, but 

currently, the combination of an array-based approach with WES improves the accuracy of 

CNV calling, especially for intergenic regions and single-exon changes.11

When using WES, the choice of exome-seq protocol affects results. A comprehensive 

comparison between Agilent, Roche, and Illumina exome-seq protocols showed varying 

strengths in the detection of variants across genic and untranslated regions.12 NimbleGen, 

from Roche, is the only platform that uses high-density overlapping baits and has higher 

sensitivity in variant detection. A concurrent study also confirmed that the NimbleGen 

platform has higher coverage of exonic regions, with at least 20× coverage.13 The Agilent 

and Illumina platforms, however, target a wider range of genomic regions, and with deeper 

sequencing, these two platforms detect more variants.14 Another advantage to Illumina’s 

capture method is that it provides coverage for untranslated areas, which might be of interest 

to researchers who would like to include noncoding variants in their analyses.

For an even more targeted and affordable method than WES, specific cancer panels are 

commonly used. These require prior knowledge of recurrent genetic or epigenetic lesions. 

Recurrent somatic mutations appear in many cancer types and can predict risk levels of the 

disease.15 In acute myeloid leukemia (AML), 15 biomarkers have been used to further 

stratify patients who were previously all placed in the intermediate risk group by cytogenetic 

classification.16 This method helps to develop treatment plans for AML patients tailored to 

the risk for each group. Indeed, targeted sequencing provides a much deeper view of the 

known genes and hotspots for mutations. However, with ever-decreasing sequencing cost 

and increasing detection of possible drug targets, exomeseq covering larger areas of the 
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genome has the potential for wider application in clinical diagnosis and prognostic 

decisions.

D. RNA Sequencing (RNA-seq): A Promising Candidate for Clinical Applications

This technique enables whole-transcriptome examination, including detection of gene 

expression, alternative isoforms, fusion genes, and expressed variants.17,18 However, RNA-

seq is also very sensitive to systematic bias.19,20 Previously, we and others have defined 

multiple quality metrics that flag samples with potential gene expression quantification 

issues, including gene body coverage evenness, GC content, insert size, and base error 

rate.21 The FDA-led Sequencing Quality Control (SEQC) study for RNA-seq performance 

evaluation showed that gene body coverage evenness, GC content, and insert size relate to 

library preparation and that base error rate depends on the sequencer used.19

Multiple software packages exist for gene expression normalization. EDAseq, which 

corrects for both the intra-group variations and quantification bias caused by GC-content and 

gene length, offers the best accuracy for differential gene expression analysis.21 PEER and 

sva show greater power to detect latent variables for the quantification of gene expression 

among different sites of sequencing data.22 For a statistically powerful RNA-seq study 

design, consistent experimental strategies are recommended, including sequencer, read 

length, sequencing depth, and protocol.23 High sequencing depth is critical for the discovery 

of new genes and accurate gene expression profiling.24 Follow-up studies on differential 

gene expression analysis have shown that increasing biological replicates improves the 

accuracy of gene quantifications.25 Therefore, experimental design for RNA-seq analysis is 

critical for accurate differential gene expression analysis.

E. DNA Methylation Provides a Complementary Approach to Clinical Measures for Patient 
Classification

In humans, DNA methylation involves the addition of a methyl group to the fifth position of 

cytosine, which has the specific effect of suppressing gene expression. DNA methylation is 

one of the hallmarks of cancers and aging.26,27 Many different types of cancers show 

consistent dysregulation of DNA methylation.28–31 The Cancer Genome Atlas (TCGA) 

consortium and many other research studies have shown that cancers can be classified based 

on their degree of DNA methylation.28,32 Subgroups of many cancers exhibit CpG island 

methylator phenotype (CIMP), including breast cancer,33 brain cancer,28,30,34 blood 

cancer,29 gastric cancer,35 liver cancer,36 and lung cancer.31 Groups of patients classified 

based on DNA methylation patterns show distinct clinical outcomes, including overall 

survival and disease free progression.28,29 The CIMP-positive group can be used to 

differentiate and stratify patients into groups with distinct clinical outcomes. For example, in 

