
Multimodal Registration of White Matter Brain Data via Optimal 
Mass Transport

Tauseefur Rehman1, Eldad Haber2, Kilian M. Pohl3, Steven Haker3, Mike Halle3, Florin 
Talos3, Lawrence L. Wald4, Ron Kikinis3, and Allen Tannenbaum1

1Schools of Electrical & Computer and Biomedical Engg., Georgia Institute of Technology, 
Atlanta, GA

2Department of Mathematics and Computer Science, Emory University, Atlanta, GA

3Surgical Planning Laboratory, Department of Radiology, Brigham & Women’s Hospital, Harvard 
Medical School, Boston, MA

4Martinos Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical 
School, Charlestown, MA

Abstract

The elastic registration of medical scans from different acquisition sequences is becoming an 

important topic for many research labs that would like to continue the post-processing of medical 

scans acquired via the new generation of high-field-strength scanners. In this note, we present a 

parameter-free registration algorithm that is well suited for this scenario as it requires no tuning to 

specific acquisition sequences. The algorithm encompasses a new numerical scheme for 

computing elastic registration maps based on the minimizing flow approach to optimal mass 

transport. The approach utilizes all of the gray-scale data in both images, and the optimal mapping 

from image A to image B is the inverse of the optimal mapping from B to A. Further, no 

landmarks need to be specified, and the minimizer of the distance functional involved is unique. 

We apply the algorithm to register the white matter folds of two different scans and use the results 

to parcellate the cortex of the target image. To the best of our knowledge, this is the first time that 

the optimal mass transport function has been applied to register large 3D multimodal data sets.

1 Introduction

Registration is an important pre-processing step for many automatic approaches that extract 

cortical structures from Magnetic Resonance Images (MRI) [9, 22, 11]. Common 

approaches for aligning the atlas of the segmenter to the patient MRI are based on the B-

spline representation [11, 19] and continuum and fluid mechanics, [7, 15, 6, 21]. The 

accuracy of these approaches generally depends on how well they are tuned to the sequence 

of patient scan. Tuning these algorithms often requires expertise about the underlying 

algorithm. Clinicians scanning with new acquisition sequences are therefore often concerned 

on how to post-process these scans. In this paper, we propose a parameter-free algorithm for 

the registration of MRIs.
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We model the registration of images as an optimal mass transport problem. Introduced by 

Monge and Kantorovich [13], the solution to the problem is an optimal mapping û (in some 

sense) between two densities μ0 > 0 and μ1 > 0. If we now define d as the dimension of the 

image domain, det() as the determinant, u as a mapping from Ω → Ω with Ω a subdomain of 

ℝd, and represent by ρ(.,.) : Ω · Ω → ℝ+ a distance function between two points in Ω, then 

the problem can be formalized as

(1.1)

We refer to the constraint c(u) = 0 as the mass preserving (MP) property.

For the remainder of this note, we take ρ(·,·) to be the squared distance function 

 Even for the simple L2-norm, (1.1) defines a highly non-linear 

optimization problem. While there exists a large body of literature which deals with the 

analysis of the problem, such as [1, 8], only a smaller number of papers discuss efficient 

numerical solutions for the problem. Benamou and Brenier [5] estimate û by relating 

Equation (1.1) to the minimization of a certain kinetic energy functional with a space-time 

transport partial differential equation (PDE) constraint. Their approach not only estimates 

the optimal mapping but also provides the transportation path between the densities. A 

computationally faster solution to (1.1) was proposed by Angenent et al. [3]. Their algorithm 

directly estimates û by first computing a transformation u0 that fulfills the MP property. 

Afterwards, the algorithm improves u0 by concatenating the mapping with the 

transformation,

(1.2)

We refer to the second equation in (1.2) as the  constraint. This means that  is an MP 

mapping from μ0 to itself. The authors in [3] show that ŝ can be estimated via a steepest 

descent flow. To register 2D MRIs, they implement the method using forward Euler equation 

scheme for time stepping and a simple finite difference discretization of the spatial 

derivatives. The approach, however, does not enforce the MP constraint at each step of the 

numerical algorithm, so that the final solution generally does not fulfill the MP property. In 

addition, steepest descent is very slow in estimating the solution to Equation (1.2). For these 

reasons it would be very challenging to efficiently register 3D medical images with this 

approach. To overcome this hurdle, this paper describes a faster numerical solution to 

Equation (1.2) that enforces the MP constraint.

