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Abstract

The paper introduces an algorithm which allows the automatic segmentation of multi channel 

magnetic resonance images. We extended the Expectation Maximization-Mean Field 

Approximation Segmenter, to include Local Prior Probability Maps. Thereby our algorithm 

estimates the bias field in the image while simultaneously assigning voxels to different tissue 

classes under prior probability maps. The probability maps were aligned to the subject using 

nonrigid registration. This allowed the parcellation of cortical sub-structures including the superior 

temporal gyrus. To our knowledge this is the first description of an algorithm capable of automatic 

cortical parcellation incorporating strong noise reduction and image intensity correction.

1 Introduction

Quantitative medical image analysis often involves segmentation to assess the shape and 

volume of anatomical structures. Progress has been made for major tissue classes, however, 

segmentation of other structures is still difficult. Manually segmenting hundreds of cases is 

not only time consuming but also has large variations. Given these factors, the need for 

automatic and validated segmentation methods is clear.

There are several approaches to achieve this goal. The Level Set Method introduced by 

Osher and Sethian [1] segments images by evolving predefined shapes to fit the image. 

Leventon [2], Tsai [3] and Baillard [4] introduced this method to the clinical field by using 

complex anatomical information. These methods ignore the intra-scan inhomogeneities, 

often caused by the radio-frequency (RF) coils, or acquisition sequences. Comprehensive 

validation studies are still needed regarding these methods.
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Using registration for segmentation is another approach. These methods use a previously 

segmented brain and align it with the subject. The result of this alignment is the 

segmentation. Fischl et el. [5] uses a detailed atlas with over 30 different labels to segment 

the brain. The ANIMAL+INSECT algorithm [6] on the other hand uses two algorithms at 

the same time. The ANIMAL is responsible for the non-rigid alignment of an atlas with the 

subject. The INSECT corrects the intensity inhomogeneity in the image. Nevertheless, 

segmentation by registration approaches cannot segment structures, which are not projected 

from the atlas onto the subject. For example, white matter lesions, which are common in 

several neurological diseases, cannot be identified with such an approach. As an alternative, 

some algorithms have been proposed which combine intensity based classification with 

segmentation by registration (Warfield [7]).

A very different approach introduced to the medical field by Wells [8], is the Adaptive 

Segmentation, which uses an Expectation Maximization (EM) Algorithm. It simultaneously 

labels and estimates the intensity inhomogeneities artifacts in the image. To add more 

robustness through noise rejection, Kapur [9] incorporated the Mean-Field Approximation 

(MF) for the labeling mechanism. However, the algorithm lacked any shape information. 

Van Leemput [10] improved this handicap by including prior probability maps (PPM) of 

tissue class spatial distribution into the initial formulation of Wells togther with a MF. He 

used affine registration to align PPMs with the subject. He iteratively updated the tissue 

class distributions and the labeling of the image simultaneously. To date, the published 

results indicate that ‘the method may occasionally fail, due to poor initialization … This 

problem may be overcome by using non rigid rather than affine registration for matching.’ 

[10] Additionally Van Leemput did not consider parcellation of the cortex.

Like Van Leemput, we used the Expectation Maximization-Mean Field Approximation 

(EM-MF) Algorithm for the segmentation itself, however, we align the PPM through non-

rigid registration. Compared to registration alone, this approach has the advantage of 

segmenting tissue classes relative to each other. Therefore, it can better cope with large 

artifacts in the image, such as significant intensity differences between the subject and the 

atlas. It allows us to parcellate substructures of the cortex, e.g. amygdala or 

parrahippocampal gyrus. We demonstrate the clinical usefulness of our new algorithm by 

carrying out validation experiments on the task of superior temporal gyrus (STG) 

segmentations.

2 Method

As mentioned, the Expectation Maximization - Mean Field Approximation - Local Prior 

Algorithm (EM-MF-LP) first registers PPMs to the subject. The method then uses the EM-

MF algorithm, defined through Expectation-Step (E-Step) and Maximization-Step (M-Step), 

to segment the subject. The E-Step is responsible for calculating the weights, representing 

the likelihood of tissue classes, using the aligned PPMs. The M-Step calculates the bias 

field, which models the intensity inhomogeneity artifact. These two steps are repeated until 

the algorithm converges.
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The PPMs used in this paper were derived from 82 different subjects using a statistical atlas 

construction method described by Warfield [11]. This method projects anatomy from a 

source to a target, such as white matter from subject a to subject b. The result is a minimum 

entropy anatomical model and a statistical volume or probability map for each tissue class.

