
Temporally Factorized Network Modeling for Evolutionary 
Network Analysis

Wenchao Yu,
University of California, Los Angeles, CA, USA

Charu C. Aggarwal, and
IBM T.J. Watson Research Center, Yorktown, NY, USA

Wei Wang
University of California, Los Angeles, CA, USA

Abstract

The problem of evolutionary network analysis has gained increasing attention in recent years, 

because of an increasing number of networks, which are encountered in temporal settings. For 

example, social networks, communication networks, and information networks continuously 

evolve over time, and it is desirable to learn interesting trends about how the network structure 

evolves over time, and in terms of other interesting trends. One challenging aspect of networks is 

that they are inherently resistant to parametric modeling, which allows us to truly express the 

edges in the network as functions of time. This is because, unlike multidimensional data, the edges 

in the network reflect interactions among nodes, and it is difficult to independently model the edge 

as a function of time, without taking into account its correlations and interactions with neighboring 

edges. Fortunately, we show that it is indeed possible to achieve this goal with the use of a matrix 

factorization, in which the entries are parameterized by time. This approach allows us to represent 

the edge structure of the network purely as a function of time, and predict the evolution of the 

network over time. This opens the possibility of using the approach for a wide variety of temporal 

network analysis problems, such as predicting future trends in structures, predicting links, and 

node-centric anomaly/event detection. This flexibility is because of the general way in which the 

approach allows us to express the structure of the network as a function of time. We present a 

number of experimental results on a number of temporal data sets showing the effectiveness of the 

approach.
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1. INTRODUCTION

Temporal networks have become ubiquitous because of the numerous applications that 

generate network structures in a time-dependent way. In recent years, a significant amount of 

work has been done on the area of evolutionary network analysis [1, 2], which examines 

various problems in the context of network evolution. Some examples of such problems are 

as follows:

• Based on the trends in the past, which links are most likely to be received at a 

future point in time? How does the likelihood change with increasing value of 

time. Note that this is a more refined problem than traditional link prediction [3, 

4], in which one simply predicts the links based on a static state of the network.

• How do communities evolve over time? Which communities grow, and which 

ones shrink? Which ones are expected to grow in the future? Numerous works 

have been proposed in this context [5, 6, 7], although none of these methods fully 

capture the evolving nature of the underlying network.

• One would like to predict surprising or anomalous events in different regions of 

the networks [8, 9, 10]. These could represent sudden regions of change [10], or 

other structural changes in the network [6].

Although many individual solutions exist for these problems, a broader question is whether 

we can directly characterize the structure of the network as a function of time. The ability to 

characterize the structure of the network as a function of time is crucial in using it in 

different application settings, because such a characterization can capture very rich 

information about the structure of the underlying network. In this paper, we discuss one such 

model, with the use of matrix factorization methods.

Matrix factorization is a natural method to express the evolutionary structure of networks 

because of its ability to leverage the structural correlations among the edges in the network. 

The basic idea of temporal matrix factorization methods is to extract a low rank 

representation of the underlying adjacency matrices, in a way which are parameterized with 

time, as shown in Figure 1. This temporally parameterized factorization can be used to 

reconstruct the structure of the network at any time t, including at times in the past or future 

where the network has not been observed. This ability to reconstruct the adjacency structure 

of the network at any time t is crucial; it allows one to make far more general predictions. 

Furthermore, it can be viewed as a compressed representation of not just the current state of 

the network, but the entire dynamic profile of the network over time. This comprehensive 

characterization is crucial in enabling an effective solution to a variety of problems. We view 

our solution as generic, as it is not specific to a particular problem, but it enables solutions 

across a wider variety of settings.

The rest of the paper is organized as follows. Section 2 introduces the temporal matrix 

factorization model and its solutions. Section 3 presents the methods and experimental 

results of temporal matrix factorization model in link prediction, including link-weight 

prediction and new link prediction. Sections 4 and 5 describe the use of temporal matrix 
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factorization model in event detection and evolving community detection, respectively. The 

survey of the related work is presented in Section 6. Finally, we conclude in Section 7.

2. THE TEMPORAL MATRIX FACTORIZATION MODEL

In this section, we will first introduce the problem setting, and then discuss the temporal 

matrix factorization model (short for TMF) for dynamic network analysis. In the following, 

we will generally assume that we have a temporal network G(t) = (N, A(t)), where N is set of 

nodes in the networks, and A(t) is the adjacency matrix of the edges, as a function of time. 

