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Abstract

An extension of Generalized Structured Component Analysis (GSCA), called Functional GSCA,
is proposed to analyze functional data that are considered to arise from an underlying smooth
curve varying over time or other continua. GSCA has been geared for the analysis of multivariate
data. Accordingly, it cannot deal with functional data that often involve different measurement
occasions across participants and a large number of measurement occasions that exceeds the
number of participants. Functional GSCA address these issues by integrating GSCA with spline
basis function expansions that represent infinite-dimensional curves onto a finite-dimensional
space. For parameter estimation, functional GSCA minimizes a penalized least squares criterion
by using an alternating penalized least squares estimation algorithm. The usefulness of functional
GSCA is illustrated with gait data.
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1. Introduction

Generalized Structured Component Analysis (GSCA; Hwang & Takane, 2004) represents
component-based structural equation modeling, which enables to examine directional
relationships among multiple sets of responses by combining data reduction with path
modeling. In GSCA, a component or a weighted composite is obtained from each set of
responses, considering hypothesized relationships among observed responses and
components simultaneously.

Figure 1 shows an example of the hypothesized relationships among multiple sets of
responses that will be further discussed in Section 5. In this example, there are four sets of
responses: body size, severity of Parkinson’s disease, gait function, and force under left foot.
It is hypothesized that the body size and severity of Parkinson’s disease affect the force
under left foot and these effects are mediated by the gait function. If all of these four sets of
responses consisted of multivariate data, the original GSCA can be used to fit this model to
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the data. However, the force under left foot involves so-called functional data, which have
distinct characteristics and cannot be easily handled by the original GSCA.

In this paper, we propose an extension of GSCA, called functional GSCA, to deal with
functional data. The emergence of sophisticated measurement tools, such as motion capture
devices, handheld computers, Bluetooth devices, eye-trackers, and brain scanners, has
facilitated the collection of functional data, which refer to the data that are considered to
arise from an underlying smooth function varying over a continuum (Ferraty & Vieu, 2006,
Chapter 1; Ramsay & Silverman, 2005, Chapter 3). The continuum is often time, but it can
be any dimension such as spatial location, wavelength, probability, etc. Researchers in many
disciplines have collected a variety of functional data, including motion capture data (e.g.,
Ormoneit, Black, Hastie, & Kjellstrom, 2005), motor control data (e.g., Mattar & Ostry,
2010), music perception data (e.g., Vines, Krumhansl, Wanderley, & Levitin, 2006),
neuroimaging data (e.g., Tian, 2010), pupil dilation data (e.g., Jackson & Sirois, 2009), and
face temperature data (e.g., Park, Suk, Hwang, & Lee, 2013).

Figure 2(a) displays the functional data that will be analyzed in Section 5. In this example,
we have a total of 83 Parkinson’s disease patients who were instructed to walk at their
normal pace for two minutes. The force under left foot was measured at a rate of 100 Hz
while they were walking. Each trajectory presented in Figure 2(a) is the force under left foot
for the first gait cycle completed by each patient. We defined a gait cycle to begin when the
force under left foot reaches up to 20 Newtons and to end when it returns back to 20
Newtons.

Figures 2(a) and 2(b) illustrate the unique characteristics of functional data. First, as shown
in Figure 2(a), each patient has a different walking speed and thus the time to complete a
gait cycle varies from patient to patient. The shortest gait cycle took 0.61 second and thus it
was measured over 62 time points (from second 0 to second 0.61 by 0.01 second). The
longest one took 1.07 seconds and thus it was measured over 108 time points. The original
GSCA assumes that each participant is measured on the same number of variables (i.e., time
points) and each variable has the same meaning across all participants. However, in
functional data, each participant can be measured at different numbers of time points and
each time point might have a different meaning for different participants. For example, if a
patient walks at a period of 0.7 second/cycle, the second 0.7 indicates the time when the
cycle is completed for this patient. However, if a patient walks at a period of 1 second/cycle,
the second 0.7 indicates the time when the 70% of the cycle is completed for this patient.

If we transform the original clock time into how much percentage of the gait cycle is
completed, we can line up the data according to the percentage frame of reference as shown
in Figure 2(b). In this case, each value on the percentage frame has the same meaning across
all participants. For example, the value 70% indicates the time when the 70% of the gait
cycle is completed for all participants. However, even if we align the data according to the
percentage frame of reference, the original GSCA still cannot analyze such aligned data
because each trajectory has a different number of measurement occasions.
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Second, in functional data, the number of time points often exceeds the number of
participants. For the gait data shown in Figures 2(a) and 2(b), the longest gait cycle was
measured over 108 time points, which is greater than the number of patients, 83. The
original GSCA breaks down when the number of participants is smaller than the number of
variables. Even when the number of time points does not exceed the number of participants,
the responses measured at adjacent time points tend to be highly correlated, which can lead
to a singularity problem when estimating parameters in the original GSCA.

To address these issues, one might be tempted to summarize functional data using summary
measures such as component scores obtained by functional principal components analysis
(functional PCA; Ramsay & Dalzell, 1991; Ramsay & Silverman, 2005, Chapter 8), and to
use the component scores for further analyses. Even though the component scores can be
used in the original GSCA framework as indicator variables, this way of analysis might not
be desirable. As Abdi (2003) pointed out, the principal components are extracted to
maximally explain the variation in the functional data without considering the hypothesized
relationships with other sets of variables. There is no guarantee that the extracted
components are relevant to other sets of variables. We will discuss this point further in
Section 5.3.

The proposed method aims to extend GSCA so that we can analyze functional data properly
in the framework of GSCA. Technically, the proposed method integrates GSCA with basis
function expansions in order to represent functional data as smooth curves as well as to
estimate parameter functions. The idea of basis function expansions is that any smooth curve
can be approximated arbitrarily well by taking a weighted sum of a sufficiently large number
of basis functions such as spline basis functions and Fourier basis functions (Ramsay &
Silverman, 2005, Chapter 3.3). Basis function expansions enable to deal with variation in
measurement occasions across participants; the smoothed curves expressed by basis function
expansions are defined over the entire range of time or argument and can be evaluated at any
value of time within the range. Basis function expansions also enable to deal with the issue
of high dimensionality of functional data due to a large number of measurement occasions;
we can represent smooth curves on a relatively low-dimensional space spanned by the basis
functions.

The proposed method is distinguished from other statistical methodologies that can handle
multiple sets of functional data. Functional multiple-set canonical correlation analysis
(Hwang, Jung, Takane, & Woodward, 2012) can examine non-directional associations
among multiple sets of functional data whereas the proposed method can examine
directional relationships. Functional extended redundancy analysis (Hwang, Suk, Lee,
Moskowitz, & Lim, 2012) and generalized functional extended redundancy analysis
(Hwang, Suk, Takane, Lee, 2015) assume a model that can be represented by a single
equation in which a scalar response variable is predicted from multiple sets of functional
data. Contrarily the proposed method can examine more complicated directional
relationships among multiple sets of functional and/or multivariate data as illustrated in
Figure 1 that can be represented by a set of simultaneous equations. Functional linear
models including functional ANOVA (Ramsay & Silverman, 2005, Chapter 13; Zhang, J.-T.,
2013), varying-coefficient model (Hastie & Tibshirani, 1993; Ramsay & Silverman, 2005,
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Chapter 15), and time-varying effect model (Tan, Shiyko, Li, Li, & Dierker; Ramsay &
Silverman, 2005, Chapter 14) can examine directional relationships among multiple sets of
functional data but they also assume a model that can be represented by a single equation
only. The linear functional structural equation modeling (IfSEM; Lindquist, 2012) can
examine a mediation model that involves a set of simultaneous equations. However, the
IfSEM can only handle a model in which the relationship between a scalar input variable and
a scalar output variable is mediated by a functional mediator variable. The proposed method
can deal with more complicated models in which any of the input, output, and mediation
variables can be functional.

This paper is organized as follows. Section 2 provides a brief description of the original
GSCA. Section 3 discusses the technical details of functional GSCA. It provides the
functional GSCA model and a penalized least squares criterion for parameter estimation,
which is minimized by an alternating penalized least squares algorithm. It also expounds the
relationship between functional GSCA and the original GSCA, and discusses additional
computational issues. Section 4 presents the results of simulation studies which focus on the
accuracy of parameter recovery of functional GSCA and stability of the algorithm. Section 5
illustrates the applicability and usefulness of functional GSCA by analyzing the gait data
and comparing the results with those obtained from existing methods. The final section
summarizes the previous sections and discusses limitations and possible extensions of
functional GSCA.

