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Statistical thinking for 21st century scientists
D. R. Cox1 and Bradley Efron2*

Statistical science provides a wide range of concepts and methods for studying situations subject to un-
explained variability. Such considerations enter fields ranging from particle physics and astrophysics to genet-
ics, sociology and economics, and beyond; to associated areas of application such as engineering, agriculture,
and medicine, in particular in clinical trials. Successful application hinges on absorption of statistical thinking
into the subject matter and, hence, depends strongly on the field in question and on the individual investiga-
tors. It is the job of theoretical statisticians both to be alive to the challenges of specific applications and, at the
same time, to develop methods and concepts that, with good fortune, will be broadly applicable.
To illustrate the breadth of statistical concepts, it is helpful to think
of the following sequence, in practice is often encountered in a dif-
ferent order:

(1) Clarification of research questions in a complex situation.

(2) Specification of the context for study, for example, the choice
of individuals for entry into a clinical trial.

(3) Issues of metrology: How are key features best measured in
the context in question, and how secure is the measurement
process?

Considered broadly, there may be many aspects of study design.
The general aims are to achieve a reasonable level of precision, an
absence of systematic error, and economy and breadth of interpre-
tation, sometimes by answering several interconnected questions in
one study. (i) Data collection, possibly including monitoring of data
quality; (ii) data analysis, usually in various stages from the simple
descriptive onward; (iii) summary of conclusions; (iv) interpretation:
What is the underlying interpretation of what has been found?What
are the relations with other work in the field? What new questions
have been raised?

General statistical considerations may enter at all these stages,
even though in essence they are all key subject matter concerns.

Phrases often heard nowadays are big data, machine learning, data
science, and, most recently, deep learning. Big data have been around
a long time, but the ability to analyze such data other than on a
sampling basis is new. Key issues concern first the relevance of the
data, especially if they are collected in a sense fortuitously. Then, there
may or should be worries over quality. Some big data, for example,
those obtained in the investigation at CERN leading to the Higgs bos-
on, are of very high quality. However, in other situations, if a small
amount of bad data may be quite misleading, a large amount of
bad data may be exceedingly misleading. The third aspect is more
technically statistical. The simpler methods of precision assessment
may appear to indicate a very narrow confidence band on the
conclusions from the big data, and this narrowness may give a seri-
ously overoptimistic view of the precision achieved.

The other newer themes of statistical concepts involve important
ideas coming with heavy computer science emphasis. These are often
aimed at empirical prediction fromnoisy data rather thanwith probing
the underlying interpretation of the data or with issues of study design
or with the nature of the measurement process.

The theory and practice of computer-age statistics are, for the most
part, a case of new wine in old bottles: The fundamental tenets of good
statistical thinking have not changed, but their implementation has.
This has been a matter of necessity. Data collection for a modern scien-
tist can move in seven-league boots, thanks to spectacular advance-
ments in equipment—notable examples include microarrays and
DNA sequencers in microbiology and robotic telemetry for astronomy.
Alongwith big data comes big questions; often, thousands of hypothesis
testing and estimation problems are posed simultaneously, demanding
careful statistical discussion.

Statisticians have responded with muchmore flexible and capacious
analysis methods. These depend, of course, not only on the might of
modern computation but also on powerful extensions of classical the-
ories, which shift the burden ofmathematical analysis onto computable
algorithms but demand careful discussion for the formulation of prin-
ciples. The examples that follow are too small to qualify as big data but,
hopefully, are big enough to get the idea across.

A study at a pediatric hospital in Guatemala followed some 1800
children over a 12-year period beginning in 2002 (1). Ten percent
of the children were abandoned by their families during their stay.
The goal of the study was to identify the causes of abandonment.
The key response variable was time, the number of days from ad-
mission to abandonment. For 90% of the children, abandonment
was never observed, because of they left the hospital or the study
period ended, in which case time was known only to exceed the
number of days of observation. In common terminology, time
was heavily censored.