Unlike [3], we solve the optimization problem via an approach where we choose a direction 

other than steepest descent and show that it converges faster (see Section 2). Furthermore, 

we derive a numerical approach that uses a consistent conservative discretization method 

and enforces the MP constraint at each update of the solution (Section 3). In Section 4, we 
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test the robustness of our approach by registering the white matter folds of two MRIs. The 

first MRI scan is part of a publicly available atlas [14] with detailed anatomical information 

about the scan. The second scan was acquired using a very different scanning protocol. Our 

approach accurately aligns the two scans. We then use the aligned atlas to outline the cortical 

folds in the new scan.

We end this section with the comment that our approach most closely relates to those 

registration approaches based on fluid mechanics. The optimal warping map of the L2 

Monge-Kantorovich equation may be regarded as the velocity vector field which minimizes 

a standard energy integral subject an Euler continuity equation constraint [5]. In particular, 

in the fluid mechanics framework, this means that the optimal Monge-Kantorovich solution 

is given as a potential flow.

2 Obtaining the descent direction

We now quickly review the derivation presented in [12] but within a variational framework. 

Assuming that the MP constraint condition is valid, we take a perturbation in s which stays 

on the MP constrained manifold. This leads to

This expression can be simplified as long as the constraint is valid. Since det(∇u) > 0 we can 

divide, and rearranging we have

Defining δζ = μ0δs(s−1), we see that ∇· δζ = 0. Next, looking at u = u0 (s−1), we can write 

u(s) = u0 which implies that,

Using the definition of δζ we obtain that as long as the constraint is valid and that u(s) = u0 

we have

(2.3a)

(2.3b)

Let M be defined as the objective function in (1.2) then it can be shown that
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(2.4)

In the the original paper [12], it is suggested to use the Helmholtz decomposition in order to 

obtain a descent direction. Here we employ a different approach. First, we note that the 

divergence constraint can be eliminated by selecting δζ = ∇ × δη, and thus to reduce M we 

need to obtain a direction that yields a negative δM, that is we seek a direction, δη such that 

. Using the Gauss theorem, we obtain that

and therefore the steepest descent direction is given by

which leads to the update δζ = ∇ × ∇ × u, and finally to the steepest descent direction in u 

 or, in symmetric form

(2.5)

The operator −∇ × ∇× is negative and elliptic thus, the equation can be thought of as a 

parabolic PDE as long as real part of the eigenvalues of ∇u are positive. Using the above 

decomposition a family of different directions may be obtained. Note that in order to reduce 

the objective  any vector field of the form δη = A∇ × u can be used where A 
is a symmetric positive definite matrix. For example, a choice that leads to a similar method 

to the one derived in the original paper [12] in 2D is A = −Δ−1, which leads to the update

(2.6)

Using the above calculation it is easy to see that the flow (2.6) is valid also in 3D. Moreover, 

it is easy to verify that given a smooth u the second formulation (2.6) leads to a more stable 

method that should converge faster compared with the first formulation (2.5), because the 

operator ∇ × Δ−1∇ × is compact while the ∇ × ∇× operator is unbounded. In this work, we 

therefore derive a numerical method for (2.6) rather than for (2.5).

3 Deriving an efficient numerical method

In this section, we derive an efficient numerical method for the solution of the flow. The 

proposed method has three main components: a conservative discretization of differential 

operators, a criterion to choose step size, and a method to correct steps that deviate from the 

mass preservation constraint.
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3.1 Conservative discretization

The applications we have in mind derive from medical imaging where images are discretized 

on a regular grid. We therefore construct our discretization based on a finite volume/

difference approach. To derive and analyze our discretization we introduce a new variable δp 
= Δ−1∇ × u and rewrite (2.6) as

(3.7)

In order for the discrete system to be well posed we need consistent discretizations for Δ, ∇u 
and ∇ × u. There are a number of possible discretizations that lead to a well-posed system.