2. Generalized Structured Component Analysis

For model specification, GSCA involves three sub-models: measurement, structural, and
weighted relation models. The measurement model specifies relationships between
components and observed variables. Assume that A/ participants are measured on K 'sets of
variables, each of which consists of P, variables (k= 1, ..., K). The measurement model can
be generally expressed as:

Zijk="YikCiktEijks (1)

where z;; indicates a response of participant /(/= 1, ..., ) on variable j (=1, ..., Py in
the Ath set (k= 1, ..., K), yjxis the kth component score of participant / cjxis a component
loading relating the Ath component score to the jth observed variable in the th set, and e
is the residual or measurement error. The measurement models for all A/ participants on all
Py variables in the Ath set can be combined into a single equation as follows:

Zi=vicpter,  (2)

where Z,is an NVby P, matrix of observed responses on the P, variables in the Ath set whose
(4, Hth elementis Zjx Y= [y1k - ynd’ is an by 1 vector of the Ath component scores,
ck=lcip ... cpkk]’ is a P, by 1 vector of loadings relating the Ath component score to the
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corresponding set of observed response variables, and g4 is an MV by 1 vector of residuals for
the Ath set of responses.

The structural model specifies hypothesized directional relationships among the component
scores. It can be expressed in matrix notation, as follows:

I'=I'B+E, (3)

where I is an Mby K'matrix of component scores, i.e., I = [y1, ..., yx], Bisa Kby K
matrix of path coefficients reflecting directional relationships among the component scores,
and E is an AVby K'matrix of residuals. For example, the structural model given in Figure 1
specifies the hypothesized directional relationships among the four component scores: body
size (y1), severity of Parkinson’s disease (vy2), gait function (7ys), and force under left foot
('ya). The matrix of the path coefficients (B) is given by:

[ 1 0 b1z by w
. 0 1 boz boy
B= 00 0 by
00 O 0 4)

where by is a parameter to be estimated that indicates the effect of the Ath component score
on the th component score and 0’s and 1’s are fixed values. The structural model in Figure 1
can be written as follows:

(7172735 Y4l = [71: 72,7374 {0 0 0

which contains the following four simultaneous equations:

71 =lv+0,

Y2 =17210,

Y3 =bi3y,1+bazyotes,

Y1 =biaY1+basyotbasyztes, (6)

where ey indicates a vector of residuals for the Ath component scores. The first two
equations in (6) show that body size (y1) and severity of Parkinson’s disease (y») are
exogenous component scores that involve no residuals, gait function (y3) is predicted from
body size (y1) and severity of Parkinson’s disease (7y»), and force under left foot (vy4) is
predicted from body size (y1), severity of Parkinson’s disease (vy,), and gait function (y3).

The weighted relation model is used to explicitly define each component score as a weighted
composite of observed variables as follows:
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M=ZrWk, (7)

where w is a Py by 1 vector of weights to define the Ath component score.

From (2), (3), and (7), we can see that there are three sets of parameters to estimate:
component scores (), loadings (cg), and path coefficients (B). In particular, estimating the
kth component scores reduces to estimating the corresponding weight vector w.

In GSCA, the data matrices Zy are typically columnwise standardized to have zero mean and
unit variance for each variable. The parameters, {w,}, {c«}, and B are estimated by
minimizing the following objective function, subject to the constraint that the variance of
each component score equals to unity:

K
¢=>_SS(ex)+SS(E),
k=1 (8)

where SS(E) = tr(E”E) indicates the sum of squares of all elements in E. The first term of
the objective function represents the sum of squared residuals in the measurement model and
the second term is the sum of squared residuals in the structural model. An alternating least
squares algorithm (de Leeuw, Young, & Takane, 1976; Hwang, Desarbo, & Takane, 2007
Hwang & Takane, 2004) was developed to minimize this objective function.

An overall fit of a hypothesized model can be measured by FIT (Hwang & Takane, 2004),
which is given by:

¢

=15 Z)rssm)’ ©)

where ¢ is the objective function value as given in (8) and SS(Z) + SS(I') is the total
variation in observed variables and component scores. The FIT indicates the proportion of
variation in observed variables and component scores that is accounted for by the
hypothesized GSCA model. The FIT ranges from 0 to 1; a larger FIT value indicates a better
fit.

3. Functional Generalized Structured Component Analysis

In this section, the functional GSCA model is developed to deal with directional
relationships among multiple sets of functional responses by combining the original GSCA
with basis function expansions and penalized least squares smoothing.

3.1 Data Structure

Assume that A participants are measured on K variables over multiple measurement
occasions, thus yielding K sets of functional responses. Let Jj denotes the number of

Psychometrika. Author manuscript; available in PMC 2017 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Suk and Hwang

Page 7

measurement occasions over which the Ath variable (k=1, ..., K) was repeatedly measured
for the /th participant. Note that the number of measurement occasions might vary across
individuals. However, we will assume that the range 7, over which the measurements are
obtained, does not vary across individuals. In the gait data presented in Figure 2(b), for
example, each patient’s total force under left foot was measured at different numbers of
measurement occasions. However, the range over which the responses were obtained is
common to all the patients, i.e., 7x=[0%, 100%)].

The response of participant /(7= 1, ..., ) at measurement occasion (=1, ..., Ji) for
variable & (k=1, ..., K) is denoted by Zz;, which can be modeled as:

zige=Vik(tik) ik, (10)

where Zjx € Ty is an argument value corresponding to the jth measurement occasion of the
fth participant for variable &, v (Z;ix) is a smooth curve underlying z; evaluated at Z, and
&jjkis the residual or measurement error. We will call v(#) data function hereafter (£€ 7).
Functional GSCA uses data functions v ,(#) as an input instead of raw functional data Z;j.

Considering that data functions tend to be (often complex) nonlinear functions of tas
illustrated in Figure 2, it is not satisfactory to use simple linear models of #to represent data
functions. A popular method for going beyond linearity but still exploiting the simplicity of
linear models is to replace ¢with its transformations and use a linear combination of these
transformed values. That is, the data function v (#) can be represented by:

Ly
vik(t)=>_wabh () =x 05 (t),
=1 (11)

where Ly is the number of transformations of fused to represent the 4th set of functional
responses, B,/ 9 indicates the Ah transformation of ¢ Xy is the coefficient of 8,(2) for

participant / Xjx = [k, ..., Xike " and 048 =[Gk (D, ..., Okr (D]’

This representation is referred to as a linear basis function expansion in £ and G, is called
the £h basis function for the Ath set of functional responses (for more comprehensive
discussion on basis function expansions, see Hastie, Tibshirani, and Friedman, 2009,
Chapter 5). By using a linear basis function expansion, a function is approximated as a linear
combination of a certain number of basis functions that span a function space. This is just as
a vector is represented as a linear combination of a certain number of basis vectors that span
a vector space. In this way, an infinite-dimensional curve can be represented as a finite-
dimensional vector of the coefficients of basis functions.

There are various types of basis functions, 6 (), that can be used. Most functional data
analyses involve either Fourier basis functions for periodic data or spline basis functions for
non-periodic data (Ramsay & Silverman, 2005, p.45). The proposed method will be
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developed and illustrated with using spline basis functions, more specifically, B-spline basis
functions. However, it will work with any other types of basis functions.

The basis function coefficients, X, can be estimated by minimizing a penalized least
squares criterion (Ramsay & Silverman, 2005, Chapter 5) with generalized cross-validation
(Craven & Wahba, 1979). Refer to Ramsay and Silverman (2005; Chapters 3, 4, and 5) for
more detailed discussions on how to estimate basis function coefficients and to Ramsay,
Hooker, and Graves (2009; Chapters 3, 4, and 5) for MATLAB and R codes for smoothing.

3.2 The functional GCSA model

Like the original GSCA, functional GSCA involves the same three sub-models for model
specification. The measurement model specifies the relationships between data functions
and component scores as follows:

vik(t)="ik ck(t)+e(t),  (12)

where ik is the Ath component score of participant / c( is a loading function evaluated at
time ¢ and e (9 is a residual function. As will be discussed in Section 3.5, the data function
will be mean-centered. That is, the data function represents the deviation from the mean
curve. Note that c4(? does not have subscript 7 which indicates that the loading function is
assumed to be common to all individuals. In other words, functional GSCA assumes that
there is a mode of temporal variation, which can be characterized by cx(#), and individuals
vary in terms of how much their trajectories reflect this mode of variation, or the amplitude
of this variation, represented by the component score, ¥« Therefore, the Ath loading
function captures the representative shape of temporal variation from the mean curve on the
kth variable and the corresponding component scores reflect the between-subjects variability
in terms of amplitude.

