Skip to main content
. Author manuscript; available in PMC: 2017 Jun 14.
Published in final edited form as: Proc Int Conf Web Search Data Min. 2017 Feb;2017:455–464. doi: 10.1145/3018661.3018669

Algorithm 1.

Algorithm for TMF model

Input: temporal adjacency matrices {A(t)}t=1T the order d of V(t) and latent dimension k.
Output: results of factor matrices U and {W(i)}i=1d and the predict adjacency matrix A(T + 1).
1. Set k and d.
2. Randomly initialize U and {W(i)}i=1d.
3. while not stopping criterion do
4.       Compute “decayed error term” ξ(t) for each time stamp t.
5.       Compute partial derivatives J(U,W)U and J(U,W)W(i) using ξ(t) by Eq.(15) and Eq.(16).
6.       Determine the step size λ by line search.
7.       Update U=UλJ(U,W)U
8.       for i = 1,…,d do
9.           Update W(i)=W(i)λJ(U,W)W(i)
10.       end
11. end
12. Compute predict adjacency matrix A(T+1)=UV(T+1)T=U(i=0dW(i)(T+1)i)T