glioblastoma patients, a CIMP-positive phenotype is usually associated with distinct copy 

number changes, appears exclusively in the proneural subtypes, and is associated with IDH1 

mutations and improved clinical outcomes.28 In a recent study of ependymoma, which is the 

third most common pediatric brain tumor, researchers showed that CIMP-positive patients 

with posterior fossa ependymoma have worse clinical outcomes than CIMP-negative 

patients.30,34 The genetic background of CIMP-positive patients presents a blended picture 
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and indicates the importance of DNA methylation as an alternative approach for patient risk 

stratification.30

There are many advantages to using DNA methylation analysis for clinical profiling. First, 

this analysis does not rely on the genetic alterations of the diseases; thus, it can be applied to 

diseases with sparse somatic mutations. Second, the material under analysis is DNA, which 

is advantageous because DNA is less sensitive to heat or enzymatic degradation than RNA, 

resulting in more accurate profiling.

Several types of methods have emerged to quantitatively measure DNA methylation, 

grouped here into three categories: (1) PCR-based methods, (2) microarray-based methods, 

and (3) sequencing-based methods. The PCR-based methods are usually used as a validation 

approach for high-throughput quantification. Among microarray-based methods, the HpaII 

tiny fragment Enrichment by Ligation-mediated PCR Assay (HELP Assay) is a common 

regional DNA methylation quantification approach for research and clinical sample 

profiling.37 It is based on the restriction enzyme Hpall’s ability to exclusively recognize and 

cleave methylated CpG DNA sites. Another common microarray-based DNA methylation 

quantification approach with single-base resolution is the Illumina Infinium BeadChip Kit. 

The BeadChip array platform uses two different bead types to measure DNA methylation 

levels at single cytosine. The Infinium HumanMethylation450 BeadChip Kit (450K array) is 

one of the Infinium Kits that covers the most methylation sites for human samples (485,000 

sites). This kit covers 99% of RefSeq genes, which, on average, have 17 CpG sites per gene. 

The 450K array has been widely used in DNA methylation quantification over the past few 

years, with more than 10,000 entries in the Gene Expression Omnibus (GEO) database, 

providing a valuable international resource for comparison among different cohorts of 

patient samples.38

Sequencing-based methods provide either single-base resolution or regional quantifications 

of DNA methylation levels.39–41 Single-base resolution methods mainly use bisulfite 

conversion sequencing, where bisulfite converts cytosines without methylation into uracil 

but leaves cytosines with methylation intact as cytosines. In the final sequencing readout, 

unmethylated CpG sites appear as thymine instead of cytosine.39,40 CpG methylation levels 

for individual sites are calculated based on the percentage of reads with cytosine among the 

total number of reads mapped. Bisulfite-based methods include whole genome bisulfite 

sequencing (WGBS),39 reduced representation bisulfite sequencing (RRBS),40 and targeted 

methylation sequencing (TMS).42 WGBS requires high sequencing depth, as at least four 

reads must cover each base in the whole genome to achieve accurate quantification. WGBS 

enables the inclusion of regions with both high and low CG density. RRBS and TMS each 

cover a subset of regions in the genome, providing cheaper alternatives to WGBS, and 

accurately quantify of approximately 15% of higher density CpG sites, including CpG 

islands and promoter regions.40,42. These targeted approaches make it possible to profile 

more patients with regions that are of particular interest in transcriptome regulation.

Regional quantification approaches for methylation analysis mainly use affinity-based DNA 

methylation sequencing, such as methylated DNA immunoprecipitation sequencing 

(MeDIP-seq).41 This approach uses antibodies that recognize genomic locations with 
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methylated CpGs. Comparison of the 450K array and WGS approaches showed sufficient 

correlation (Spearman correlation coefficient = 0.68).43 Another study showed the 450K 

array generated highly reproducible data between seven technical replicates of clinical 

samples.37 However, a large-scale effort comparing different platforms remains to be done.