The structural model specifies hypothesized directional relationships among the
components, or amplitudes of response trajectories, which is identical to that of the original
GSCA:

I'=I'B+E. (13)
The weighted relation model defines a component score as a weighted integration of a data
function as follows:
’yik‘:ka Vik (t)wk (t)dtv (14)
where w (9 indicates a weight function to define the Ath component score. The value of a
weight function at time ¢indicates the amount of contribution of the data function at time ¢to

forming the component score. That is, a weight function represents which time interval is
crucial for capturing the variability in data functions as well as component scores.

Psychometrika. Author manuscript; available in PMC 2017 December 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Suk and Hwang Page 9

In functional GSCA, there are three sets of parameters to estimate: component scores ().
loading functions (c(#), and path coefficients (B). In particular, estimating the component
scores reduces to estimating the corresponding weight functions w(#). To estimate loading
and weight functions, we need to represent them by using basis function expansions:

wi(t)=yi0i(t),  (15)

cr(t)=a0i(t), (16)

where yis an L, by 1 vector of the coefficients for the Ath weight functions and a4 is an Ly
by 1 vector of the coefficients for the Ath loading function.

Based on (11) and (15), we can rewrite (14) as:

Y=L, Vi (Wi dt=[ , Xa0u(O0(1) yidt=xy ([, O(DOK(0) dt) yi=xsQuyts (17,

where Qx= frkek(z)ek(t)’dz‘. By stacking the Ath component scores of A/ participants into
one vector, we obtain

1=XkQrYr,  (18)

where yx=[714 --» ¥nd” and Xg= [X14 ..., X - Likewise, by using (11), (16), and
(18), the measurement model (12) for all A participants can be compactly expressed as:

X6 (1) =X Qryrafi(t)+er(t), (19)

where e D= [e1D, ..., enid D]’

Consequently, estimating the three sets of parameters, i.e., the weight functions {w()},
loading functions {c(9}, and path coefficients B, reduces to estimating the following three
sets of parameters: {y}, {as}, and B.

3.3 Parameter estimation

Functional GSCA estimates the three sets of parameters, {y}, {as}, and B, by minimizing
the following objective function:

=

K

Zj SS (er(t)) dt+SS(E +2AkykRkyk+ZpkakRkak,
k=1 k=1 k=1 (20)
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subject to the constraint that the norm of each component score should equal to the number
of participants N. The first term of the objective function indicates the integrated squared
residuals in the measurement model (19) summed over all A/ participants and all K sets of
responses. The second term of the objective function indicates the sum of squared residuals
in the structural model (13).

The third and the last terms are penalty terms that control the degree of roughness of weight
and loading functions, respectively. When estimating parameter functions such as weight
and loading functions, it is important to select an optimal number of basis functions. In
general, using too many basis functions leads to a highly fluctuating function, often
associated with the risk of overfitting, whereas using too few leads to failure to capture
important temporal variations. One way to address the issue of selecting the optimal number
of basis functions is to use rather a large number of basis functions while preventing the
estimated curve from being highly fluctuated by using a penalty term (Eilers & Marx, 1996).
For example, the following penalty term can be used for the weight function wy(9:

[, (D), 21)

where [? is the second derivative operator. The penalty term (21) indicates the squared
second derivative of wy(# integrated over the range 7, A straight line, which has no
curvature or roughness, will have a zero second derivative. As a function becomes more
fluctuating at time £ the second derivative of the function at time fwill deviate farther away
from zero. Therefore, the squared second derivative of a function at time zindicates its
curvature or roughness at time fand the squared second derivative of a function integrated
over the whole range of findicates its overall curvature or roughness over the entire range.
The penalty term (21) can be rewritten based on (15):

2 I / ! ’ !
s, (D2wk (f)) dt=/, <D2Yk0k(t)D29k(t) Yk) dt=y, (kaD20k(t)D20k(t) dt) Ye=YrRiYk

(22)

where Ry = ITk D?0,(H 0?0 (D’ at. Similarly, based on (16), the overall curvature of the Ath
loading function ¢ () can be written as:

ka <D26k (t)) ? dt:a;Rkak. (23)

The nonnegative smoothing parameters, A4 and pg, in (20) control the importance of the
corresponding penalty terms in yielding final solutions. When A4 = px= 0 for all &
minimizing the objective function is equivalent to minimizing the sum of squared residuals
in the measurement and structural models. Minimizing these residuals, i.e., maximizing the
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fit to a given data set, takes the risk of overfitting, which may yield highly fluctuating weight
and loading functions. By using greater values of the smoothing parameters, the risk of
overfitting can be reduced and thus smoother weight and loading functions can be obtained.
The optimal values of the smoothing parameters can be determined by a cross-validation
method, which will be further discussed in Section 3.5.

An alternating penalized least squares algorithm is developed to minimize (20). This
algorithm starts with assigning random initial values to {y .}, {ax}, and B and iterates the
following three steps until convergence.

STEP 1: Update {y} for fixed {as} and B to minimize the objective function fsubject to
the constraint that the squared norm of the component score is equal to the number of
participants, i.e.,

Ve QX Xk Qiy =N,  (24)

for all 4 This step requires solving a constrained nonlinear optimization problem; the
objective function fis a nonlinear function of the parameters {y,} and the objective function
should be minimized with respect to the parameters {y,} subject to the K constraints given
in (24). The interior-point algorithm (Byrd, Gilbert, & Nocedal, 2000; Byrd, Hribar, &
Nocedal, 1999) is used to solve this constrained nonlinear optimization problem by using the
fmincon function implemented in MATLAB and to obtain the updated {y 4}

STEP 2: Update {a} for fixed {y,} and B. Each a,can be updated separately since the
objective function fcan be written as the sum of K'terms, Ath term of which contains a
only. To update a,, we solve dfida, = 0. The first term of the objective function can be
written as:
K
f1=2 [, S5 (ex(t)) dt
K B I
=k21ka S5 (Xkok(t):X/ka:ykakok:(t)> dt

— S {[Tk (X0 (1)~ X Qryrarfi(t) ) (X;ﬁk(t)—Xkayka;Ok(t)>/dt}

k
{tr [ X ( [0 (D6k(1) dt) X | —2tr [ Xy, ( kaok(t)ok(t)’dt) ay, QuX | +r | X Quysay, kaok(t)ok(t)’dt) ary QpX

K
=> {tT {XkaX;f] —2tr {XkaakY;chX/k] +tr {Xkayka;chakY;ngX;g} }7
k=1

(25)

and 0flda, = 0 can be rewritten as:
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Of _0fi , Opna,Ruay
Bak - Bak aak

=—2Q1 X, X Qryr+2y, Qe X Xx Qryr Qrar+2p1Ria,=0. (26)

Solving (26) yields the updated a :

o= (VXX Qi QutaRe) (QXXQ) - g

STEP 3: Update B for fixed {y,} and {a,}. Note that B contains parameters to estimate as
well as fixed values as illustrated in (4). The second term of the objective function can be
written as:

f2=SS (F'=T'B) =58 (vec (T') — (I, ® I') vec (B)) =SS (vec (I') =®b) ,  (28)

where vec(B) is a super-vector obtained by stacking the columns of B in order, ® indicates
the Kronecker product, b is a vector containing only free parameters in vec(B), and ® is a
matrix containing the columns of 1, ® I" corresponding to the free parameters in vec(B). We
can update b by solving 0/db = 0, which is equivalent to solving dA/0b = 0. The updated b
is given by:

6:(@’@)_1 &' vec (T), 29)

and the updated B can be obtained by putting the elements of b in the appropriate locations
in B.

The goodness-of-fit of a hypothesized model can be measured by the FIT index as in the
original GSCA, which is given by:

_ fit+fe
FIT=1-— I

> tr (X,QXy) +NK
k=1

(30)

The FIT represents the amount of variation in data functions and component scores that can
be explained by the specified model. The first term in the denominator in (30) indicates the
total variation in data functions, which can be shown by:
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iifn_vm(t)zdtiiih ( a0t ) dt= Z] (Xkok )0 (t )Xk) dt= th <XkaXk>

k=1i=1 h=li=1 " k=1
(31)

The second term in the denominator represents the total variation of component scores; there
are K component scores and each component score has the norm of A. In the numerator, £
and 4 indicate the amount of squared residuals in the measurement and structural models,
respectively. Therefore, the FIT ranges from 0 to 1 and a larger value indicates a better fit.
One can use the FIT to compare different models and choose one associated with the highest
FIT value as the best model.

3.4 Constrained models

In practice, we may encounter situations in which some observed variables are functional
whereas others are multivariate, as illustrated in Figure 1. Functional GSCA can easily
accommodate this situation. We can see that the components (18) in functional GSCA
reduces to the components (7) in GSCA by constraining X4 = Z4, and Q= 15, Note that
the corresponding penalty parameters, Axand py, should be set to zero. The updated &4 and
the updated g4 reduce to the updated loading and weight vectors in the original GSCA (see
Hwang et al., 2007; Hwang & Takane, 2004). The matrix of path coefficients B will be
updated in the same way in both the original and functional GSCA.