More than 40 possible explanatory factors were measured, only 6 of
which will be discussed here: distance, the distance of the child’s home
from the hospital; date, the date of the child’s admission measured in
days since the study’s beginning; age and sex of the child; and ALL or
AML, indicating that the child was suffering from acute lymphoblastic
leukemia (ALL) or acutemyeloid leukemia (AML) (a worse prognosis).
All of the variableswere standardized. (Note thatALL andAMLare two
of several diagnoses under consideration, all of which were considered
“others” for this analysis.)

Proportional hazards is a modern regression methodology that
allows the fair comparison of potentially causative factors for a censored
response variable (2). Table 1 shows its output for the abandonment
study. Date for instance has a very strongly negative estimate, indicating
that abandonment was decreasing as calendar time went on. Distance
was strongly positive, suggesting increased abandonment from remote
home locations. Neither age nor sex yielded significant P values,
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although there is some suggestion that older children did better.
Likewise, neither ALL nor AML achieved significance, but, perhaps
surprisingly, AML children seemed better off.

In addition to the parameter estimates (Table 1, column 1), pro-
portional hazards theory also provides approximate standard errors
(column 2). The bootstrap (3) was used as a check. Each bootstrap
data set was formed by sampling the 1800 children 1800 times with
replacement; thus, child 1 might appear twice, child 2 not at all, child
3 once, etc. Then, the proportional hazards model was run for the
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bootstrap data set, giving new estimates for distance, date, age, sex,
ALL, andAML. Two thousand bootstrap data sets were independently
generated, yielding the bootstrap standard errors in column 5 of the
table. For instance, the 2000 bootstrap estimates for distance had an
empirical SD of 0.068, nearly the same as the theoretical SE of 0.072.
With the moderate exception of date, the other comparisons were
similarly reassuring.

The bootstrap replications can be used to address a variety of other
inferential questions. Figure 1 shows the histogram of the 2000 boot-
strap estimates of the difference AML minus ALL. Only 34 of the
2000 exceed 0, yielding a one-sided bootstrap P value of 0.017 (34 of
2000) against the null hypothesis of no difference.

The proportional hazards algorithm required perhaps 100 times as
much computation as a standard linear regression, whereas the
bootstrap analysis multiplied the burden by 2000. Neither theory
would have been formulated in the age of mechanical calculation.
They are discussed in chapters 9 and 10 in the study of Efron and
Hastie (4), along with a suite of other computer-intensive statistical
inference methods.

At the fundamental level, statistical theory concerns learning
from experience, especially from experience that arrives a little bit
at a time, perhaps in noisy and partly contradictory forms. Modern
equipment allows modern scientists to cast wider experiential nets.
This has increased the burden on the statistical learning portion of
the scientific process. Our next example, taken from chapter 6 in the
study by Bradley andHastie (4), shows the learning process in action,
using statistical ideas proposed in the 1950s but which are only now
routinely feasible.
Table 1. Proportional hazards analysis of the abandonment data.
Estimated date coefficient of 1.660 is strongly negative, indicating de-
creased abandonment as study progressed.
Estimate
 SE
 Z value
 P value
 Bootstrap
SE
Distance
 0.210
 0.072
 2.902
 0.004
 0.068
Date
 –1.660
 0.107
 –15.508
 0.000
 0.088
Age
 –0.154
 0.084
 –1.834
 0.067
 0.082
Sex
 –0.027
 0.076
 –0.347
 0.729
 0.078
ALL
 0.146
 0.082
 1.771
 0.077
 0.083
AML
 –0.070
 0.081
 –0.864
 0.387
 0.088
Fig. 1. Two thousand bootstrap replications of difference between AML and ALL proportional hazards coefficients.
2 of 5



SC I ENCE ADVANCES | R EV I EW
Figure 2 concerns a study of 844 patients undergoing surgery for
stomach cancer. Besides the removal of the central site, surgeons often
remove surrounding lymph nodes, malignant or negative. For patient
i, i = 1, 2, …, 844, let

ni ¼ #nodes removed

xi ¼ #nodes positive

and

pi ¼ xi=ni

where pi is the proportion of positive nodes; ni varied between 1 and
69. The histogram in Fig. 2 depicts the 522 patients with pi > 0, that is,
having at least one positive node; 322 of the patients, about 38%, had
pi = 0, represented by the large dot.

