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Abstract

Faced with the increasingly serious energy and environmental crisis in the world nowadays, the development of
renewable energy has attracted increasingly more attention of all countries. Solar energy as an abundant and cheap
energy is one of the most promising renewable energy sources. While high-performance solar cells have been well
developed in the last couple of decades, the high module cost largely hinders wide deployment of photovoltaic
devices. In the last 10 years, this urgent demand for cost-effective solar cells greatly facilitates the research of solar
cells. This paper reviews the recent development of cost-effective and high-efficient solar cell technologies. This
report paper covers low-cost and high-efficiency perovskite solar cells. The development and the state-of-the-art
results of perovskite solar cell technologies are also introduced.
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Introduction

About 85% of the world’s energy requirements are cur-
rently satisfied by exhaustible fossil fuels that have
detrimental consequences on human health and the envi-
ronment. Moreover, the global energy demand is pre-
dicted to double by 2050 [1].

Therefore, the development of renewable energy,
such as wind energy, water energy, and solar energy,
becomes an imminent requirement. Renewable energy-
based power generation capacity is estimated to be
128 GW in 2014, of which 37% is wind power, almost
one third solar power, and more than a quarter from
hydropower (Fig. 1a). This amounted to more than 45%
of world power generation capacity additions in 2014,
consistent with the general upward trend in recent years.

Due to abundance, low cost, and environmental friend-
liness, solar energy attracts increasingly more attention
from all over the world, which makes the rapid develop-
ment of solar cell research in recent years.

In general, a commonly used classification divides the
various PV technologies (in commercial as well as in
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R&D stage) into three generations [2]: first generation, G1:
wafer-based; mainly mono c¢-Si and mc-Si ; second gen-
eration, G2: thin film; a-Si, CdTe, CIGS, CuGaSe; third
generation, G3: multi-junction and organic photovoltaics
(OPV), dye-sensitized solar cells (DSSCs), and solar cells
based on quantum dots as well as other nano-materials.
The development of the three-generation solar cells pro-
duced a rich variety of solar cells, such as Si solar cells,
III-V solar cells, perovskite solar cells (PSCs), thin film
solar cells, dye-sensitized solar cells, and organic solar
cells. However, practical, low-cost, and high-efficiency
third-generation solar cells are yet to be demonstrated.
Si solar cells are well developed and mature, but there
is little room for further improvement [3-6]. III-V solar
cells have a very high efficiency; however, its weakness is
the high cost, which limits its applications [7-9]. Quan-
tum dot solar cells have been receiving significant atten-
tion because of their low cost and high efficiency, but
most efficient devices have been prepared with toxic
heavy metals of Cd or Pb [10-12]. Halide perovskites
have recently emerged as promising materials for low-
cost, high-efficiency solar cells. As the perovskite solar
cell technology becomes more and more mature, the
efficiency of perovskite-based solar cells has increased
rapidly, from 3.8% in 2009 to 22.1% in 2016 [13-16].
However, the stability issues still require further studies.
To give an update of the field, this paper reviews the
recent development of high-efficiency PSCs. This report
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Fig. 1 a Global renewable-based power capacity additions by type and share of total capacity additions [60]. b Rapid PCE evolution of perovskite

briefly introduces the history of PSCs and then focuses on
the key progress made in high-efficiency perovskite solar
cells. Recent efforts on the stability of perovskite solar cells
will also be discussed. At the end of the report,we also give
a brief introduction to the interface engineering.

Principle and History of Perovskite SCs

PSCs have recently become one of the hot spots owing
to its low preparation cost and high-conversion efficiency
in the fields of solar cell research. And it is regarded as a
great potential material for its superiority (compared with
other materials) that may assist perovskite with ultimate
usurping of the reigning cell material.

In 1991, inspired by the principle of photosynthesis,
O’Regan and Gratzel reported a landmark construction of
solar cell called dye-sensitized solar cell, which can cover
the sun light energy into electricity energy with an effi-
ciency about 7% [17]. Presenting numerous advantages
such as abundant raw materials, facile processing, and low
cost compared with conventional solar cells, these novel
solar cells made itself investigated popularly rapidly after
its arising. And it is this work that inspired the emergence
of PSCs, a DSSC with perovskite compounds.

Perovskite originally refers to a kind of ceramic oxides
with general molecular formula ABY3 discovered by the
German mineralogist Gustav Rose in 1839. It was named
“perovskite” because it is a calcium titanate(CaTiOs3)
compounds exists in calcium titanium ore [18]. The
crystal structure of a perovskite is showed in Fig. 2a.
In 2009, perovskite structured materials were first uti-
lized in solar cells by Miyasaka and his colleagues.
They creatively replaced the dye pigment in DSSCs with
two organic-inorganic hybrid halide-based perovskites,
CH3NH;3PbBr3z and CH3NH;3PbI3. And, eventually, they
gained relatively not considerable power conversion effi-
ciency (PCE) of 3.13 and 3.81%, respectively [13].