We assume that the size of A(t) = [aijt] is n × n, where |N| = n. For unweighted networks, the 

matrix A(t) is binary, whereas for weighted networks, the matrix A(t) might contain arbitrary 

weights which change with time. For example, in the case of the DBLP network, aijt might 

represent the number of publications between authors i and j at time t. These weights might 

even be negative for dynamic signed networks such as a dynamic Epinions network with 

shifting trust relationships. In general, the way in which A(t) changes will depend on the 

specific application at hand, and it is completely agnostic to the model discussed in our 

paper. It is assumed that the time stamp t is a continuous variable that varies from 1 through 

T.

Note that the set of nodes in the current state of the network is also a function of time, but in 

practice, one can only work with the set of nodes that one has seen so far historically. 

Therefore, the set N is fixed to the union of all nodes received so far at the current time t, at 

which the analysis is performed. It is generally relatively easy to also provide estimations of 

the number of new nodes that various parts of the network can receive as neighbors in the 

future. If the network G(t) is directed, the basic temporal rank-k matrix factorization model 

assumes that the matrix A(t) can be factorized as follows:

(1)

Here, both U and V (t) are n × k matrices. The main difference between U and V(t) is that U 
is a constant matrix and V (t) is time-dependent. The function f (·) is an elementwise 

function on elements of the matrix in UV(t), which is useful in certain settings. For example, 

if the elements in A(t) are normalized to the range (0,1), then one can use a logistic function 

for f (·).

Obviously, results from Eq.(1) are trivially generalizable to undirected networks, since 

undirected networks are special cases of directed networks. For undirected networks, the 

matrix A(t) is symmetric. We can simply average UV(t)T and its transpose as the prediction 

of A(t). It can also be factorized as the product of a time-dependent matrix V(t) and its 

transpose:

(2)
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Note that one can also make both U and V(t) time-dependent, although the simpler model 

can often achieve good approximations and avoid overfitting. Furthermore, it is also possible 

to make U time-dependent instead of V(t) to achieve similar results. It is possible to simplify 

the aforementioned relation, by not using a functional transformation f (·), and simply 

expressing A(t) as follows:

(3)

The function V(t) can take on any canonical form, such as linear models, polynomial 

models, and so on. The choice of models is, however, orthogonal to the key ideas in this 

paper as shown in Section 2.1.

How does one determine the values of U and V(t) ? The standard approach in matrix 

factorization is to set up a least squares optimization problem, so that the A(t) matches f (UV 
(t)T) as closely as possible. This can be achieved by minimizing the sum of the squares of 

the entries in A(t) − f(UV(t)T). Therefore, one can express this optimization problem as the 

minimization of the time-decayed sum of the Frobenius norms of the matrix A(t) − f 
(UV(t)T) over all values of t from 1 to the current time T.

(4)

Here, D(t) is a decay function with time t that regulates the greater importance of the current 

state of the network with respect to the past time stamps. For example, one might choose the 

decay function as the exponential decay function with parameter θ > 0:

(5)

One challenge with the use of this approach is that the network may be very large, and only 

a small number of edges may be present in A(t). For a network with n nodes, the O(n2) 

objective function expressed above might simply be computationally too expensive to even 

represent effectively. In such cases, the presence of an edge between a pair of nodes in A(t) 
is more significant than the absence of an edge. The absence of an edge, in fact, often 

conveys far more noisy information in real settings. Therefore, the aforementioned objective 

function should be tailored to edge presence rather than edge absence. However, we do need 

a sample of absent edges to properly train the model. Let S(t) be a sample of edges (i,j) at 

time-stamp t such that the value of aijt is 0. At time t, let E(t) be the set of edges for which 

the weights in A(t) are non-zero at time t. Therefore, we have the following:

(6)
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Note that the size of the set E(t) is much smaller than O(n2) because real networks are sparse 

in real settings. Then, one can express the aforementioned objective function in terms of the 

edges that are present in the network as follows:

(7)

Similarly, for undirected network we have

(8)

Note that the number of terms in this objective is dependent on the number of edges in the 

network, which is much easier to handle in practical settings. We also need to add a 

regularization term to reduce the model variance. However, the specific regularization term 

will be discussed in the next section, because it depends on the choice of the temporal 

function V (t).

2.1 Model Choices

In this section, we will set up various forms of the model for various choices of f(·), and 

V(t). One typical choice for f(·) include the use of the identity function, and that for V(t) is a 

polynomial function. In such a case, we can represent V (t) as follows:

(9)

Here  are all n × k matrices, which need to be learned from the model along with 

U. d ∈ N+ and d≥ 1, when d = 1, V(t) is the simplest linear function. Given the definition of 

V(t), the matrix form of Eq.(7) becomes the following with added regularization:

(10)

where,

(11)
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The regularization terms add the Frobenius norms of the matrices U and W(i), so as to 

minimize overfitting. Similarly, for undirected graphs, we obtain the following loss function:

(12)

2.2 Model Solutions

In this section, we first compute the partial derivatives of objective functions Eq.(10) and Eq.