F. Computational Analysis of Multi-Omics Data

One of the biggest challenges in going from bench to bedside in sequencing studies is the 

accurate and reproducible analysis of the resulting terabytes of data. Sequencing data 

analysis is a multistep process that researchers often need to adapt for specific experiments 

or scientific questions. For any sequencing data, computational analysis generally begins 

with aligning reads to a reference genome (Fig. 2). Commonly used programs include BWA 

for DNA reads, STAR for RNA-seq data, and Bismark, BSMAP, or BSmapper for bisulfite 

sequencing data.44–48 The choice between different aligners available for a specific type of 

data depends on such factors as sequencing platform, read length, and desired SNP 

tolerance, with various programs optimized for different read characteristics.49 After 

mapping to the genome, analysis depends on the scientific question, with specific programs 

designed broadly to call variants, identify differential expression, or quantify the extent of 

methylation. For example, the Genome Analysis Toolkit (GATK) offers variant calling 

algorithms for both DNA- and RNA-seq data, the results of which are often followed with 

annotation using SnpEff or Oncotator for cancer studies.50–52 Another method useful for the 

analysis of variants in cancer data, specifically intra-tumor heterogeneity, is PyClone.53 For 

RNA-seq data, the pipeline r-make, mediated by GNU Make, provides an easy, one-step 

method to align data with STAR, perform quality assessments, and generate gene counts, 

which can then be used for differential expression analysis with tools such as edgeR.19,54 

Software for downstream analysis of methylation data includes methylKit, eDMR, and 

methclone.55–57 When multiple data types are available, their integration can identify a 

network of interacting and interdependent processes contributing to disease states using 

tools such as iCluster and Cytoscape.58,59 Indeed, clustering patient samples using models 

that computationally combine different data types has revealed new subtypes not seen when 

evaluating a single data type.60,61 Despite challenges in cost, cross-platform comparisons, 

technical standards, and analysis methods, advances in massively parallel sequencing 

techniques present new opportunities to improve clinical research, which we explore in the 

next section.

III. OPPORTUNITIES

A. Leveraging Electronic Health Records Data

Many aspects of patient care increasingly incorporate genomics and informatics, especially 

with the transition to electronic health records (EHR). Despite the relatively recent shift to 

EHR, large-scale studies using machine learning and data mining methods are already 

leveraging the data, as EHR offers unprecedented access to large sample sizes and diverse 

patient cohorts. These studies include mining for adverse drug effects,62 and developing a 

classifier for disease phenotype severity.63 The implications of a transition to EHR for 

clinical genomics, including genetic testing, have been reviewed previously.64
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B. Genomics and Chronic Illnesses

Genomic approaches are important for preventing and managing chronic illnesses, such as 

diabetes and inflammatory bowel disease. The Human Microbiome Project and other 

metagenomic studies have revealed the role of gut microbiota in health. Fecal microbiota 

transplants for treating Clostridium difficile infections, ulcerative colitis, Crohn’s disease, 

and other digestive illnesses represent the translation of this finding into clinical 

practice.65,66

C. Personalized Healthcare and Direct-to-Consumer Genomics

Statistical models can incorporate genomic features and family history, coupled with factors 

such as age, weight, and ethnicity, for disease risk prediction in healthy individuals. These 

models have been especially useful for early intervention in individuals at high risk for 

diabetes and cardiovascular disease. Clinical genomics platforms such as Foundation 

Medicine, Ingenuity, and Personalis facilitate the implementation of genetic testing in 

clinical platforms.67 As of August 2015, the NIH’s genetic testing registry catalogued 

28,542 tests spanning 4,726 genes for the purpose of diagnosing any of 9,927 conditions. 

This registry not only includes classical Mendelian diseases, such as Huntington’s chorea, 

but also predicts predisposition to complex diseases, such as Alzheimer’s, and drug 

response, such as sensitivity to the anticoagulant warfarin. With direct-to-consumer tools 

like 23andme and ancestry.com, which make this type of information accessible to interested 

individuals, people are more empowered than ever to advocate for their own health. 