It is reasonable to imagine that each patient has a frailty parameter
qi, indicating how prone he or she is to positive nodes and that we are
seeing binomial observations

xi ∼ binomial ðni;qiÞ

Equivalently, xi is the number of heads observed in ni independent
flips of a coin having a probability of heads qi. If the ni’s were large,
then pi = xi/ni would nearly equal qi. However, many of the ni’s were
small (eight of them equaling 1); hence, Fig. 2 gives a badly distorted
picture of the distribution of the qi’s.
Cox and Efron, Sci. Adv. 2017;3 : e1700768 14 June 2017
Empirical Bayes methods allow us to recover a good estimate of
what a histogram of the 844 true qi values would look like. We assume
that the qi’s have some prior density g(q); g(q) is unknown but as-
sumed to belong to a low-dimensional parametric family. Here, log
g(q) was assumed to be a fifth-order polynomial in q. Maximizing
the likelihood of the observed data (ni, xi), i = 1, 2, …, 844, over
the coefficients of the polynomial yielded the estimate of g(q) pictured
in Fig. 3. It shows that most of the frailties are small (59% less than
0.2), but there are large ones too (7% above 0.8).

Having estimated the prior density g(q), we can use the Bayes rule
to calculate the posterior density of qi given patient i’s observed values
ni and xi. This is done for three of the patients in Fig. 4. Patient 1, with
ni = 32 and xi = 7, is seen to almost certainly have qi less than 0.5;
patient 3, with ni = 18 and xi = 17, almost certainly has frailty qi
greater than 0.5; and patient 2, with ni = 6 and xi = 3, could conceiv-
ably have almost any value of qi. This kind of information may be
valuable for recommending follow-up therapy that is either more
stringent or less.

The observed data ni = 32 and xi = 7 represent direct statistical
evidence for patient 1. It provides, among other things, the direct
estimate P1 = 7/32 = 0.22 for q1. Indirect evidence, from the other
843 patients, also contributed to the posterior probability density for
patient 1 depicted in Fig. 4.

An increased acceptance of indirect evidence is a hallmark of mod-
ern statistical practice. Both frequentist techniques (regression algo-
rithms) and Bayesian methods are combined in an effort to bring
enormous amounts of possibly relevant “other” cases to bear on a single
case of particular interest, that is, patient 1 in the nodes study. Avoiding
Fig. 2. Observed proportion P of malignant nodes for 522 patients having P > 0; 322 patients (38%) had P = 0, as indicated by the large dot.
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Fig. 3. Estimated prior density for frailty parameter q, with median value q = 0.09.
Fig. 4. Posterior probabilities of frailty parameter q for three hypothetical patients.
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the difficulties and pitfalls of indirect evidence motivates much of cur-
rent statistical research.

We emphasize the current high level of fruitful application and
methodological development. However, this is anchored in a long
history going back particularly to the great early 19th century
mathematicians, Gauss and Laplace. Their statistical work was mo-
tivated by concerns over the analysis of astronomical data. Quasi-
philosophical disagreements over the meaning of probability have
rumbled on since then. Our attitude is eclectic, but in the last anal-
ysis, we see a contrast, not a conflict, between the use of probability
to represent in idealized form patterns of variability in the real
world and its use to capture the uncertainty of our conclusions.
Controversy centers mostly on the second, and more than one ap-
proach may be fruitful. However, in the last analysis, we are using
probability as a measuring instrument, and in some sense, it must
be well calibrated.

We have worked as statisticians for a combined total of 125 years
(72 and 53 years of experience, respectively) and both of us fully re-
tain our enthusiasm for the field. It has changed enormously over
our lifetimes and no doubt will continue to do so. Yet, at the heart
of our subject are core issues about uncertainty and variability that
Cox and Efron, Sci. Adv. 2017;3 : e1700768 14 June 2017
have both a permanent value and an exciting continuing challenge
that is conceptual, mathematical, and computational.

SPECIAL NOTE: The Editors invited authors David Cox and
Bradley Efron to submit this article to honor their receipt of the
9th Edition (2016) BBVA Foundation Frontiers of Knowledge
Award in Basic Sciences for revolutionizing statistics.
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