(12), with respect to U and W to derive updates. Then we present the temporal matrix 

factorization algorithms for both asymmetric and symmetric adjacency matrices.

Consider the model for directed networks, one needs to minimize the loss function J (U, W),

(13)

We introduce a “decayed error term” ξ(t) for each time stamp t, as follows:

(14)

To compute the gradient, we will need to differentiate our error function. Since our function 

is defined by parameter matrices U and W(i), we will need to compute a partial derivative for 

each. These derivatives work out to be:

Algorithm 1

Algorithm for TMF model

Input:

temporal adjacency matrices  the order d of V(t) and latent dimension k.

Output:

results of factor matrices U and  and the predict adjacency matrix A(T + 1).

1. Set k and d.

2.

Randomly initialize U and .

3. while not stopping criterion do

4.       Compute “decayed error term” ξ(t) for each time stamp t.

5.

      Compute partial derivatives  and  using ξ(t) by Eq.(15) and Eq.(16).

6.       Determine the step size λ by line search.
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7.

      Update 

8.       for i = 1,…,d do

9.

          Update 

10.       end

11. end

12.

Compute predict adjacency matrix 

(15)

(16)

We now have all the derivatives needed to run gradient descent. Pseudocode of the full 

approach is given in Algorithm 1, where λ is the learning rate. To train this model, we can 

now repeatedly take steps of gradient descent to reduce our cost function J(U, W). Note that 

TMF is a general framework, which can be adapted for both directed and undirected 

networks.

For undirected networks, the adjacency matrices are symmetric, thus we can leverage 

symmetric matrix factorization technique [11] to deal with the undirected networks. Then 

one needs to minimize the loss function J(W),

(17)

In order to infer the parameter W, we need to compute the derivatives of Eq.(17). Similar to 

the derivative calculation for directed network model, we introduce an “error term” ψ(t) for 

each time stamp t of undirected networks, as follows:

(18)
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Note that, the error matrix in ψ(t) has already projected to indices set defined by E(t). Thus, 

the derivatives of Eq.(17) with regularization term can be calculated as,

(19)

2.3 Computational Analysis

To help in analyzing the complexity of the algorithm, we assume that the number of nodes in 

G(N, A(t)) is n, the number of edges is m, and the rank of the factorization is k. The 

gradient-descent method is implemented for M iterations. Here, d is the (polynomial) order 

of the time-dependent matrix V(t). Furthermore, it is assumed that there are T time-stamps 

for the temporal method.

In each of the M iterations, the bottleneck step involves updating all the parameters. The 

number of parameters in U is nk. The same number for V(t) is nk(d+1), because we need to 

sum over the d polynomial orders. for , respectively. For the derivative 

computation of each parameter, one needs to multiply the corresponding k dimensional 

columns of matrices U and , and then compute the derivative. This requires 

time of the order of magnitude of the sum of the corresponding node degrees in the 

adjacency matrix A(t). By summing up these costs, we obtain:

(20)

The order d of the polynomial is set to a small number such as 1 or 2. Thus, the asymptotic 

running time is O(MTmk + MTnk2). Since M, T and k are much smaller than n and m, the 

time complexity is approximately O(m+ n).

2.4 Leveraging the Factorization in Different Application Settings

The most interesting aspect of the models discussed in this section is its extraordinary 

generality in terms of its applicability to various settings. Most of the existing methods for 

evolutionary network analysis [1] are focused on specific problems like link prediction [4], 

dynamic community detection [5, 6, 7, 12, 13], anomaly detection [9, 10] and compression 

[14]. Here we provide a very general purpose framework TMF and symmetric TMF (s-

TMF), which can perform almost all of these tasks within a single unified approach. In the 

following sections, we will describe how the methods described in this section can be used 

to accomplish these tasks.
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3. TEMPORAL MATRIX FACTORIZATION MODEL IN LINK PREDICTION

Link prediction and network reconstruction are almost trivial in this setting because the 

entire network is expressed as a function of time with the use of latent variables. The main 

advantage of link prediction with temporal matrix factorization model over traditional link 

prediction methods is that it can not only predict new links at any time T in the future, but 

also predict the weight of each link. Note that traditional link prediction is only able to 

predict new links at “some” point in the future based on the current snapshot, but it does not 

really provide temporally sensitive analysis. Given the advantages of the proposed model 

described above, we evaluate the performance of the TMF model and symmetric TMF (s-

TMF) model in two aspects, corresponding to link-weight prediction and new link 

prediction.

