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Optical coherence tomography (OCT) is a noninvasive, non-
ionizing optical imaging modality based on low coherence 
interferometry.1 Michelson, Mach-Zehnder, and common 
path interferometers have been used in the configuration of the 
OCT system.1–4 To form an OCT image, the magnitude and 
time delay of backscattered infrared light returned from a bio-
logical sample are measured transversally.5,6 Optical coherence 
tomography is similar to the ultrasound imaging, except that it 
uses light instead of sound.7 Providing high-resolution images 
and a moderate penetration depth, ie, 1 to 3 mm, OCT is cur-
rently used in several medical and biomedical applications 
including dermatology,8–12 dentistry,13 oncology,3 gastroin-
testinal endoscopy,14 intravascular imaging,15,16 cardiology,17 
and neurology in addition to its initial successes in 
ophthalmology.18

An OCT system is characterized by several parameters 
such as imaging speed, lateral and axial resolutions, and pen-
etration depth.19 Although imaging depths are not as deep as 
ultrasound, the resolution of OCT is more than 10 to 100 
times finer than standard clinical ultrasound.7 There are 2 
main types of OCT: time domain and spectral domain.5 
Spectral domain OCT is a newer technology in which the 
scan rate is much faster than that in time domain, in addition 
to have a better penetration depth and signal-to-noise ratio. 
These characteristics are further improved in swept-source 
OCT, the most favorite OCT device in the market. The high 
scan rate diminishes the likelihood of motion artifacts and 
consequently enhances the image contrast and reduces the 
chance of missing pathology.20,21

Optical coherence tomography images visualize the mor-
phological details of tissue microstructures, ie, stratum cor-
neum, epidermis, dermis, hair follicles, eccrine sweat ducts, and 
sebaceous gland.8,22 Figure 1 illustrates some of the skin struc-
tures visible in OCT images.

Since the invention of OCT, several hardware and signal 
processing advancements have been implemented; for instance, 
ultrahigh-speed OCT with the ability of generating several 
3-dimensional images per second and sub-micron resolution 
OCT; both of which have benefitted from novel laser light 
sources and graphical processing units.23–25 Polarization-
sensitive OCT uses the depth-resolved polarization states’ 
information (birefringence property of tissues) of recorded 
interference to provide high-resolution images.26 Endoscopic 
OCT is a newer modality with a miniaturized probe to image 
internal organs such as gastrointestinal, pulmonary, and urinary 
tracts as well as arteries and veins.3 Functional/molecular OCT 
has also been implemented and used in clinical applications 
such as brain tumor surgery.27 More recently, OCT has been 
used as an optical biopsy method for differentiating between 
healthy and tumorous tissues.28–30

Quantitative analysis of OCT images through optical prop-
erties’ extraction using extended Huygens-Fresnel principle31–34 
has made OCT an even more powerful modality.35–38 Some of 
the optical properties that can be extracted from OCT images 
include scattering coefficient, absorption coefficient, refractive 
index, and anisotropy factor.39

Optical coherence tomography is a powerful high-resolu-
tion imaging method for medical and biomedical applications. 
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Many modifications have already been applied to OCT hard-
ware and software; however, OCT images still have artifacts.19 
Five major artifacts found in OCT images are speckle noise, 
intensity decay, sample or device motion, refractive index 
change, and blurring and dispersion. In this review article, we 
briefly present the nature of the artifacts as well as a summary 
of the solutions to overcome them.

Similar to other low coherent imaging modalities, OCT 
images are contaminated with a grainy pattern of speckle which 
degrades the quality of images and conceals diagnostically rel-
evant features.40 In fact, speckles make the images vague and 
tissue microstructures may become indistinct. There are 2 main 
speckle reduction methods: software based and hardware 
based.41–49 The most common hardware-based speckle reduc-
tion method is compounding. In compounding methods, the 
sample is imaged several times by the OCT system. There are 
4 types of compounding: angular compounding, sample imaged 
from different angles; frequency compounding, sample imaged 
with different wavelengths; polarization compounding, sample 
imaged with different polarizations; and finally, spatial com-
pounding, sample imaged from different positions.1,44,49–51 
Then, the acquired images are averaged and a speckle-reduced 
image is obtained. Software-based speckle reduction methods 
rely on digital filtering based on a mathematical model of 
speckle and do not need several images to work. There are 3 
main classes of digital filters: sliding window, adaptive statisti-
cal-based, and edge-preserved patch or pixel correlation–based. 
Sliding window filters, a class of filter including mean, median, 
and symmetric nearest neighbor,52 are highly efficient and can 
be used in real-time speckle reduction applications such as 
video-rate OCT imaging.52 Although they effectively reduce 
speckle noise in the OCT image, they smooth edges in the 
image and create blurriness.53,54 Adaptive statistical-based f ilters, 
a class of despeckling filter, include Kuwahara filter55 and 
homomorphic Wiener filter and use statistical features, eg, 
mean and variance, extracted from the image or a part of the 
image.56,57 Patch or pixel correlation–based f ilters, a class of 