In sum, functional GSCA can deal with both functional and multivariate data by
constraining X4 = Z4, Qx= lp, and A= px= 0 for the Ath set of observed variables when it
is multivariate. Thus, the original GSCA can be viewed as a special case of functional
GSCA, where Xy =Z, Qx=lp, and A= px= 0 for all .

3.5 Other computational considerations

In functional GSCA, B-spline basis functions (de Boor, 2001) are used for basis function
expansions because they are appropriate to capture local fluctuations, well-conditioned,
numerically stable, and computationally efficient (Dierckx, 1993, Chapter 1). For
mathematical definitions and more comprehensive discussions on B-spline basis functions,
see de Boor (2001, Chapters 9, 10, and 11), Dierckx (1993, Chapter 1), Hastie et al. (2009,
Chapter 5), and Ramsay and Silverman (2005, Chapter 3).

The optimal values of smoothing parameters A4 and ok in (20) are determined by using G-
fold cross-validation (Hastie et al., 2009, Chapter 7.10) with assuming 11 = -+ = 1= A and
p1 = = pg = ptoreduce computational burden. To perform a G-fold cross-validation, a
grid of values for A and that for p are set to test. And the data set is divided into G subsets of
similar sizes. Under each pair of values for A and p, one subset of data, called test data, is set
aside and the other G-1 subsets of data, called training data, are used to estimate parameters.
By using the estimated weight functions, we can obtain the component scores for the test
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data based on (14). By using the estimated loading functions and obtained component
scores, we can obtain the measurement error functions for the test data based on (12). By
using the estimated path coefficients and obtained component scores, we can obtain the
structural errors for the test data based on (13). The prediction error is defined as the sum of
the two errors obtained for the test data: integrated squared measurement error functions and
the squared structural errors. We repeat this process G times by using each subset of data as
test data each time and obtain G prediction errors. The mean prediction error under each pair
of values for A and p is obtained by averaging these G prediction errors. Finally we choose
the pair of A and p values that are associates with the smallest mean prediction error as the
optimal one.

Like GSCA, the estimated parameters in functional GSCA are unique up to scale only
because the scale of components is necessarily arbitrary. In order to address this
indeterminacy, the original GSCA preprocesses observed data and component scores as
follows. First, the data matrix is columnwise centered. That is, each variable is centered to
have a mean of zero, which leads the mean of each component to be zero as well. In
addition, both observed variables and component scores are standardized to have unit
variances so that they become comparable in size. In functional GSCA, data functions are
centered to have zero mean over the entire range of Z which leads the mean of each
component to be zero just as in the original GSCA. However, standardizing data functions to
have the same variance at each value of tas in the original GSCA will yield an undesirable
result. Figure 3(a) shows a set of four synthetic data functions. Figure 3(b) shows the four
data functions centered to have zero mean over the entire range of £ Centering changes the
raw data functions to deviation functions. The shapes and amplitudes of the data functions
are affected by centering. However, the information about how much each data function
deviates from the mean trajectory is entirely preserved. Figure 3(c) shows that the data
functions are centered to have zero mean plus standardized to have the same variance at each
measurement occasion. We can see that this type of standardization leads to a total loss of
the information about how much each data function deviates from the mean trajectory. In
order to address this issue, functional GSCA standardizes data functions to satisfy the
following constraint:

N

; (s - Vik()? dt) =N -

where v () is a mean-centered data function. As we can see in Figure 3(d), this type of
standardization preserves the deviation information of each trajectory. In addition, functional
GSCA standardizes each component score to have its squared norm equal to A, which makes
observed data and component scores comparable in size.

In addition to the estimates, functional GSCA also provides the confidence interval of each
estimate based on the bootstrap method (Efron, 1982; Hastie et al., 2009, Chapter 7.11) as
the original GSCA.
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4. Simulation Studies

4.1 Simulation 1: Accuracy in parameter recovery

A Monte Carlo simulation study was conducted to investigate the accuracy in parameter
recovery of functional GSCA under a variety of conditions. Three factors were manipulated
for generating data: the number of participants (/) varied at three levels (25, 50, 100), the
number of time points (J) varied at three levels (10, 25, 50), and the amount of errors in the
measurement model (o2) varied at three levels (0.5, 1, 2). A total of 3x3x3 = 27 conditions
were used and under each condition 100 replications were generated.

4.1.1 Data generation process—To generate each data set under each condition, the
structural model depicted in Figure 4 was used, in which two component scores, ¥ and yp,
for the th individual (/= 1,..., ), were assumed to predict another component score, yp, as
described by the following structural model:

Yiz=b13vi1+bazviz+ei.  (33)

The structural models for all Aindividuals can be combined into a single equation by using
the matrix notation as follows:

1 0 b
(V1,72 Y3 =[71,72,73) | 0 1 baz | +[0,0,¢€],
00 0 (34)

where y4=[y14---» ¥nd and e=[ey,..., ep]’.

The two exogenous component scores, y, and yp, and the error term in the structural
model, e;, were generated from the following multivariate normal distribution:

i1 0 1 0 O
Yi2 ~N 0 ) 01 0 )

which indicates that v, ¥, and e;are assumed to be uncorrelated with each other; the
variances of the two exogenous component scores are unity; the variance of the structural
error is 0.6, which was arbitrarily chosen. After the two exogenous component scores and
the error were generated by (4), the endogenous component score, 3, was generated by the
following structural model:

7i3=0.67i1+0.27vi2+¢€i,  (36)

in which b3 = 0.6 and &3 = 0.2 were chosen so as to make the variance of )3 unity as
follows:
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var(7y3)=bigvar(y1 ) +bagvar(y2)+var(e)=0.6% x 140.2% x 14+0.6=1. (37)

Once the three component scores were generated for each of the NV individuals, the
corresponding functional data were generated as follows. For simplicity, it was assumed that
the responses of all individuals on all variables were measured at the equally spaced time
points, 4 (=1,..., J), in which = 0 and ;= 1. The functional data were generated from the
following measurement model:

zj=7kCr(tj)+er, k=1,2,3, (38)

where z,is an NVby 1 vector of measured responses of AV individuals on the Ath variable at
time #;, yxis an AVby 1 vector of the A&th component score of AVindividuals generated as
described above, and the loading functions c,(f) were defined as:

c1(t)=%COS (QW (t_i)) +%’ (39)

co(t)=cos (71' (t—%)) " 40)

cs(t)=cos (gt) " a

over t€ [0,1]. The three loading functions were manipulated to have three different degrees
of roughness, i.e., the frequency of 1, %2, and %, for ¢i(9), (8, and c3(9), respectively. The
higher the frequency of a function is the rougher it is. Finally, an A/by 1 vector of
measurement errors or residuals, ey, was generated from a normal distribution with mean 0
and variance o2. The error variance o2 in the measurement model was assumed to be equal
across all variables and all measurement occasions.

Before functional GSCA was applied, each set of functional responses was smoothed by the
penalized least squares cubic spline smoothing with using 23 B-spline basis functions
(Ramsay & Silverman, 2005, Chapter 5). For smoothing the raw data for each set, the
smoothing parameter was varied at 11 levels, [107°, 1074, 1073, 1072, 1071, 100, 101,
102,108, 10%, 10°], and the optimal smoothing parameter was chosen among them based on
the generalized cross-validation procedure (Craven & Wahba, 1979; Ramsay & Silverman,
2005, Chapter 5). Under the optimal smoothing parameter value, we smoothed raw
functional data for each set to obtain data functions.
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After obtaining data functions, we analyzed them using functional GSCA. The optimal
values of the smoothing parameters, A and p, for functional GSCA were determined by five-
fold cross-validation. Each smoothing parameter was varied at 9 levels, [1074, 1073, 1072,
1071, 109, 101, 102,103, 10%], which yielded 9x9 = 81 pairs of smoothing parameter values
to test. The optimal pair of smoothing parameter values was chosen based on the first data
set under each condition and then used for all 100 data sets belonging to the same
conditionl. Based on the simulation study presented in Section 4.2, which showed that the
functional GSCA algorithm is very stable and highly unlikely to converge to different
solutions with different initial values, we used a single random starting value for estimation
to reduce computation time.