3.1 Dataset Description

To verify the performance of the proposed model, we conducted experiments on a variety of 

dynamic networks from different domains as shown in Table 1. First three networks, UCI 

Messages, Digg and Epinions, are directed and the rest three are undirected. Note that 

the symmetric algorithm is relevant only to the undirected setting.

UCI Messages (directed) [15]—This directed network is based on an online community 

of students at the University of California, Irvine. A node represents a user that has sent or 

received messages. The weight of a directed edge represents the number of sent messages.

Digg (directed)1—This is the reply network of the news aggregator website digg.com. 

Each node is a Website user, and each weighted edge denotes the number of replies.

Epinions (directed) [16]—This is the trust and distrust network of Epinions, an online 

product rating site. The network contains individual users connected by directed trust and 

distrust links. Edges have the weight 1 for trust and −1 for distrust.

Infectious (undirected) [17]—This network contains the daily dynamic contact networks 

collected during the Infectious SocioPatterns event that took place at the Science Gallery in 

Dublin, Ireland. Nodes represent exhibition visitors; edge weights represent face-to-face 

contact times.

arXiv hep-th (undirected) [18]—This collaboration network is from arXiv and covers 

scientific collaborations between authors and papers submitted to High Energy Physics - 

Theory category (hep-th). Nodes represent the authors, and edge weights between two 

authors represents the number of coauthored publications. Time-stamps denote the date of a 

publication.

DBLP (undirected)2—This undirected collaboration graph of authors is from the DBLP 

computer science bibliography. Similar to arXiv hep-th, the nodes in this network 

1http://konect.uni-koblenz.de/networks
2http://dblp.uni-trier.de/xml
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represent the authors, and edge weights represent the number of co-authorships between two 

authors.

3.2 Comparative Methods

The comparative methods used in this paper are summarized as follows. We consider the 

canonical link prediction methods as well as recent algorithms. Let Γ(x) denote the set of 

neighbors of node x in network G(N, A(t)), and wx,y denote the link weights between nodes 

x and y.

Common Neighbors (CN) [19]—For any pair of nodes x and y, the link prediction 

strategy is to define the score(x, y) = |Γ(x) ∩ Γ(y)|, the number of common neighbors 

between x and y. The weighted version of common neighbors (w-CN) [20, 21] is defined as 

, but here we normalize the score by the size of 

common neighbors, thus .

Adamic Adar (AA) [22]—This method assigns larger weights to less-connected 

neighbors. The weighted version (w-AA) [20, 21] is 

, where sz=Σz′∈Γ(z)wz,z′.

High-performance Link Prediction (HPLP) [23]—This is a supervised classification 

framework to predict the new links. The weighted version (w-HPLP) is using the same 

features to train a regression model to predict the link weights.

Preferential Attachment (PA) [24]—This unweighted method corresponds to the 

measure score(x,y) = |Γ(x)|·|Γ(y)|. The basic premise is that the probability that a new edge 

involves node x is proportional to |Γ(x)|.

Nonparametric Link Prediction (NP) [25]—This method predicts links based on the 

features of its endpoints, as well as those of the local neighborhood around the endpoints.

Link Prediction via Matrix Factorization (Fact-Sq) [26]—This method solves the 

link prediction problem in graphs using a matrix factorization based approach. This baseline 

uses the square loss and the same latent dimension k as the proposed model in this paper.

CP Tensor Model (CP-Tensor) [27]—This is a tensor-based method for predicting 

future links for bipartite graphs that evolve over time. In our problem setting, we apply this 

method to homogeneous graphs.

Our models are denoted as TMF and s-TMF, respectively, where the term s stands for 

symmetric. We attach a suffix (say, d=1), to represent the order of V (t) for the 

corresponding model.
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3.3 Link Weight Prediction

In this section, we evaluate the link-weight prediction accuracy of each method. For each of 

the six networks, three directed networks (asymmetric adjacency matrices) and three 

undirected networks (symmetric adjacency matrices), we choose the first T − 1 time-stamps 

as training set, and the Tth time-stamp as test set, here T varies from 2 to the total time-

stamps of each dataset. We analyze the algorithms by measuring the accuracy of the weight 

prediction based on root mean-squared error (RMSE). We obtained the RMSE at different T 
for link prediction as presented in Figure 2.