However, the work did not gain much attention due to
low efficiency and poor stability, which resulted from a
hole transport layer (HTL) with liquid electrolyte.

An evolutionary jump then happened in 2012 when
Kim, Gratzel and Park et al. [14] used perovskite absorbers
as the primary photoactive layer to fabricate solid-state
meso-superstructured PSCs. Spiro-MeOTAD and mp-
TiO, were used as the hole transport and electron trans-
port materials (HTM/ETM), respectively, in their work
and resulted in a relatively high efficiency of 9.7% for
the first reported perovskite-based solid-state mesoscopic
heterojunction solar cell.

After this breakthrough, the investigation of PSCs
became hot gradually in photovoltaic (PV) research
in the following years. Eventually, the efficiency of
PSCs was promoted to 22.1% in early 2016 [1]. Since
the maximum theoretical PCE of the PSCs employing
CH3NH3Pbl;_,Cly is 31.4%, there is still enough space for
development [19].

Figure 2b shows the general configuration of PSCs,
which usually comprises a tin-doped indium oxide
(ITO)/fluorine-doped tin oxide (FTO) substrate, metal
electrode, a perovskite photoactive layer, together with
necessary charge transport layers (i.e., a hole transport
layer (HTL) [20] and an electron transport layer (ETL)
[21]) [22, 23]. Figure 2c, d shows two main device
architectures: meso-superstructured perovskite solar cells
(MPSCs) [24], which incorporate a mesoporous layer, and
planar perovskite solar cells (PPSCs) in which all layers are
planar [25].

The working principle of these PSCs can be briefly sum-
marized in the following ways: perovskite layer absorbs
the incident light, generating electron and hole, which are
extracted and transported by ETMs and HTMs, respec-
tively. These charge carriers are finally collected by elec-
trodes forming PSCs [23].
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Fig. 2 a Crystal structure of a perovskite [22]. b Schematic diagram of general device [23]. € Cross-section scanning electron microscopy (SEM)
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High-Efficiency Perovskite Solar Cells

Intramolecular Exchange

In June 2015, Woon Seok Yang and his colleagues report
an approach for depositing high-quality FAPbI; films with
which they fabricated FAPbI3 PSCs with a PCE of 20.1%
under AM 1.5 G full-sun illuminations [26].

On the road to enhance the efficiency of solar cells, the
deposition of dense and uniform films is critical for opto-
electronic properties of perovskite films and is an impor-
tant research topic of highly efficient PSCs. Woon Seok
Yang and his colleagues report an approach for depositing
high-quality FAPbI; films, involving FAPbI3 crystalliza-
tion by the direct intramolecular exchange of dimethyl
sulfoxide (DMSO) molecules intercalated in Pbly with
formamidinium iodide (Fig. 3) . This process produces
FAPbI3 films with (111)-preferred crystallographic ori-
entation, large-grained dense microstructures, and flat
surfaces without residual Pbl,. Using films prepared by
this technique, they fabricated FAPbI3-based PSCs with
maximum power conversion efficiency greater than 20%.

Cesium-Containing Triple-Cation Perovskite Solar Cells
Adding inorganic cesium to triple-cation perovskite com-
positions, Michael Saliba and his colleagues demonstrated
a perovskite solar cell which not only possesses higher
PCEs of 21.1% but also is more stable, contains less
phase impurities, and is less sensitive to processing condi-
tions [27, 28].

They investigated triple-cation perovskites of the
generic form “Cs,(MAg.17FA0.83)(100—x) Pb(l0.83Bro.17)3,”

demonstrating that the use of all three cations, Cs, MA,
and FA, provides additional versatility in fine-tuning high-
quality perovskite films (Fig. 4). They yielded stabilized
PCEs exceeding 21 and 18% after 250 h under opera-
tional conditions. Even more, the triple-cation perovskite
films are thermally more stable and less affected by fluctu-
ating surrounding variables such as temperature, solvent
vapors, or heating protocols. This robustness is important
for reproducibility, which is one of the key requirements
for cost-efficient large-scale manufacturing of PSCs.