4.1.2 Results—To evaluate the accuracy of parameter recovery of the loading functions
and component scores, the congruence coefficients (Tucker, 1951) between true parameters
and their estimates were examined. The congruence coefficient of a vector of true
parameters, 7, and a vector of their estimates, 7, is calculated by:

CCm,m)=—

Vi )

which ranges between —1 and 1 and measures the agreement or similarity in terms of the
direction of two vectors regardless of their size. A larger value of the congruence coefficient
indicates a better agreement of the two vectors. Conventionally a value greater than 0.9 of
the congruence coefficient is regarded as an acceptable degree of similarity or agreement
(Mulaik, 1971). In order to calculate the congruence coefficient between two functions, i.e.,
a true loading function and its estimated loading function, each function is evaluated at 100
equally spaced time points and the vector of 100 evaluated values was used instead.

To examine the accuracy of parameter recovery of the path coefficients, the mean squared
errors of the estimates were calculated as given by:

wsE@=E | (-5)] o

where Sis a true path coefficient and A is an estimate of the true path coefficient and the
expectation A ] is taken over 100 replications. The mean squared error of an estimate
indicates the average squared distance between the estimate and its true value. A smaller
value of the mean squared error indicates a better estimate.

Figure 5 presents the means of the congruence coefficients for the estimates of the three
loading functions averaged across 100 replications. The mean congruence coefficients were
ranging from 0.89 to 1.00. Figure 5 shows that the loading functions tended to be more

1This means that the chosen smoothing parameter values might have been suboptimal for the other 99 data sets. Therefore, the
simulation results may be a bit conservative in the sense that the results would be better if the smoothing parameters have been chosen
for every data set optimally.

Psychometrika. Author manuscript; available in PMC 2017 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Suk and Hwang

Page 18

accurately estimated as the amount of errors in the measurement model decreased, the
number of time points increased, and the roughness of loading functions decreased (the
loading function 1 is rougher than the loading function 2, which in turn is rougher than the
loading function 3). However, the estimation accuracy was not noticeably affected by the
number of individuals (N).

Figure 5 also displays the ranges of the congruence coefficients for the loading functions.
The congruence coefficients tended to widely vary across 100 replications when responses
were collected at a smaller number of time points from a smaller number of individuals with
a larger amount of error. This indicates that the estimation accuracy of the loading functions
can deteriorate when data are noisy and sparsely collected at a small number of time points
for a small number of individuals.

Figure 6 presents the mean congruence coefficients of the estimates of the three component
score vectors averaged across 100 replications. The mean congruence coefficients were
ranging from 0.73 to 0.99. On average, the component scores tended to be more accurately
estimated as the amount of errors in the measurement model decreased, the number of time
points increased, and the roughness of loading functions decreased. However, the mean
congruence coefficients did not noticeably vary depending on the number of individuals.

Figure 6 also displays the ranges of the congruence coefficients for the component score
vectors. The congruence coefficients tended to widely vary across 100 replications when
responses were collected at a smaller number of time points from a smaller number of
participants with a larger amount of error. The congruence coefficients went even below 0.5
when the number of time points was 10, the number of individuals was 25, and the error
variance was 2. This indicates that the estimation accuracy of the component scores can
substantially deteriorate when data are noisy and sparsely collected at a small number of
time points for a small number of individuals.

Figure 7 displays the mean squared errors of the path coefficient estimates under each
condition. The mean squared errors were ranging from 0.00 to 0.08. Although there is no
clear-cut standard for an acceptable level of mean squared errors, the mean squared errors of
the estimated path coefficients seemed relatively small compared to the true parameter
values. Overall, the mean squared errors tended to decrease when the number of individuals
increased, the number of time points increased, and the amount of measurement error
decreased.

Figure 7 also displays the ranges of the mean squared errors. Similar to the loading functions
and component scores, the ranges of the mean squared errors tended to be wider as the
number of time points was smaller, the number of individuals was smaller, and the error
variance was larger.

In sum, the simulation study revealed that functional GSCA works as it is supposed to. On
average, the estimation became more accurate as the responses were measured at more time
points with lower errors. The estimation became more stable as the responses were measured
at more time points from more individuals with lower errors. When the responses were
measured at a large number of time points with a small amount of measurement error from a
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large number of individuals, functional GSCA performed reasonably well. The results of the
simulation study also suggest that it is beneficial to increase the number of time points and
the number of individuals to obtain more accurate and stable estimates of loading functions,
component scores, and path coefficients especially when loading functions are expected to
be rough and measurements are noisy.

4.2 Simulation 2: Stability of the algorithm

The objective function is bounded above zero and each step of the algorithm decreases the
value of the objective function. Therefore, this algorithm will converge to a solution.
However, this does not guarantee that the solution is the global minimum. In order to
increase the probability of convergence to the global minimum, the algorithm can be
repeated a number of times with different initial values each time and the solution associated
with the smallest objective function value is chosen as the final one.

In this simulation study, we examined how the solutions may vary with different initial
values. We analyzed one data set for each of the 27 conditions examined in Section 4.1 using
100 different initial values. Each initial value was randomly generated from a standard
normal distribution.

In each condition, we examined how the objective function value obtained at convergence
changed with different initial values. For all 27 conditions, the highest objective function
value reached at convergence out of the 100 analyses with different starting values and the
lowest one were different only in their 6 or lower decimal place. The reason that the
objective function values differ in their 6! or lower decimal place is because the functional
GSCA algorithm stops when the change in the objective function value at adjacent iterations
is smaller than the stopping criterion, 1075,

This result shows that the functional GSCA algorithm is highly stable and very unlikely to
converge to different solutions with different initial values. Therefore, we used a single
starting value when analyzing the example data set in Section 5 to reduce computation time.

5. An Empirical Example: Gait Data

5.1 Functional GSCA

The example data set comes from the three studies of gait behavior of Parkinson’s disease
patients including Yoget et al. (2005), Hausdorff et al. (2007), and Frenkel-Toledo et al.
(2005). The data are publicly available on the PhysioNet website (Goldberger et al., 2000;
http://physionet.org/physiobank/database/gaitpdb/). The MATLAB codes for downloading
and preprocessing the data as well as for analyzing the preprocessed data are provided as
online supplemental materials.

A total of 93 patients diagnosed as having idiopathic Parkinson’s disease participated in one
of the three studies. Out of the 93 patients, 10 patients had missing values in at least one of
the observed variables. Therefore, we ended up with 83 patients excluding these 10 patients
from the analyses.
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In all three studies, patients were measured on the following four sets of responses. First, the
body size was measured by two observed variables, Aeight (in centimeters) and weight (in
kilograms). Second, the severity of Parkinson’s disease was measured by the three scales —
the Hoehn and Yahr staging scale (HY: Hoehn & Yahr, 1967), unified Parkinson’s disease
rating scale (UPDRS, Fahn, Elton, & members of the UPDRS Development Committee,
1987), and the motor section score of the UPDRS (UPDRSm). Higher values of these scales
indicate more severe cognitive impairment. Third, the gait function was measured by two
variables, the 7imed Up and Go (TUG; Podsiadlo & Richardson, 1991) score and walking
speed. The TUG measures the time that a patient takes to complete a series of movement
including rising from a chair, walking a short distance, turning around, returning back to the
chair, and sitting down. A higher score of 7UG indicates a longer time to complete the task,
in other words, a lower gait function. The walking speed indicates the average distance
walked per second measured in meter/second with a higher score indicating a better gait
function.

Besides the three sets of responses, patients were also measured on the force under left foot
(in Newtons) at 100 Hz for two minutes while they walked at their usual pace, which yielded
functional data as shown in Figure 2. As we discussed in the Introduction, each patient had a
different walking speed and completed different numbers of gait cycles in two minutes.
Therefore, we needed to preprocess the functional data as follows. First, we obtained the
trajectories of the force under left foot for all cycles completed by each patient. For example,
a patient (GaPt282) completed 104 cycles in two minutes and these 104 trajectories are
shown in Figure 8(a). Then we aligned the trajectories obtained from each patient according
to the percentage frame of reference as shown in Figure 8(b). And we smoothed each
trajectory for each patient by using the penalized least squares cubic spline smoothing with
13 B-spline basis functions (Ramsay & Silverman, 2005, Chapter 5). For smoothing the
trajectories for each patient, the smoothing parameter was varied at 11 levels, [1075, 1074,
1073,1072, 1072, 100, 10%, 102,103, 104, 10°], and the optimal smoothing parameter was
chosen based on the generalized cross-validation procedure (Craven & Wahba, 1979;
Ramsay & Silverman, 2005, Chapter 5). Under the optimal smoothing parameter value, we
smoothed all the trajectories for each patient. The smoothed curves for the patient are
presented in Figure 8(c) in gray. Then we obtained the mean curve for each patient by
averaging all the curves (or cycles) completed by the patient, which is the black solid curve
in Figure 8(c). Each curve presented in Figure 8(d) is the mean curve for each of the 83
patients, which is used for the subsequent analyses.