2.1 Non-rigid Registration

In order to use these PPMs, we must register them to our subject. We register the SPGR 

corresponding to the target of the statistical atlases to the subjects SPGR, and project the 

PPMs using the same transformation. To do so, we use a deformable registration procedure 

[12, 13]. It finds the displacement v(x) for each voxel x of a target image T to match the 

corresponding anatomical location in a source image S. The solution is found using the 

following iterative scheme:

(1)

where Gσ is a Gaussian filter with a variance of σ2, ⊗ denotes convolution, ○ denotes the 

composition, ∇ is the gradient operator and the transformation h(x) is related to the 

displacement v(x) by h(x)=x+v(x).  is an intensity corrected version of S computed at the 

nth iteration to help capture intensity variations present between the images to register.

Equation (1) finds voxel displacements in the gradient direction . Convolution 

with a Gaussian kernel Gσ is performed to model a smoothly varying displacement field. As 

is common with registration methods, multi-resolution techniques are used to accelerate 

convergence.

2.2 EM-MF

When segmenting magnetic resonance images (MRI) it is hard to determine the 

inhomogeneities without knowing the tissue type of every voxel. On the other hand, one 

cannot find out the tissue type without knowledge of the inhomogeneities. Therefore, the 

adaptive segmentation approach [8] will try to solve for these two unknowns simultaneously.

In the Expectation Step (E-Step), the algorithm calculates the expected value of the weight 

(also see Kapur [9])

(2)

where Y(x,y,z) is the log intensity and β(x,y,z) is the bias of the image at voxel (x,y,z), T is 

the tissue class, DT is the tissue class distribution, and N is the normalizing factor of weight 

WT. The energy function ET (x,y,z), representing the mean field approximation, is defined as
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(3)

where M is the number of classes, U = U(x,y,z) is the neighborhood of (x,y,z) and

(4)

is the ‘Tissue Class Interaction Matrix’ (CIM).

The Maximization Step (M-Step) calculates the maximum a-posteriori (MAP) estimate of 

the bias field assuming the weight calculation in the previous step is correct for every voxel.

(5)

where  is the mean residual, defined by DT,  and Y, and H is determined by the mean 

tissue class covariances and the bias covariance (see Wells [8]).

2.3 The EM-MF-LP

The EM-MF Algorithm, described in Section 2.2, assumed that the probability for a given 

tissue class P(T) does not change throughout the image. For the EM-MF-LP algorithm this 

assumption will be dropped. P(T), in equation (2), will be substituted with P(T|x,y,z). Thus 

the weight in the E-Step will be updated as follows:

(6)

The EM-MF-LP Algorithm works in two phases (see Figure 1). First, it registers the brain 

atlas with the subject. The resulting deformation field is used to align the PPMs to the 

subject. The aligned PPMs define the local prior probability P(T|x,y,z). In the second phase, 

it segments the image using EM-MF Algorithm with the updated E-Step (see Equation 6).

3 Implementation and Experiments

The algorithm is fully integrated in the 3D Slicer [14], which is a software package for 

medical image analysis. A basic version of the described method is publicly available at 

http://www.slicer.org. The user interface guides the user through the segmentation process. 

Tissue definitions for the actual image can be done manually or automatically. Graphs and 

other tools help to verify the results.
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To show the improvements of the EM-MF-LP method over other approaches, the different 

strategies will be compared on one MRI Scan with 256×256 pixels. Both Spoiled Gradient 

Recalled Acquisitions in the Steady State(SPGR) and T2 weighted intensity features were. 

The resulting segmentations are displayed in Figure 2. The first method is simply using 

brain mapping with non-rigid Registration (NRR). After the atlas brain is registered with the 

subject, the PPMs are then aligned. Each voxel is assigned to the tissue class with the 

highest a posteriori probability. This approach is very similar to Fischl[5], Pachai[15], and 

Collins[6]. The segmentation is only a rough estimate, which is too ’stiff’ for the subject. 

Especially the CSF at the outside of the brain is underestimated.