We divide Ω into n1 × … × nd cells, each of size h1 × … × hd where d is the dimension of 

the problem. We discretize all the components of u at the nodes of each cell to obtain d grid 

functions û1,…ûd. Since δp is connected to u by the curl operator, we employ a staggered 

grid and place δp at cell centers. To approximate ∇u at each node, we use long differences. 

Thus, in 3D, the discretized (1,1) block in (3.7) is a matrix of the form

(3.8)

where Dj is a matrix of long differences in the jth direction. To obtain a consistent 

discretization of the Laplacian we use a standard discretization (5 point stencil in 2D and 7 

point stencil in 3D) with Dirichlet boundary conditions. Finally, we employ short differences 

in one direction averaged in the other direction to obtain a cell centered approximation of ∇ 
× u.

3.2 Computation of a step

The computation of each step requires two parts. Firstly, the solution of (3.7) and secondly, a 

way to determine if it is an acceptable step. The solution of the system (3.7) is 

straightforward. Any fast Poisson solver can be used for the task. Here we have used a 

standard multigrid method with weighted Jacobi smoothing, bilinear prolongation and its 

adjoint as a restriction.

The validity of the update is determined using the following procedure. Assume that at 

iteration n we have ûn as an approximation to u and that we computed δû. The update is then 

performed using,

(3.9)

Rehman et al. Page 5

Midas J. Author manuscript; available in PMC 2017 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where  is an orthogonal projection discussed in Section 3.3 below, that projects ûn + αδû 
into the mass preserving manifold. The step size α is then chosen such that the objective 

function is decreased and that the real part of the eigenvalues of (∇hû) is positive. The whole 

algorithm is outlined Algorithm 1.

Algorithm 1

Solution of OMT:

û ← OMTsol(μ0, μ1);

Use μ0 and μ1 to compute a mass preserving u0

while true do

 Solve (3.7) for δû

 line search: set α = 1

 while true do

   

   

   Break

  end if

   α ⇐ α/2

 end while

end while

3.3 Orthogonal projection into the mass preserving constraint

Assume that we have computed a mass preserving mapping ûn, and that we have updated it 

to obtain vn = ûn +αδû. It should be noted that an infinitesimal δû does not guarantee mass 

preservation. Furthermore, we aim to take large steps in δû, and therefore the MP constraint 

is likely to be invalid. To correct for this we use orthogonal projections. The goal is to 

compute a vector field δv such that c(v + δv) = 0. Obviously, δv is non-unique and therefore 

we seek a minimum norm solution that is we seek δv such that

It is easy to verify that a correction for δv can be obtained by solving the system 

. The system  can be thought as an elliptic system of equations. 

The system is solved using preconditioned conjugate gradient with an incomplete Cholesky 

preconditioner.

4 Registration of Brain Data

Our goal is the identification of cortical structures by mapping a publicly available atlas[14] 

to the scan of a patient. In our scenario, the scanning sequence of the atlas is very different 
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from the one of the patient. The MRI of the atlas is a spoiled gradient recalled image 

acquired on a 1.5-Tesla General Electric Signa System (GE Medical Systems, Milwaukee) 

with 256×256×124 voxels and voxel dimension of 0.92 × 0.92 × 1.5 mm. The patient scan is 

a MPRAGE acquired on a Siemens 3T long bore machine using a 8 channel head coil. The 

resolution of the scan is 256 × 256 × 144 with voxel dimension 0.54 × 0.54 × 1.0 mm (See 

Figure 1(b).

The parcellation of the cortex can be encoded by partitioning the boundary between cortex 

and white matter into anatomical regions [9]. The label map of cortical structures can then 

be inferred from this partition by propagating the labeling along the boundary to the entire 

cortex. The pipeline described below will apply this concept for the parcellation of the 

cortex to the high resolution scan.