Graded Bandgap Perovskite Solar Cells

On November 7, 2016, scientists from University of
California, Berkeley, and Lawrence Berkeley National
Laboratory reported a new design that already achieved
an average steady state efficiency of 18.4%, with a height
of 21.7% and a peak efficiency of 26% [29-31]. They use a
single-atom thick layer of hexagonal boron nitride to com-
bine two materials into a tandem solar cell and, eventually,
obtained high efficiency. The compositions of the per-
ovskite materials are both the organic molecules methyl
and ammonia, whereas one contains the metals tin and
iodine, while the other contains lead and iodine doped
with bromine. The former is tuned to preferentially absorb
light with an energy of 1 eV—infrared or heat energy—
while the latter absorbs photons of energy 2 eV, or an
amber color. Prior to this attempt, the merging of two per-
ovskite materials has failed because the materials degrade
one another’s electronic performance. This new way to
combine two perovskite solar cell materials into one
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Fig. 3 Pbl, complex formation and X-ray diffraction. a Schematics of FAPbl3 perovskite crystallization involving the direct intramolecular exchange
of DMSO molecules intercalated in Pbl, with formamidinium iodide (FAI). The DMSO molecules are intercalated between edge-sharing [Pbls]

octahedral layers. b Histogram of solar cell efficiencies for each 66 FAPbIs-based cells fabricated by IEP and conventional process [26]

“graded bandgap” solar cell demonstrated exciting results.
The solar cell absorbs nearly the entire spectrum of visi-
ble light. This is very beneficial to improve efficiency. The
structure is shown in Fig. 5. They found that freshly illu-
minated cells tend to have higher PCE than cells that have
been illuminated for more than a few minutes. For exam-
ple, for a given graded bandgap perovskite cell, the PCE
is between 25 and 26% in the first 2 min of illumination

while the cell reaches a “steady state” with a stable PCE of
20.8% after approximately 5 min. This result indicates that
perovskite-based solar cells have time-dependent perfor-
mance characteristics. The measurement of 40 graded
bandgap perovskite cells demonstrated that the average
steady state PCE over all devices is 18.4% while the best
graded bandgap cell in the steady state exhibited a PCE
of 21.7%.
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Fig. 4 Cross-sectional SEM images of a CspM, b CssM, and ¢ low-magnification Cs5M devices [27]
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Fig. 5 Cross-sectional schematic and SEM images of perovskite cell with integral monolayer h-BN and graphene aerogel. a Schematic of a graded
bandgap perovskite solar cell. Gallium nitride (GaN), monolayer hexagonal boron nitride (h-BN), and graphene aerogel (GA) are key components of
the high-efficiency cell architecture. b Cross-sectional SEM image of a representative perovskite device. The division between perovskite layers and
the monolayer h-BN is not visible in this SEM image. The dashed lines indicate the approximate location of the perovskite layers and the monolayer
h-BN as a guide to the eye. The location of perovskite layers and monolayer h-BN is extracted from the related EDAX analysis. Thickness of the
CH3NH3Snl3 layer is 150 nm and that of the CH3NH_3Pblz_,Br, is 300 nm. Scale bar, 200 nm [29]
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Stability of Perovskite Solar Cells

In recent years, the record efficiency of PSCs has been
updated from 9.7 to 22.1%. However, the poor long-term
device stability of PSCs is still a big remaining challenge
for PSCs, which decide whether exciting achievements
could be transferred from the laboratory to industry and
outdoor applications. Therefore, long-term stability is an
issue that needs to be addressed urgently for PSCs. Quite
a number of people have shown interest in the issue of
stability and given guiding opinions on improving stability
[32-44].

Multiple reports have suggested that moisture and oxy-
gen, UV light, solution processing, and thermal stress
are four key factors affecting the stability of PSCs.
Observed (sometimes rapid) degradation occurs when
devices are exposed to those environmental factors
[22, 32, 45, 46].

Guangda Niu and his colleagues [32] expressed their
views that in order to modulate the stability of PSCs,
many factors should be taken into consideration, includ-
ing the composition and crystal structure design of the
perovskite; the preparation of the HTM layer and elec-
trode materials; the thin film fabrication method, interfa-
cial engineering, and encapsulation methods (multilayer
encapsulation or helmet encapsulation); and the mod-
ule technology. Their work verified that oxygen, together
with moisture, could lead to the irreversible degradation
of CH3NH3Pbl3 which is always employed as sensitiz-
ers in PSCs. They expose TiO2/CH3NH3PbI; film to air
with a humidity of 60% at 35 °C for 18 h, and then, the
absorption between 530 and 800 nm greatly decreased
(Fig. 6d).

Especially, humidity is an indispensable factor when
an experimental investigation on the issue of stability is
conducted.

Work lead by Kwon et al. shows that the hygroscopic
nature of amine salts results from the origin of mois-
ture instability [47]. Figure 6a shows the likely process
of CH3NH3Pbl; decomposition which was displayed by
Frost et al. [48]. The process indicates that HI and MA
are soluble in water, which directly leads to irreversible
degradation of the perovskite layer.