For the first three directed networks UCI Messages, Digg and Epinions in Figure 2, we 

compute the RMSE of all five weighted baselines and our models TMF. Here we set d, the 

order of the time-dependent matrix, V (t), to 1 (linear) and 2 (quadratic). The other 

parameter settings are as follows: latent dimension k = 10, exponential decay function 

parameter θ = 0.3, regularizer weights α = βi = 0.01. The maximum iteration of TMF 

models is set to 500. The upper three figures show that the best prediction results are 

achieved by our TMF models, namely TMF (d=1) and TMF (d=2). The performance of 

TMF models are very similar with respect to different values of d. The RMSE of TMF 

models in the last time-stamp of these three directed networks are only 15.58%, 9.49% and 

1.34% of the worst baseline, and 36.48%, 48.39% and 26.89% of the best baseline.

For the lower three undirected networks, referred to as Infectious, arXiv hep-th and 

DBLP in Figure 2, we compute the RMSE of all five weighted baselines, TMF and 

symmetric TMF (s-TMF). Note that we can still use the TMF model for the undirected 

networks. In this case, E(t) in Eq.(6) is the non-zero entries of the upper triangular matrices 

of the undirected networks. In these detailed figures, we show the results when d = 1 (since 

the results are very similar for d = 2) although all results are presented in tabular form in 

Table 2. All the remaining parameter settings are the same. It is evident that TMF and s-

TMF provide the best overall performance, which are consistent with the good performance 

of different values of T in undirected networks. The average RMSE of s-TMF is smaller than 

TMF, which will be shown in Table 2. The RMSE of s-TMF models of these three 

undirected networks are only 9.49%, 16.78% and 9.13% of the worst baseline, and 42.15%, 

67.08% and 73.33% of the best baseline, showing the advantage of TMF and s-TMF models 

in link-weight prediction.

Table 2 displays the average prediction RMSE over all time frames of each dataset. It is 

evident that TMF and s-TMF models have a lower RMSE than the five weighted baselines. 

Note that, for undirected networks, s-TMF models always perform better than TMF models, 

though the RMSE differences are not that large when compare to other baselines. However, 

the advantage of TMF models is that they can also be applied to directed networks.

Although one might expect the prediction RMSE to decrease with increasing T (and more 

data), this is not the case for all data sets. It was only in the UCI Messages and 

Infectious data sets that the RMSE reduced. For the other four datasets, the RMSE 

increased. The reason is that the network showed increasing rates of evolution over time 

with rapid formation of new links. As a result, it became harder to predict more accurately 

with passage of time. Nevertheless, the incorporation of temporal information still has an 
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inherent temporal advantage over the use of static models; this is the reason that the 

approach outperforms the baselines.

3.4 New Link Prediction

The TMF model is not designed for new link prediction since we use Frobenius norm to 

define the loss function, as shown in Eq.(10) and Eq.(12). However, one can still apply it to 

unweighted data sets. In this section, we predict new links using TMF model on Epinions 

data set in which the maximum link weight is 1.

We measure the accuracy of new link prediction by using the area under curve (AUC) of the 

receiver operating characteristics (ROC) analysis. The ROC is designed to work in the 

binary class setting with positive and negative samples. When predicting the new links at 

time-stamp T, the new edges to be predicted are treated as the “positive” samples. We use 

the absolute values of our prediction results, so that the new edges (both with +1 weights 

and −1 weights) to be predicted are treated as the positive samples. We then randomly 

sample the same number of node pairs without an edge between them at time T as 

“negative” samples (S(t) in Eq.(6)). The parameter settings remain the same as previous 

experiments. We compare TMF (d=1) model with six baselines which is shown in Figure 3. 

In the Epinions network, the TMF model outperforms the baseline methods by 15.53% on 

average. It outperforms Common Neighbors by more than 21.55% across all time-stamps. 

We attribute this success to the temporal nature of the factorization that can predict trends 

over time, rather than simply relying on a static model.

3.5 Sensitivity Analysis

The loss function defined by Eq.(10) is dependent on parameters denoted by k, θ and the 

regularizer weight α and βi. Normally, we set the regularizer weight to a relatively small 

value such as 0.01. Therefore, in this section, we conduct sensitivity analysis on k, the latent 

dimension of V (t) and θ, the parameter of the exponential decay function D(t).