The EM-MF Algorithm is more flexible than NRR (see Figure 2(c)). In addition, the 

algorithm better incorporates the image inhomogeneities. However, voxels are still seen 

independently, which causes additional noise. Segmenting cortical substructures is not 

possible, as opposed to NRR. Again, the need for increased usage of spatial information is 

very apparent. In Figure 2(f), we use the method described in Section 2. Figure 2(e) is the 

same method, but the non-rigid registration is substituted with an affine one, similar to Van 

Leemputs’ approach. Comparing 2(e) to 2(f) the dangers of including local priors into the 

EM-MF Algorithm are readily apparent. The STG in Figure 2(e) is expanding into 

neighboring structures like the middle temporal gyrus. Also as in Van Leemput’s paper [10] 

additional misclassification at the outside of the brain can be observed in Figure 2(e). This is 

primarily due to poor alignment of the atlases. It can readily be seen that these effects are 

eliminated in Figure 2(f), where the more accurate non-rigid registration method is used.

Figure 3(b) shows a segmentation with 11 different tissue classes. Increasing the number of 

tissue classes does not cause a problem for the algorithm in terms of convergence. The 

algorithm will only take more time for every iteration step because it has to consider more 

classes. However, as mentioned, more classes restricts the system further and therefore lets 

the algorithm converge faster.

4 Validation

To validate this new approach, the left and right STG of four subjects were manually 

segmented by three raters. We used the Dice Similarity Measure (DSC) described by 

Zijdenbos et al. [16] to compare manual and EM-MF-LP segmentations. The 

 is derived from the kappa statistic, where A1 and A2 are the two 

segmented areas. DSC > 70% is regarded as an excellent agreement between the two. In our 

approach, in all cases the similarity measure for the automatic segmentation was within the 

variance of the manual ones or above 70% (see Table 1(a)), which can also be observed in 

Figure 5.

The results were also compared with the performance measure introduced by Warfield et al. 

[17] (see Table 1(b)). This measure combines a maximum likelihood estimate of the ’ground 

truth’ segmentation from all the segmentations, and a simultaneous measure of the quality of 

each expert. The quality measure is composed of a sensitivity and specificity measures. A 

value of 1.0 for both is seen as perfect. Again, in all cases the automatic segmentation does 
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as well as the manual ones. However, unlike manual segmentations, the algorithm can 

occasionally spread out over the ends of the STG into the middle temporal gyrus. In this 

segmentation the STG’s local priors do not compete with other neighbouring cortical 

substructures. Adding additional local tissue classes, like the middle temporal gyrus, would 

eliminate this effect and therefore further increase the accuracy of the automatic 

segmentation. Overall, the validation shows that the algorithm produces reliable results 

when compared with manual segmentations.

5 Discussion and Conclusion

In this paper we showed the benefits of integrating local tissue priors through non-rigid 

registration into the EM-MF. We validated the method by comparing it to manual 

segmentations of the STG. The results showed that the segmentation is comparable to 

manual ones. Through examples we showed that the algorithm performs better than some 

previous methods and is capable of more detailed segmentation including parcellation of the 

cortical structures. It also runs rapidly and robustly enough for further use in the real medical 

environment.

We believe the accuracy of the algorithm could be further increased by re-aligning the PPMs 

with the subject, by using the results of the segmentation and then re-segmenting the images 

again. When segmenting smaller structures, small errors can have large effects on the 

topology of the object, e.g. a voxel is assigned to a wrong class causing a structure to be 

separated. This effect could be limited by using higher order spatial information.

We believe that this approach is a step towards fully automated medical image processing, 

enabling the automatic segmentation of cortical sub-structures.
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Fig. 1. 
The structure of the EM-MF-LP Algorithm
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Fig. 2. 
Segmenting up to 7 tissue classes with different methods. Methods used in (b) and (c) do not 

allow the parcelation of cortical substructures. In (e) the misclassifcation of the scalp is 

visible as described in [10]. These errors are eliminated in our result shown in(f).
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Fig. 3. 
Segmenting brain with 11 tissue classes including left and right amygdala, superior temporal 

gyrus and parrahippocampal gyrus
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Fig. 4. 
These figures show high quality, volumetric brain segmentations higlighting left and right 

STG
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Fig. 5. 
Comparing manual and automatic (EM-MF-LP) segmentation of the right STG where dark 

gray is EM-MF-LP only, light gray overlapping of manual and automatic, and white manual 

only segmentation.
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Table 1

Comparing the average DSC for one case and Warfield/Zou/Wells Measure between Rater A, B, C and the 

EM-MF-LP algorithm. The fraction in Table (b) is defined as . - means value was not available.

(a) DSC Measure for one case

Rater A B C EM

A 1.0 0.828 0.742 0.778

B 0.828 1.0 0.744 0.825

C 0.742 0.744 1.0 0.715

EM 0.778 0.825 0.715 1.0

(b)Warfield/Zou/Wells Measure

Rater\Case 1 2 3 4

A

B

C

EM
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