despeckling filters, including nonlocal mean filter,58 total vari-
ation,59 and block matching and 3D filtering,60 are based on 
high inter- or intracorrelations among nearby pixels or patch of 
pixels.59,61–64 Wavelet-based algorithms are also considered as 
effective speckle reduction methods in which speckles are sepa-
rated in higher level of decomposition.47,60,65,66 In addition to 
these 3 main categories, there are artificial neural network–
based denoising methods that are considered as effective 
speckle reduction approaches.67–72

Intensity decay is due to decline in the incident and backscat-
tered light amplitudes when it passes through a biological sam-
ple.1 The decay follows the Beer-Lambert law in the simplest 
model of skin—a single scattering model. When the light is 
attenuated, far less energy is deposited in deeper structures. By 
finding attenuation coefficients of skin layers and using the 
inverse Beer-Lambert law and some numerical methods, attenu-
ation can be compensated.73,74 Optical coherence tomography 
images are considered logarithmic and because of that their expo-
nential nature is changed to linear. Hence, by finding the slope of 
A-scan profiles in a homogeneous area, the attenuation coeffi-
cient is found and the intensity decay can be compensated.

Motion artifact in OCT is a result of sample or device 
motion.75,76 It is clear that longer acquisition times lead to greater 
motion artifacts. Optical coherence tomography systems with 
higher speed conserve experience with far fewer motion artifacts. 
To overcome the motion artifact, both hardware (using markers) 
and software (registration) solutions should be used.76

Being a noncontact method, the OCT image is distorted as 
a result of diffraction phenomenon that occur at the air/tissue 
interface. Therefore, algorithms are introduced to correct this 
distortion in OCT.77

Blurring is as a result of aberration which is due to imperfec-
tions in optical devices used in the configuration of the OCT.78 
Blurring deteriorates the lateral resolution of OCT images. 
Adaptive optics (AO) and deconvolution are 2 methods to 
reduce aberration and blurring.79,80 The main components in an 
AO system are tilt mirrors, digital mirror devices, spatial light 
modulators, and deformable mirrors.78,81 As the OCT signal is a 
convolution of the sample response with the coherence function 
of the light source, deconvolution methods are used to solve the 
depth resolution degradation caused by the depth point spread 
function envelope.1,80,82–86 Lucy-Richardson and Weiner decon-
volution algorithms are 2 popular methods in this area.80,82,86 An 
OCT image on which some of the abovementioned processing, 
ie, speckle reduction, deblurring, and attenuation compensation, 
have been applied is shown in Figure 2.

Dispersion also degrades depth resolution. Therefore, equal-
izing dispersion between the reference and sample arms is 
essential to obtain a higher depth resolution. There are Fourier 
transform–based numerical dispersion compensation methods 
as well as pre-imaging optical techniques to compensate for 
OCT dispersion.89 The common pre-imaging method to solve 
distortion is to use dispersive materials (such as prisms) in the 
reference arm of the interferometer.90–92

Figure 1.  Optical coherence tomography image of skin of sole.
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Due to intermediate resolution and penetration depth, 
OCT has been a favorable device in many medical and bio-
medical applications. To make the diagnostically relevant 
features in OCT images more salient, and assist the special-
ists in making better diagnostic decisions using OCT images, 
quality improvement algorithms have been used. Required 
image quality and resolution is dependent on the application 
of OCT. Most of the causes of OCT image artifacts dis-
cussed in this short review could be resolved by some changes 
in the hardware of the OCT before imaging.93 Further image 
quality improvement could be accomplished by software 
during postprocessing of OCT images. Many novel hard-
ware modifications and technology advancements undergo 
test and evaluation to make the OCT system a more useful 
and versatile device. There have been other high-resolution 
imaging modalities added to OCT to improve some of its 
limitations, eg, penetration depth.94,95
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