Research continues into disease risk prediction through computational methods that use 

patients’ genetic information, coupled with EHR in some cases.68 Federal policies are 

changing to reflect the shift to clinical genomics, as evidenced by the 2015 repeal of the 

FDA’s shutdown of 23andme’s genetic testing arm, and by the 2013 landmark supreme 

court case that barred the previously common practice of patenting genes.69 Other legal and 

ethical issues surrounding clinical genomics include those relating to genetic testing in 

children and adolescents, previously reviewed by Botkin et al.70

D. Genomics and Cancer

Despite challenges, genomics has produced a paradigm shift in medicine, especially in the 

treatment of cancer. Where historically cancer was categorized by the tissue type it affects, it 

is now increasingly being defined by genetic alterations. The vast breadth of knowledge we 

have gained from large national and international cancer sequencing efforts, mainly The 

Cancer Genome Atlas and the International Cancer Genome Consortium, has immeasurably 

increased our understanding of the genetic mechanisms, molecular subtypes, and 

heterogeneity of cancers.71,72 These data are easily accessible to the scientific community. 

Tools like the cBio Portal, for example, allow anyone to query the mutation load of any 

given gene in all assayed cancer types (Figure 1). Thus, cancer genomics is continuously 

being translated to clinical settings.73 One such case is recurrent mantle cell lymphoma, for 

which researchers used an integrative genomics and transcriptomics approach coupled with 

extensive functional studies to attribute the cause of relapse after ibrutinib treatment to a 

relapse-specific SNV in the drug target, BTK.74 The therapeutic decision-making pipeline 

can now incorporate this discovery by testing for this BTK mutation. Similar efforts in a 
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wide variety of cancers have categorized subtypes of cancers based on genetic information, 

and these classifications are actively used in diagnoses, prognoses, and therapeutics.

A classic success story surrounding the use of genomics in cancer therapy relates to the 

BRAF inhibitor vemurafenib in metastatic melanoma. Genomic screening of metastatic 

melanoma patients identified BRAF V600 mutations in half of all patients that increased the 

sensitivity of cancer cells to BRAF inhibitors.75 One of the common challenges of targeted 

therapies, however, has been the development of resistance, which occurred in cases of 

melanoma treated with BRAF inhibitors. Combinations of drugs as opposed to 

monotherapies lower the risk of resistance and relapse. For example, dabrafenib in 

combination with trametinib prolongs progressionfree survival and increases response rates 

in BRAF V600 melanoma compared to monotherapy.76

Combination therapies often perform more successfully, as developing resistance is less 

likely. Computational methods for predicting effective drug combinations alleviate the 

enormous cost of exhaustive experimental testing in every cancer model. Instead, these 

machine learning methods can use data from cell line assays as training sets and predict 

successful combinations for genetically defined subtypes that researchers can then test in 

patient-derived xenograft models.77 Some of the experimental data sets currently available 

for use in computational models are the NCI 60 cancer cell line and drug screening data,78 

NIH’s Library of Integrated Cellular Signatures (LINCS), and the Broad Institute’s 

connectivity map.79 By modeling drug-gene interactions coupled with the genomic 

alterations of a patient’s tumor, doctors are now able to predict the efficacy of different 

chemotherapies or targeted therapies in a personalized manner. These models not only 

include rule-based decision-tree methods but are also more complex computational models. 

In addition to predicting the efficacy of combination therapies, computational methods for 

drug repositioning are also continuously gaining popularity and producing effective 

therapies.80

Because many of these drug development and prediction approaches rely on accurate and 

detailed patient stratification based on genomic data, clinical samples increasingly undergo 

whole genome, exome, and transcriptome sequencing, either at the time of collection for 

rapid turnaround or after the banking for future analysis. A vast amount of sequencing data 

has enabled better assessment of prognosis in many cases, although this is not new to the 

sequencing era. By 2000, microarrays were being used for molecular stratification of cancer 

samples through the identification of gene signatures defining differential survival.81 

Unsurprisingly, the advent of NGS methods increased studies in this vein.