Yang et al. investigated this degradation process by per-
forming in situ absorbance and grazing incidence X-ray
diffraction (GIXRD) measurements [49]. To make a valid
contrast in degradation, they carefully control the rela-
tive humidity (RH) in which the films were measured.
Figure 6b shows their research result of the influence
of RH on the film degradation. The absorption reduced
to half of its original value in only 4 h for the 98% RH
case while this would take 10,000 h extrapolation of the
degradation curve for a low RH of 20%. The result indi-
cates expectedly that higher RH values cause a more rapid
reduction in film absorption than a low RH. Moreover,
further experiment demonstrates that varied carrier gases,
Ny or air led to no significant change in the degradation of
the absorbance, indicating that the main cause of degra-
dation in the perovskite film, under normal atmosphere,
is the presence of moisture.

In 2014, De Wolf et al. used another powerful technique,
photothermal deflection spectroscopy (PDS), to measure
the moisture-induced decomposition of CH3NH3PbIs
[50]. They measured the PDS spectra of CH3NH3Pbl; lay-
ers after exposure to ambient air with 30-40% relative
humidity during 1 and 20 h, respectively. Figure 6¢ shows
that the absorptance between photon energies of 1.5 and
2.5 eV drops by two orders of magnitude after exposure
to humidity for 20 h. In addition, the absorption edge that
occurs at 1.57 eV in its initial state shifts to 2.3 eV, an
energy corresponding to the bandgap of Pbl, [51], which
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indicate that CH3NH;3PbI3 can decompose into Pbly in
a humid ambient due to the dissolution of disordered
CH3NH;I [35, 52].

Many methods are researched for stability enhancement
of PSCs recent years. Xin Wang et al. successfully devel-
oped a simple solution-processed CeO, (x 1.87)
ETL at low temperature. According to their work, CeO,-
based devices exhibit superior stability under light soaking
compared to TiOz-based PSCs [53]. Zhiping Wang et al.
presented the first long-term stability study of the
new “mixed-cation mixed-halide” perovskite composition
FA()‘ggCSO'17Pb(IO‘6B['().4)3(FA = (HC(NHQ)Q)) and discover
that the cells are remarkably stable when exposed to

full-spectrum simulated sun light in ambient conditions
without encapsulation [54]. Han et al. adopted thick car-
bon as the electrode and the device’s own hole transport
layer; the cell was stable for > 1000 h in ambient air under
full sunlight while it achieved a PCE of 12.8% [55].

Interface Engineering

The interface is vital to the performance of the devices,
since it is not only critical to the exciton formation,
dissociation, and recombination but also influences the
degradation of devices [56]. As a result, the interface engi-
neering for reduced recombination is extremely impor-
tant to achieve high-performance and high-stability PSCs.



Tang et al. Nanoscale Research Letters (2017) 12:410

Tan et al. reported a contact-passivation strategy using
chlorine-capped TiO colloidal nanocrystal film that mit-
igates interfacial recombination and improves interface
binding in low-temperature planar solar cells. The PSCs
achieved certified efficiencies of 20.1 and 19.5% for
active areas of 0.049 and 1.1 cm?, respectively. More-
over, PSCs with efficiency greater than 20% retained
90% of their initial performance after 500 h of con-
tinuous room-temperature operation at their maximum
power point under 1-sun illumination [57]. Wang and co-
workers inserted an insulating tunneling layer between
the perovskite and the electron transport layer. The thin
insulating layer allowed the transport of photo-generated
electrons from perovskite to Cgp cathode through tun-
neling and blocked the photo-generated holes back
into the perovskite. Devices with these insulating mate-
rials exhibited an increased PCE of 20.3% under 1-sun
illumination [58]. Correa-Baena et al. provided some
theoretical guidance by investigating in depth the
recombination at the different interfaces in a PSC, includ-
ing the charge-selective contacts and the effect of grain
boundaries [59].

Conclusions

The development of PSCs in the last few years makes
it a promising alternative for the next-generation, low-
cost, and high-efficiency solar cell technology. Driven by
the urgent need of cost-effective, high-efficient solar cells,
PSCs have been intensively investigated in the recent
years. Various kinds of methods are used to improve
the performance. We summarize the recent development
of high-efficiency PSCs. The recorded efficacy of single-
junction PSCs has been increased by a few folds to over
22% in the last few years, approaching the best single crys-
talline silicon solar cells. Undoubtedly, halide perovskite
materials have emerged as an attractive alternative to con-
ventional silicon solar cells. However, the stability issue
is still urgent to be solved. The recent progress made
in the device architectures and new materials open new
opportunities for highly stable PSCs.
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