The input of the pipeline consist of the atlas, the high resolution scan as well as a 

segmentation of the scan into the major tissue classes. In the first step, we coarsely align the 

atlas to the image data using the B-spline implementation by Rohlfinger[19] with a final 

spacing of the grid nodes of 2.5 mm. This results in a coarse alignment of the scans. The 

algorithm has difficulties in mapping the folds of the white matter due to the inherent 

constraints of the B-spline representation. We then reduce the atlas to the white matter 

including the parcellation of the cortex along the boundary between gray and white matter 

(see Figure 1(a)). Afterwards, we refine the alignment of this new atlas to the white matter 

of the high resolution scan using our Optimal Mass Transport registration approach. 

Registration using Optimal Mass Transport is a highly flexible approach that is, unlike B-

Splines, not constrained to a set of control points. The intensities in the two input datasets 

are first normalized and rescaled to make sure that both have the same total mass. The white 

matter registration with the proposed algorithm took just 12 iterations to converge with 2 

iterations of the projection to constraint per iteration. This is a huge improvement over 

algorithm proposed in [12] where thousands of iterations were required for convergence with 

roughly the same computational complexity per iteration. The ∇ × u (convergence metric) 

was reduced to an order of 10−3 indicating an optimal map. Figure 1(c) shows the resampled 

images with 3D views of the corresponding deformation grid in Figure 2. The difference 

(Figure 1(d)) between target (Figure 1(b)) and resampled image indicates that our approach 

accurately aligned the folds. After this local alignment, the folds of the atlas should perfectly 

align with the ones of the high resolution scan. The parcellation of the folds of the atlas, 

therefore, also encodes the parcellation of the same region in the high resolution scan. We 

then complete the cortex parcellation of the high resolution scan by confining the Voronoi 

diagram of the aligned atlas to the gray matter mask of the high resolution scan. The results 

in Figure 3 show the corresponding segmentation when applying the deformation map of the 

B-Spline registration and our approach to the the label map of [14], and propagating the 

labels to the cortex via the Voronoi diagram.

We are aware of the variety of other methods for registering and segmenting cortical 

structures. We also note that our segmentation results are by no means perfect. However, to 

the best of our knowledge, this is the first time in medical imaging that a parameter-free 

registration tool has been used for registering the cortical folds of 3D MRIs.

Rehman et al. Page 7

Midas J. Author manuscript; available in PMC 2017 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5 Conclusions

The difficulties of aligning cortical folds is reflected by the large body of literature 

discussing this topic. Registration approaches based on continuum and fluid mechanics are 

often applied to this problem. However, the accuracy of these approaches generally depends 

on how well they are tuned to the sequence of patient scan. We view Optimal Mass 

Transport (OMT) as part of these types of registration approaches. Unlike the current state of 

the art, OMT is parameter free. It is, therefore, especially suited to align new acquisition 

sequences, which the other methods have not yet been tuned to.

In this paper we presented an efficient variational methodology for the computation of the 

optimal L2 mass transport mapping based on the formulation of [12]. Although, the theory 

was rigorous in [12], the proposed numerics were problematic. All of these problems have 

been addressed in our approach. This has lead to an efficient robust elastic deformation 

algorithm which is guaranteed to converge to the optimal solution of the Monge-

Kantorovich problem. We applied the approach to register the white matter between two 

MRI datasets. We then use the results to resample the label map of the source providing us 

with a parcellation of the cortex of the target image. We note that the approach is applicable 

to a whole range of registration and image morphing problems where the mass preservation 

constraint makes sense. Based on deriving this numerical framework, we are quite sure that 

in the near future we will be able to provide cases in which we show superior performance 

to other well established tools in the community. Finally, the set-up can be extended directly 

to optimal transport on a manifold as in [4].
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Figure 1. 
Registration results.
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Figure 2. 
Deformed Grid on white matter Slices (left) and 3D volume (right).
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Figure 3. 
Parecellation results
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