We used the Infectious and UCI Messages data sets for sensitivity analysis; the first is a 

fast evolving undirected network and the second is a slowly evolving directed network. We 

choose values between k from 5 to 100 for Infectious and 10 to 300 for UCI Messages 

The value of θ varied from 0.1 to 1.0 with interval 0.1. The results are summarized in Figure 

4. It is evident that RMSE initially improves with k but further improvements are harder 

beyond a certain point. But from the effectiveness analysis in Section 2.3 we can see that, 

the time complexity is proportion to O(k2) for fixed networks. Taking both prediction error 

and computational time into consideration, we will choose a relative small k from 10 to 100.

The value of θ has a significant impact on prediction results, and it is in fact sensitive to the 

data set. For the Infectious dataset, when θ increases, the proposed model will have a 

better RMSE. This means that as we assign less weight on the early time-stamps, it will 

achieve better prediction results. Thus, we can infer that for a fast evolving network, higher 

exponential weight decay brings better prediction accuracy. For UCI Messages dataset, we 

obtain a totally different trend. As θ increases, RMSE increases. This means that for a 
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slowly evolving network like UCI Messages, we should assign more weights to the early 

time-stamps.

4. TEMPORAL MATRIX FACTORIZATION MODEL IN TEMPORAL 

ANOMALIES AND EVENTS DETECTION

Temporal anomalies and events are often defined by unexpected changes in the network 

structure over time, which are different from their forecasted values. Consider the scenario, 

where the training data at time stamps 1 … T has been used to learn the network A(t). We 

would like to use the learned training data to determine the anomalies in A(T + 1), when the 

network at time (T + 1) is received. Let the predicted network at time (T + 1) according to 

the aforementioned model be denoted by Â(T + 1), and the true network state at time (T + 1) 

be A(T + 1). Then, the unexpected part of the change in network structure, is given by the 

following:

(21)

Large absolute values in ΔA(T+1) correspond to edges with unusual levels of activity:

(22)

One can use a Z-statistic or t-statistic over the values of |ΔA(T + 1)| to determine the value of 

δ at which the change is significant. As in the case of communities, one can discover the 

connected components in such edge sets, and report the anomalous change regions in the 

network. It is also possible to discover the individual node hot spots, by first quantifying the 

level L(T + 1,i) of anomalous activity adjacent to each node i at time (T + 1) as follows:

(23)

Nodes with large anomalous values of L(T +1,i) correspond to hot-spots of activity. One can 

use a Z-statistic or t-statistic to determine thresholds on the value of L(T + 1,i). For example, 

in a DBLP network, such nodes might correspond to researchers who had a sudden change in 

their coauthorship activity as a result of an event, such as change of institution. Therefore, 

the structural and node events tell us a lot about unusual events in the underlying network 

activity.

4.1 Discovering Temporal Anomalies and Events: A Case Study

In this section, we detect temporal anomalous coauthors and individual authors on DBLP 

dataset using TMF model. Based on aforementioned analysis, we first show the trends of 

maximum absolute values in ΔA(T + 1) and maximum anomalous values of level L(T + 1,i). 
Then we present the top 10 pairs of anomalous coauthors and authors.
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The blue dashed line in Figure 5 shows the maximum absolute value in ΔA(T + 1) at each 

time-stamp T, while the red dashed line shows the maximum anomalous value of L(T + 1,i). 
Therefore, these two lines respectively represent the trends of top anomalous coauthor and 

top anomalous author at each time-stamp. It can be seen that as T increases, the anomalous 

level increases in terms of both quantifications. This can be explained by the fact that recent 

years have experienced a larger volume of publications; therefore, the corresponding 

anomalous trends increase in absolute magnitude. Furthermore, the statistical correlation 

between these two lines is very high (0.9308), which is evidence that anomalous author-

events are usually caused by underlying anomalous co-authorship events.

Additionally, we labeled two anomalous peaks, corresponding to Y. Nakamura (1988) and 

Didier Dubois (1993) in Figure 5. These two authors represent different types of 

abnormalities. According to DBLP, Y. Nakamura has only one publication (in 1982) before 

1988 but has 15 in 1988, which is unusual. For Didier Dubois, the abnormality is a result of 

the fact that he has an unusually large number of new coauthors in 1993.

We then detect the anomalous coauthors by calculating the unexpected part of the change 

ΔA(T + 1) in network structure. Table 3 represents the top 10 pairs of anomalous coauthors 

sorted by |[ΔA(T + 1)]ij|. The experiment is conducted with the same parameter settings 

described in Section 3.3. Surprisingly, the pair of authors Sudhakar M. Reddy and Irith 
Pomeranz appears 4 times. The total coauthor papers between them from 1997 to 2000 are 

92, 116, 135 and 159, respectively. But before 1991, they have no coauthor papers. This 

could be the reason that why they are titled “top anomalous coauthor” by our model.