Even with applications to all aspects of human health and disease, cancer remains the one 

disease (really an innumerable collection of diseases) on which genomics has had the 

biggest impact. Cancer is genetic in nature; cancers arise from the accumulation of inherited 

and somatic genetic alterations.82 Heterogeneous subpopulations comprising tumors have 

been experimentally observed through cytogenetic, Sanger sequencing, and NGS 

experiments.83 As originally proposed by Nowell in 1976, these subpopulations compete 

with each other for space and resources, and the clones better equipped to survive and 

proliferate in the tumor microenvironment will progress.84 Genomics enables researchers to 

Vijay et al. Page 8

Crit Rev Eukaryot Gene Expr. Author manuscript; available in PMC 2017 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assess the compositions of tumors and infer the molecular characteristics of distinct 

subpopulations.

The main challenge in accurately inferring heterogeneity and clonal evolution is that most 

tumorprofiling methods involve a bulk sample of cells, effectively masking intratumoral 

variability. With novel technological developments in single-cell sequencing, we can now 

measure these subpopulations directly and at a previously unprecedented resolution. Single-

cell sequencing will add a new level to clinical applications of tumor sequencing by 

increasing the resolution with which we can model complex tumor dynamics and 

incorporate that into prognosis assessment and drug efficacy prediction (Figure 3). The 

development of single-cell sequencing methods has addressed this issue, especially single 

cell RNA-seq, which researchers have used in immune cells,85 breast cancer,86 melanoma 

circulating tumor cells,87 and glioblastoma.88 Each of these cases revealed new levels of 

heterogeneity that are undetectable in bulk samples, suggesting that single-cell resolution is 

necessary to accurately characterize complex tissue samples.

An added benefit is that all of these sequencing data are submitted to curated repositories 

with publication, such as the database of Genotypes and Phenotypes, the Sequencing Reads 

Archive, and the Gene Expression Omnibus. Public data help alleviate the problem of small 

sample sizes common in clinical settings and/or rare diseases. Researchers interested in any 

of these data can download them and apply their own analysis. For those unfamiliar with 

computational and bioinformatics methods, there are also pipelines with guided user 

interfaces that facilitate these steps, such as STORMseq,89 Genesifter, Ingenuity variant 

analysis software, and more. Currently research is also being conducted in software design 

for use by non-computational clinical scientists.90 Although the data repositories in place 

serve a much-needed purpose, there are opportunities for better infrastructure, support for 

IRB approvals, ease of submission, and ease of access.

E. Advances in Genomics Approaches for Neurobiology

The use of molecular stratification with genomic sequencing to guide patient therapy is not 

limited to cancer drugs. Although less understood, genomic approaches also apply to 

neurobiology, especially in the study of Alzheimer’s and autism spectrum disorders.91 With 

large-scale efforts in mapping the human brain using cutting edge brain imaging techniques, 

high-volume data approaches are becoming increasingly useful in understanding 

neurodegenerative diseases. Understanding mutations and predispositions to these diseases 

would allow for early intervention, which is often the only hope for therapy.

F. National and International Personalized Medicine Initiatives

Overall, clinical genomics pervasively affects human health and disease, especially in 

oncology. Federal policy changes mirror this evolution in our understanding and treatment of 

cancer, most notably through President Obama’s Precision Medicine Initiative, announced in 

his 2015 State of the Union Address. This initiative includes increased funding to the 

National Cancer Institute for researching genomic drivers in cancer and for streamlining the 

design and testing of targeted therapies based on genetics. Relatedly, the prototypical clinical 

trial is transforming to reflect a personalized medicine approach, as seen by the success of 
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the IMPACT and following IMPACT2 studies. Importantly, these changes in clinical 

genomics are occurring on a global scale, inspiring international cooperation to advance 

medicine.92–93
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FIG. 1. 
Overview of genomic, transcriptomic, and methylomic sequence analysis workflows for 

disease characterization and precision medicine. Computational analysis pipelines are 

further described in Fig. 2.
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FIG. 2. 
Computational analysis pipelines for integrative genomic, transcriptomic, and methylomic 

data. SNV, singlenucleotide variant; SV, structural variant; VAF, variant allele frequency; 

CN, copy number; CNV, copy-number variant; LOH, loss of heterozygosity.
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FIG. 3. 
Conceptual overview of single-cell sequencing for clinical applications.
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