The structural model used for analyzing this data set is given in Figure 1. The body size and
severity of Parkinson’s disease are hypothesized to have effects on the force under the left
foot and these effects are mediated by the gait function. The optimal values of the smoothing
parameters A and p were determined by five-fold cross-validation, in which each of the
smoothing parameters was varied at 5 different values, [10%, 102, 103, 104, 10%]. The
resultant optimal smoothing parameter values were A = 10% and p = 108, which were used in
estimating the parameters.

2This is the ID of the patient used in the PhysioNet website.

Psychometrika. Author manuscript; available in PMC 2017 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Suk and Hwang

Page 21

The FIT value was 0.5911, which indicates that 59.11% of the total variation in data
functions and component scores can be captured by the functional GSCA model. Table 1
presents the estimated loadings and weights for the body size, severity of Parkinson’s
disease, and gait function with 95% bootstrap confidence intervals based on 500 bootstrap
samples. In the set of body size, the weight for hejght has a wide confidence interval, [-.62, .
28], whereas the weight for weighthas a much narrower confidence interval, [.70, .99],
around a high weight value. This indicates that weightis more crucial than Aefjghtin
predicting gait function and force under left foot. In the set of severity of Parkinson’s
disease, the weight for /Y has a wide confidence interval around zero, [-.07, .33], whereas
the confidence intervals of the weights for UPDRS and UPDRSm are much narrower and
around higher values, [.40, .58] and [.37, .59], respectively. This indicates that UPDRS and
UPDRSm are more important than HY'in predicting gasit function and force under left foot.
In our data, all the patients have HY scores of 2, 2.5, or 3 and there is not much variation in
HY. This explains why HY'is not so much important as UPDRS and UPDRSm in predicting
gait function and force under left foot. In the set of gait function, the weights for 7TUG and
walking speed have relatively narrow confidence intervals around higher values (in absolute
values), [-.60, —.39] and [.50, .67], respectively. This indicates that both variables contribute
to predicting force under left foot.

By examining the loadings, we can see that the component score on body size is highly and
positively correlated with wefght. The component score on severity of Parkinson’s disease is
highly and positively correlated with UPDRS and UPDRSm. The component score on gait
function is highly and negatively correlated with 7UG, and highly and positively correlated
with walking speed. Considering that a higher score on 7UG indicates a lower gait function
and a higher walking speedindicates a better gait function, a higher component score on gait
function indicates that the patient manifests a better gait function.

The estimated weight function of force under left foor with 95% pointwise bootstrap
confidence interval based on 500 bootstrap samples is given in Figure 9(a). The estimated
weight function has higher weight values with relatively narrower confidence intervals over
10% to 30% completion of the gait cycle. This indicates that the force under left foot exerted
over 10% to 30% completion of the gait cycle and that over 70% to 85% completion of the
gait cycle are crucial in examining the relationship of force under left foot with body size,
severity of Parkinson’s disease, and gait function.

The estimated loading function of force under left foot is depicted in Figure 9(b) with the
pointwise 95% bootstrap confidence interval based on 500 bootstrap samples. To facilitate
the interpretation of the estimated loading function, we plotted the loading function with the
mean curve of force under left foot. Considering that the data functions are mean-centered,
the data functions indicate the deviations from the mean function. Considering that the
component scores are also mean-centered, the measurement model (12) implies that we
expect to obtain the mean function when the component score y is zero, i.e., the mean
component score. For a patient whose Ath component score is 2 standard deviations above
the mean, his data function can be predicted from the measurement model (12) as given by:
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Vic(t)+2skCk (1), (44)

where vy (4 indicates the mean function, Vx (t):Zilvik (t)/N, siis the standard deviation
of the Ath component score, and é,(J) is the estimated loading function. Similarly, for a
patient whose Ath component score is 2 standard deviations below the mean, his data
function can be predicted by:

Vk(t)—2sklr(t).  (45)

Figure 9(c) shows the predicted data functions (44) and (45) on top of the mean function. We
can see that a patient whose component score is above the mean tends to manifest stronger
force under left foot with having a peak at around 20% and 70%. Contrarily, a patient whose
component score is below the mean tends to manifest a relatively flat pattern of change in
force under left foot over 30% to 70%.

The estimated path coefficients and their 95% bootstrap confidence intervals based on 500
bootstrap samples are given in Table 2. As expected, if a patient has a higher component
score on body size, his component score on force under left foot tends to be larger (b4 = .
59). In other words, a heavier patient tends to have a higher component score on force under
left foot, which in turn is related with elevated amplitude at around 20% and 70%. As a
patient has a higher component score on severity of Parkinson’s disease, his component
score on gait function tends to be lower (&3 = —.28 ) while controlling for the effect of body
size. However, the strength of this relationship is rather uncertain as indicated by a relatively
wide confidence interval, [-.49, —.02]. A lower component score on gait function, in turn, is
associated with a lower component score on force under left foot (bz4 = 0.35 ) while
controlling for the effect of body size and that of severity of Parkinson’s disease. However,
this relationship is rather uncertain as indicated by its wide confidence interval, [.08, .60].
The effect of body size on gait function (b3 = .22 ) does not seem to exist as indicated by its
confidence interval close to zero, [-.08, .43]. A higher component score on severity of
Parkinson’s Disease tends to be associated with a lower component score on force under left
foot (b4 = —.21). However, this relationship might again be rather uncertain as indicated by
its wide confidence interval, [-.41, —.01].

5.2 The original GSCA with discretizing data functions

We analyzed the gait example data again using the original GSCA in order to illustrate the

usefulness of the proposed method over the original GSCA. To deal with functional data in
the framework of the original GSCA, we evaluated the data functions (force under left fool)
shown in Figure 8(d) at 14 equally spaced percentage occasions3. The evaluated curves are

3The original GSCA broke down when we used more than 15 equally spaced percentage occasions due to the high correlations
between the responses evaluated at adjacent percentage occasions. Therefore, we ended up evaluating the mean curves at 14
percentage occasions.
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presented in Figure 10(a). We used these 14 responses evaluated at the 14 percentage
occasions as indicator variables for force under left foot.

The same structural model was used as in Section 5.1. The estimated weights and loadings
for the bodly size, severity of Parkinson’s disease, and gait function are given in Table 3,
which are quite similar to those in Table 1. This indicates the component scores on the body
size, severity of Parkinson’s disease, and gait function obtained by the original GSCA with
discretizing the data functions are comparable to those obtained by functional GSCA.

The estimate path coefficients are presented in Table 4. All the estimated path coefficients in
Table 4 are quite similar to those given in Table 2 except for the path from gait function to
force under left foot (s4). When the original GSCA was used, the estimated path coefficient
was .12 with the confidence interval close to zero, [-.07, .33]. When the functional GSCA
was used, the estimated path coefficient was .35 with the confidence interval of [.08, .60].
This difference implies that the original GSCA and functional GSCA might extract different
components on force under left foot. Comparing the loadings on force under left foot given
in Figure 10(d) and the loading function given in Figure 9(b) also reveals that the original
GSCA and functional GSCA extracted different components on force under left foot.

Figure 10(c) displays the estimated weights for the responses evaluated at the 14 percentage
occasions, which are noticeably different from the weight function given in Figure 9(a). The
estimated weights in Figure 10(c) are highly zigzagged and very difficult to interpret. It
seems that none of the 14 percentage occasions are crucial in examining the relationships
with the body size, severity of Parkinson’s disease, and gait function. The reason that the
original GSCA vyielded a zigzagged pattern of the weights can be explained by the way data
are preprocessed. As already discussed in Section 3.5, in the original GSCA each indicator
variable is standardized to have a mean of zero and a standard deviation of unity as shown in
Figure 10(b). In other words, the responses at the 14 percentage occasions are standardized
without taking it into account that the responses at adjacent percentage occasions are more
highly correlated. Therefore, this way of standardization destroys the smooth nature of the
trajectories, which in turn can lead to zigzagged weights as shown in Figure 10(c).

5.3 The original GSCA combined with functional PCA

In this section, we analyzed the gait example data using the original GSCA combined with
functional PCA (Ramsay & Silverman, 2005, Chapter 8). To summarize functional data, we
performed a functional PCA on the data functions of force under left foot and obtained
component scores, which were used as indicator variables for force under left foot. A total of
four components were extracted so as to retain at least 95% of the total variation in the data
function. Figure 11 displays the four obtained eigenfunctions associated with the largest four
eigenvalues.