Additionally, we calculate L(T + 1,i) of all time-stamps and show the top 10 anomalous 

values in Table 4. We can verify the authors who receive large anomalous values with DBLP 

database. For example, the DBLP homepage shows that Robin J. Chapman, the top 1 

“anomalous” author, had no coauthor paper in 1999, but 21 coauthor papers in 20003.

5. TEMPORAL MATRIX FACTORIZATION MODEL IN EVOLUTIONARY 

COMMUNITY ANALYSIS

The temporal matrix factorization approach can be naturally used for discovering the rate of 

evolution of each edge in the network at any given time t. This may be expressed in the form 

of the following matrix A′ (t) at any given time t:

(24)

Here we only consider the temporal matrix factorization model for directed network, since it 

is trivially generalizable to undirected network. Note that A′(t) can vary with t, when a 

nonlinear expression is used for f (UV(t)T). When a polynomial expression of V(t) is used, 

the above partial derivative evaluates to

3http://dblp.uni-trier.de/pers/hd/c/Chapman:Robin_J=
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(25)

The partial derivative of Eq.(25) is equal to UW(1) when V(t) is linear (i = 1). Note that 

edges (i,j) for which  correspond to edges in 

which the weights are increasing with time. When the sign is negative, it corresponds to 

edges with reducing weights. One approach to discover expanding communities, is to isolate 

the following edge set for some threshold δ > 0:

(26)

The connected components of this network yield the expanding communities. By varying the 

value of δ, one can obtain expanding communities at different threshold levels of evolution. 

A similar approach can be used to determine the contracting communities. It is noteworthy 

that the discovery of expanding or contracting communities is almost trivial once the 

network has been expressed in functional form.

5.1 Discovering Expanding Communities: A Case Study

Expanding and contracting community detection techniques are essential for finding trends 

in time-series data, such as the discovery of hot research topics. In this section, we report the 

expanding community detection examples from the DBLP data set using the TMF model.

In order to interpret each expanding community detected by the proposed model, we label 

the coauthor edges with their dominant venues (journals or conferences). For example, if 

author a1 and a2 coauthored 10 papers (7 in SIGIR, 2 in WWW and 1 in WSDM), we label 

the coauthor edge ea1,a2 with SIGIR. We utilize asymmetric TMF model with linear V(t) in 

this experiment. The gradient threshold δ is set to 0.01. We filter out the graph noise by 

building a set of trees using breadth-first search (BFS) over the entire vertex set of the 

network and then considering only those trees whose vertex set size are at least 4. The other 

parameter settings remain the same as Section 3.3. The expanding communities are shown in 

Figure 6.

Figure 6 illustrates three largest expanding communities in DBLP from 1980 to 1981. The 

top three venues of each community are also listed. It can be seen that, the largest expanding 

community has 17.46%, 11.11% and 9.52% of the weight increasing edges labeled with 

journals_tcs (Theoretical Computer Science), journals_mst (Mathematical Systems Theory) 

and journals_jcss (Journal of Computer and System Sciences). Notably, these three venues 

belong to the same area Computer Science Theory which is consistent with the increasing 

prominence of theoretical computer science in the early eighties. Similar analytical results 

were obtained from the other two expanding communities. Among the edges with increasing 

weight, the second community has 20.83%, 18.75% and 14.58% of the edges labeled with 
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journals_siamcomp (SIAM Journal on Computing), journals_jacm (Journal of the ACM) 

and conf_stoc (Symposium on Theory of Computing). These venues also tend to contain 

theoretical topics. The third community is a highly compact sub-network where 83.69% 

edges are labeled with journals_ibmsj (IBM Systems Journal).

Another interesting finding from Figure 6 is that most of the cliques contain fewer edges 

with increasing weight. This means that stable groups of persistent co-authors often have a 

tendency to not evolve too much with time. This is consistent with the intuition that most 

evolution in network structures is caused by dynamically changing co-authorships. On the 

other hand, connected components with a greater number of branches also tend to have more 

edges with increasing weight. This is because these components contain groups of authors 

that are more open to initiating new cross-collaborations with different groups. In these 

sense evolutionary community detection can provide insights about the causality of the 

underlying network changes because of its summary representation.

6. RELATED WORK

Evolutionary networks [1, 2] have recently found increasing importance because of their 

numerous applications for trend detection in the network. Numerous methods have been 

proposed in the context of dynamic community detection [5, 6, 12, 7], link prediction [4, 20, 

21], compression [14], mixed membership modeling [28, 29], and anomaly detection [9, 10]. 

The approach in [29] uses non-negative matrix factorization to extract features in a sequence 

of graphs which is different from the structural factorization model in the paper. The 

applications in [29] are implicitly regulated by the nature of the node features that are 

extracted, and cannot fully characterize the structure of the network over time or directly 

express the network structure as a function of time, once the features have been extracted. 

The fully parameterized model in this paper is more general, and it can be used to 

reconstruct the approximate future structure in the network at any point in time. Recently, 

some interest has been focused on the use of rth order tensors [3, 30] for expressing dynamic 

networks. Tensors are, however, inherently designed for the case when the other (r − 2) 

dimensions of interest (than source node and destination node) are discrete variables rather 

than continuous; time is a continuous variable. Although some temporal applications have 

been designed with tensors [3], by treating time as a discrete variable, the applicability of 

these methods to express the network as a continuous function of time is limited. Temporal 

matrix factorization has recently been used successfully in the context of collaborative 

filtering [31]. In this paper, we explore temporal matrix factorization in the context of 

network-centric applications. We show that a significant number of evolutionary network 

applications can be addressed with the use of the factorization framework.

7. CONCLUSION

In this paper, we developed a novel temporal matrix factorization model for dynamic 

network analysis. This model has the advantage of significant generality in addressing 

various temporal applications because of its ability to explicitly represent the network as a 

function of time. As specific examples, we provide results for (temporal) weight trend 

prediction, link prediction, dynamic community detection and event detection within this 
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unified framework. Even though we provide a more general model, our results show that its 

specific instantiation to weight prediction and link prediction performs better than state-of-

the-art techniques. We also show that the approach is able to provide useful intuitions about 

the community changes and events in the underlying network.
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Figure 1. 
Illustration of Temporal Matrix Factorization Model
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Figure 2. 
Prediction RMSE at time-stamp T (training with first T − 1 time-stamps)
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Figure 3. 
New link prediction AUC at T for Epinions network (training with first T − 1 time-stamps)
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Figure 4. 
Last time-stamp prediction RMSE of Infectious(top) and UCI Messages(bottom) with 

different parameter pairs
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Figure 5. 
Maximum absolute values in ΔA(T + 1) and maximum anomalous values of L(T + 1,i) of all 

time-stamps
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Figure 6. 
Expanding communities from 1980 to 1981. Edges (i,j) with red color correspond to the 

gradients that meet [A′(t)]ij > δ. Three largest expanding communities are marked with 

rectangles.
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Table 1

Temporal dataset description

Dataset Vertices Edges Max Weight |T|

UCI Messages 1,899 20,296 98 7 months

Digg 30,398 86,404 25 14 days

Epinions 131,828 841,372 1 32 months

Infectious 410 2,765 191 8 hours

arXiv hep-th 6,798 214,693 66 7 years

DBLP 315,159 743,709 159 34 years
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Table 3

Top 10 pairs of anomalous coauthors sorted by |[ΔA(T + 1)]ij| (denoted as Δ in the table)

# Δ Coauthors Year

1 52.6421 Sudhakar M. Reddy, Irith Pomeranz 1999–2000

2 46.8029 Sudhakar M. Reddy, Irith Pomeranz 1998–1999

3 44.7452 Sudhakar M. Reddy, Irith Pomeranz 1997–1998

4 36.8849 Raj Jain, Sonia Fahmy 1997–1998

5 36.877 Raj Jain, Rohit Goyal 1997–1998

6 35.5676 Sudhakar M. Reddy, Irith Pomeranz 1996–1997

7 35.2318 Divyakant Agrawal, Amr El Abbadi 1999–2000

8 34.876 Sonia Fahmy, Rohit Goyal 1997–1998

9 32.2694 Divyakant Agrawal, Amr El Abbadi 1998–1999

10 30.5123 Didier Dubois, Henri Prade 1997–1998
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Table 4

Top 10 anomalous authors sorted by the level of anomalous activity L(T + 1,i)

# L(T + 1,i) Author Year

1 222.799 Robin J. Chapman 1999–2000

2 205.561 Hector Garcia-Molina 1997–1998

3 190.993 John H. Lindsey II 1999–2000

4 168.677 Raj Jain 1997–1998

5 157.488 Alberto L. S.-V. 1995–1996

6 152.147 David Callan 1999–2000

7 149.377 Rohit Goyal 1997–1998

8 148.404 Sonia Fahmy 1997–1998

9 147.063 Hugo De Man 1999–2000

10 144.791 Alberto L. S.-V. 1999–2000
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