The same structural model was used as in Sections 5.1 and 5.2. The estimated weights and
loadings are given in Table 5 where Component 1 indicates the component scores that
capture the maximal variance; Component 2 indicates the component scores that capture the
second maximal variance; and so on. All the estimated weights in Table 5 are quite similar to
those given in Table 1 except for the weights for height and weight. When using functional
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GSCA, weightturned out to be more crucial than Aefght for examining the relationship with
body size and other sets of responses including force under left foot. This result makes
sense; the force under left foot will be stronger for a heavier person with the same height,
but it doesn’t have to be the case for a taller person with the same weight. However, when
using the original GSCA combined with functional PCA, it turned out that /efjghthas a
higher weight with a narrower confidence interval compared to weight. This means that
heightis more important than weight for examining the relationship with body size and
other sets of responses including force under left foot, which is somewhat counter intuitive.

Considering the wide confidence intervals of the weights of force under left foot on the four
component scores, none of the four component scores seem to be substantially contributing
to examining the relationship of force under left foot with body size, severity of Parkinson’s
disease, and gait function. In addition, all the components extracted by functional PCA
shown in Figure 11 are quite different from the component extracted by functional GSCA as
shown in Figure 9(a). This example illustrates that functional GSCA and functional PCA can
extract different components from the same functional data; functional GSCA extracts
components considering the hypothesized relationships with other variables whereas
functional PCA extracts components only considering the variation in the functional data.

The estimated path coefficients are presented in Table 6. Compared to the estimated path
coefficients in Table 2, we can see that the component score on body size is no longer
strongly associated with the component score on force under left foot. This difference comes
from the fact that functional GSCA and the original GSCA combined with functional PCA
extract different components. In functional GSCA, the component score on body size is
more highly related with weight whereas in the original GSCA combined with functional
PCA the component score on bodly size seems to reflect helght rather than weight.
Moreover, in functional GSCA, the component score on force under left foot reflects the
variation in trajectory as depicted by the loading function in Figure 9(b). On the contrary, in
the original GSCA combined with functional PCA, the component score on force under left
foot may not be strongly related with any of the four component scores extracted by the
functional PCA as indicated by the loadings in Table 5 with wide confidence intervals
around zero.

6. Summary and Discussion

In this paper, functional GSCA was proposed for the analysis of functional data by
integrating the original GSCA with basis function expansions and penalized least squares
smoothing into a unified framework. Functional GSCA enables to analyze path-analytic
relationships among multiple sets of functional responses without losing information on
temporal variations in the data. The usefulness of functional GSCA was investigated by
using both synthetic and real data sets. The Monte Carlo study demonstrated that functional
GSCA recovered parameters reasonably well and the estimation algorithm was stable. The
gait data example illustrated that functional GSCA could examine directional relationships
among multiple sets of functional or multivariate responses, while identifying the variation
in functional responses relevant to other sets of responses as well as the range of time that is
crucial for examining the relationships. We also compared functional GSCA with two other
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possible ways of analyzing the data in the framework of the original GSCA. The results
illustrated that functional GSCA is more useful over the original GSCA with discretizing
data functions since functional GSCA can take into account the fact that responses at
adjacent measurement occasions are connected. The results also showed that functional
GSCA is more useful over the original GSCA combined with functional PCA since
functional GSCA extracts components that are more relevant to other responses of main
interest.

Despite its usefulness, functional GSCA has limitations. It is not applicable when data
functions exhibit not only a certain kind of amplitude variation but also other variations such
as a phase variation. For example, Wiesner and Windle (2004) studied adolescent
delinquency trajectories and revealed six different trajectory groups: rare offenders,
moderate late peakers, high late peakers, decreasers, moderate-level chronics, and high-level
chronics. These six trajectory groups differ in terms of two different types of variation. First,
these groups have different delinquency levels, i.e., amplitude variation: rare, moderate, and
high. Second, these groups also differ in terms of the location of the peak: no peak (rare or
chronics), late peak, and early peak (decreases). If these two different types of variation are
related with other responses in a different way, functional GSCA might not handle it because
the loading function can capture one specific kind of variation. For example, the loading
function in Figure 9(b) captures the amplitude variation mainly around earlier occasion. One
might think that registering data could resolve this problem to some extent. However, in
some cases, researchers are reluctant to register data because the phase variation in data
reflects an important characteristic of data that should not be ignored.

A promising way of extending functional GSCA to uncover such cluster-level heterogeneity
is to combine functional GSCA with a clustering method. Hwang et al. (2007) already
showed that the original GSCA can be nicely combined with fuzzy clustering to deal with
heterogeneous groups of subjects. Functional GSCA can be readily extended to fuzzy
clusterwise functional GSCA in a similar way. Another promising approach is a multilevel
extension of functional GSCA, which can be used when one is interested in examining
differences in trajectories as well as in path coefficients across already existing groups, such
as gender, geographical regions, treatment conditions, etc. The original GSCA has been
extended to multilevel GSCA (Hwang, Takane, & Malhotra, 2007), in which loadings and
path coefficients are allowed to vary across different groups. Similarly, functional GSCA can
be generalized to incorporate such multilevel structures.

In addition, functional GSCA is not suitable for investigating how the relationships among
variables evolve over time. For example, Li, Root, and Shiffman (2006) revealed that the
effect of negative mood on urge to smoke changed over various stages of the smoking-
cessation process. Functional GSCA is currently based on the assumption that the
relationships among components, or path coefficients, remain invariant over time. Thus, it
may be useful to extend functional GSCA to deal with time-varying path coefficients (e.g.,
Hastie & Tibshirani, 1993; Ramsay & Silverman, 2005; Tan, Shiyko, Li, Li, & Dierker,
2012).
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Technically, functional GSCA can be regarded as a two-step approach in which functional
data are smoothed and then the smoothed curves are used for further analyses. In other
words, functional data should be pre-processed for functional GSCA analysis. It would be
desirable to incorporate the pre-processing step into the estimation process in functional
GSCA so that the functional data are smoothed in an optimal way for examining the
hypothesized relationships among the sets of responses in the model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors are very grateful for the insightful and constructive comments made by the associate editor and three
anonymous reviewers that have greatly improved the paper. The work of the first author was supported by the
National Institute On Drug Abuse of the National Institutes of Health under Award Number RO1DA009757. The
final publication is available at link.springer.com.

References

Abdi, H. Partial least squares (PLS) regression. In: Lewis-Beck, M.Bryman, A., Futing, T., editors.
Encyclopedia for research methods for the social sciences. Thousand Oaks: Sage; 2003. p. 792-795.

Byrd R, Bilbert JC, Nocedal J. A Trust Region Method Based on Interior Point Techniques for
Nonlinear Programming. Mathematical Programming A. 2000; 89:149-185.

Byrd RH, Hribar ME, Nocedal J. An Interior Point Algorithm for Large Scale Nonlinear
Programming. SIAM Journal of Optimization. 1999; 9:877-900.

De Boor, C. A practical guide to splines. New York, NY: Springer; 2001.

de De Leeuw J, Young FW, Takane Y. Additive structure in qualitative data: An alternating least
squares method with optimal scaling features. Psychometrika. 1976; 41(4):471-503.

Dierckx, P. Curve and surface fitting with splines. Oxford: Clarendon; 1993.

Efron, B. The jackknife, the bootstrap, and other resampling plans. Philadelphia: Society for Industrial
and Applied Mathematics; 1982.

Eilers PHC, Marx BD. Flexible Smoothing with B-splines and Penalties. Statistical Science. 1996;
11(2):89-102.

Fahn, S., Elton, RL. members of the UPDRS Development Committee. Unified Parkinson’s disease
rating scale. In: Fahn, S.Marsden, D.Calne, D., Goldstein, M., editors. Recent development in
Parkinson’s disease. Florham Park, NJ: MacMillan Healthcare Information; 1987.

Ferraty, F., Vieu, P. Nonparametric functional data analysis theory and practice. New York: Springer;

2006.

Frenkel-Toledo S, Giladi N, Peretz C, Herman T, Gruendlinger L, Hausdorff JM. Treadmill Walking as
an External Pacemaker to Improve Gait Rhythm and Stability in Parkinson’s Disease. Movement
Disorder. 2005; 20(9):1109-1114.

Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov P Ch, Mark RG, Mietus JE, Moody GB,
Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New
Research Resource for Complex Physiologic Signals. Circulation. 2000; 101:e215-e220.
[PubMed: 10851218]

Hastie T, Tibshirani R. Varying-Coefficient Models. Journal of the Royal Statistical Society. Series B
(Methodological). 1993; 55(4):757-796.

Hastie, T., Tibshirani, R., Friedman, JH. The elements of statistical learning data mining, inference,
and prediction. New York: Springer; 2009.

Psychometrika. Author manuscript; available in PMC 2017 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Suk and Hwang

Page 27

Hausdorff JM, Lowenthal J, Herman T, Gruendlinger L, Peretz C, Giladi N. Rhythmic auditory
stimulation modulates gait variability in Parkinson’s disease. European Journal of Neuroscience.
2005; 26:2369-2375.

Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology. 1967; 17(5):427-
442. [PubMed: 6067254]

Hwang H, DeSarbo WS, Takane Y. Fuzzy Clusterwise Generalized Structured Component Analysis.
Psychometrika. 2007; 72(2):181-198.

Hwang H, Jung K, Takane Y, Woodward T. Functional multiple-set canonical correlation analysis.
Psychometrika. 2012; 77:48-64.

Hwang H, Suk HW, Lee JH, Moskowitz DS, Lim J. Functional extended redundancy analysis.
Psychometrika. 2012; 77:524-542. [PubMed: 27519779]

Hwang H, Suk HW, Takane Y, Lee JH, Lim J. Generalized functional extended redundancy analysis.
Psychometrika. 2015; 80:101-125. [PubMed: 24271507]

Hwang H, Takane Y. Generalized structured component analysis. Psychometrika. 2004; 69(1):81-99.

Hwang H, Takane Y, Malhotra N. Multilevel Generalized Structured Component Analysis.
Behaviormetrika. 2007; 34(2):95-109.

Jackson I, Sirois S. Infant cognition: going full factorial with pupil dilation. Developmental science.
2009; 12(4):670-679. [PubMed: 19635092]

Li, R., Root, TL., Shiffman, S. A Local Linear Estimation Procedure for Functional Multilevel
Modeling. In: Walls, TA., Schafer, JL., editors. Models for Intensive Longitudinal Data. New York:
Oxford University Press; 2006. p. 63-83.

Lindquist MA. Functional Causal Mediation Analysis With an Application to Brain Connectivity.
Journal of the American Statistical Association. 2012; 107(500):1297-1309. [PubMed: 25076802]

Mattar AAG, Ostry DJ. Generalization of dynamics learning across changes in movement amplitude.
Journal of neurophysiology. 2010; 104(1):426-438. [PubMed: 20463200]

Mulaik, SA. The foundations of factor analysis. New York: McGraw-Hill; 1971.

Ormoneit D, Black MJ, Hastie T, Kjellstrém H. Representing cyclic human motion using functional
analysis. Image and Vision Computing. 2005; 23(14):1264-1276.

Park KK, Suk HW, Hwang H, Lee JH. A functional analysis of deception detection of a mock crime
using infrared thermal imaging and the Concealed Information Test. Frontiers in human
neuroscience. 2013; 7:70. [PubMed: 23470924]

Podsiadlo D, Richardson S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail
Elderly Persons. Journal of the American Geriatrics Society. 1991; 39(2):142-148. [PubMed:
1991946]

Ramsay JO, Dalzell CJ. Some Tools for Functional Data Analysis. Journal of the Royal Statistical
Society: Series B (Methodological). 1991; 53(3):539-572.

Ramsay, JO., Hooker, G., Graves, S. Functional data analysis with R and MATLAB. New York:
Springer; 2009.

Ramsay, JO., Silverman, BW. Functional data analysis. New York: Springer; 2005.

Reinsch CH. Smoothing by spline functions. Numerische Mathematik. 1967; 10(3):177-183.

Tan X, Shiyko MP, Li R, Li Y, Dierker L. A time-varying effect model for intensive longitudinal data.
Psychological Methods. 2012; 17(1):61-77. [PubMed: 22103434]

Tian TS. Functional Data Analysis in Brain Imaging Studies. Frontiers in Psychology. 2010; 1:35.
[PubMed: 21833205]

Tucker, LR. A method for synthesis of factor analysis studies. Washington: Department of the Army;
1951. (Personnel Research Section Report No. 984)

Vines BW, Krumhansl CL, Wanderley MM, Levitin DJ. Cross-modal interactions in the perception of
musical performance. Cognition. 2006; 101(1):80-113. [PubMed: 16289067]

Yogev G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM. Dual tasking, gait rhythmicity, and
Parkinson’s disease: which aspects of gait are attention demanding? The European journal of
neuroscience. 2005; 22(5):1248-1256. [PubMed: 16176368]

Zhang, J-T. Analysis of Variance for Functional Data. Boca Raton: CRC Press; 2013.

Psychometrika. Author manuscript; available in PMC 2017 December 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Suk and Hwang

Height
Body Size
(71)
Weight
Force
Under
Left Foot
(v4)
HY
Parkinson’s
UPDRS Disease
(7:)
UPDRSm

Figure 1.

The hypothesized directional relationships among the four sets of responses. In the path
diagram, a circle represents a set; a square indicates an observed variable in the set; a curve
right next to the set, force under left foot, indicates that this set consists of functional data. A

more detailed description of the observed variables is given in Section 5.
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Figure 2.

The force under left foot for the first gait cycle completed by each patient plotted against (a)
clock time (in seconds) and (b) percentage completed (%).
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Figure 3.
The results of different scaling methods on four synthetic data functions, each of which is

represented by a line with different style: (a) raw data functions, (b) centering only, (c)
centering plus columnwise normalization, and (d) centering plus matrixwise normalization.
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Figure 4.
The structural model used for generating data in the simulation study.

Psychometrika. Author manuscript; available in PMC 2017 December 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Suk and Hwang

(a) c1 (N=25)

(b) c1 (N=50)

Page 32

(c) 1 (N=100)

0.7

1
09
(6}
O
08
07 ; . "
10 25 50
(d) c2 (N=25)
1
0.9
(6}
O
038
0.7
10 25 50
(9) c3 (N=25)
1 e S—
09
6}
O
08
07
10 25 50
Number of timepoints
Figure 5.

07

09

0.8

0.7

09
0.8
i i ; 0.7 ; i i
10 25 50 10 25 50
(e) c2 (N=50) (f) c2 (N=100)
1
09
0.8
07
10 25 50 10 25 50
(h) c3 (N=50) (i) €3 (N=100)
o:xl;—-a——am-——m_ - 1 e
09
08
g \ 0.7 ;
10 25 50 10 25 50

Number of timepoints

Number of timepoints

The mean congruence coefficients of the estimates of the three loading functions (¢, &, &)
averaged across 100 replications. The circles connected with solid lines are for the error
variance of 0.5, the squares connected with dashed lines for error variance of 1, and the
triangles connected with dotted lines for error variance of 2. The error bars indicate the

ranges of the congruence coefficients.
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Figure 6.
The mean congruence coefficients of the estimates of the three component scores (1, 72,

¥3) averaged across 100 replications. The circles connected with solid lines are for the error
variance of 0.5, the squares connected with dashed lines for error variance of 1, and the
triangles connected with dotted lines for error variance of 2. The error bars indicate the

ranges of the congruence coefficients.
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The mean squared errors of the estimates of the two path coefficients (6,3, &3). The circles
connected with solid lines are for the error variance of 0.5, the squares connected with
dashed lines for error variance of 1, and the triangles connected with dotted lines for error
variance of 2. The error bars indicate the ranges of the mean squared errors.
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The raw data of the 104 gait cycles completed by the patient (GaPt28) are plotted against (a)
clock time (in seconds) and (b) percentage completed. The gray curves in (c) are the
smoothed curves for the 104 gait cycles and the black line indicates the mean curve of the
104 smoothed curves. The mean curve obtained from each of the 83 patients is plotted in (d).
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The estimated weight function (solid line) with the pointwise 95% bootstrap confidence
interval (dashed lines) is displayed in (a). The estimated loading function (solid line) with
95% pointwise bootstrap confidence interval (dashed lines) is displayed in (b). The predicted
data functions associated with different values of component scores are displayed in (c). The
thick line is the mean curve of the 83 patients, the thin dashed line indicates the predicted
data function when the component score is 2 standard deviations above the mean, and the
thin dotted line indicates the predicted data function when the component score is 2 standard

deviations below the mean.
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Figure 10.

(a) The evaluated mean curves: the dotted vertical lines indicate the locations of the 14
equally spaced percentage occasions at which the mean curves are evaluated. (b) The
standardized data: the mean of each percentage occasion is zero and the standard deviation
of each percentage occasion is unity. (c) The estimated weights for the 14 percentage
occasions (in solid line) with 95% pointwise bootstrap confidence interval (in dashed line).
(d) The estimate loadings for the 14 percentage occasions (in solid line) with 95% pointwise
bootstrap confidence interval (in dashed line).
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Figure 11.
The solid curve is the eigenfunction associated with the largest eigenvalue. The dashed curve

is the eigenfunction associated with the second largest eigenvalue. The dotted curve is the
eigenfunction associated with the third largest eigenvalue. The dash-dotted curve is the
eigenfunction associated with the fourth largest eigenvalue.
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