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Formation and electronic 
properties of palladium hydrides 
and palladium-rhodium dihydride 
alloys under pressure
Xiao Yang1,2, Huijian Li2, Rajeev Ahuja1,3, Taewon Kang4 & Wei Luo  1,4

We present the formation possibility for Pd-hydrides and Pd-Rh hydrides system by density functional 
theory (DFT) in high pressure upto 50 GPa. Calculation confirmed that PdH2 in face-centered cubic 
(fcc) structure is not stable under compression that will decomposition to fcc-PdH and H2. But it can be 
formed under high pressure while the palladium is involved in the reaction. We also indicate a probably 
reason why PdH2 can not be synthesised in experiment due to PdH is most favourite to be formed in 
Pd and H2 environment from ambient to higher pressure. With Rh doped, the Pd-Rh dihydrides are 
stabilized in fcc structure for 25% and 75% doping and in tetragonal structure for 50% doping, and can 
be formed from Pd, Rh and H2 at high pressure. The electronic structural study on fcc type PdxRh1−xH2 
indicates the electronic and structural transition from metallic to semi-metallic as Pd increased from 
x = 0 to 1.

As it is well known that metal hydrides are very interesting systems because of their favourable characteris-
tics including hydrogen-storage capacity, kinetics, toxicity, cyclic behaviour, pressure and thermal response1. 
Especially, the hydrides of platinum group metals are highly attractive due to a number of favourable properties. 
For instance, the hydrogen absorption by palladium is reversible and therefore has been investigated for hydrogen 
storage2, the catalytic properties, kinetic reversibility3 and superconductivity4, 5 of palladium hydrides also have 
been investigated.

It has been reported that hydrogen atoms randomly occupy the octahedral interstices in the Pd-metal lattice 
with neutron diffraction studies. The limit of absorption at normal pressures is PdH0.7, indicating that approxi-
mately 70% of the octahedral holes are occupied6. Hydrogen absorption in Rh requires extremely high hydrogen 
pressures (of the order of GPa)7 and under normal conditions this metal can only adsorb hydrogens on the sur-
face. Recently, rhodium dihydride was discovered as a first dihydride compound in the platinum group metals 
by compressing rhodium in fluid hydrogen8. The mechanical stability, thermodynamic and elastic properties of 
RhH2 were also studied9. With the discovery of RhH2, the dihydride of platinum group metals with tetrahedral 
sites occupied structure was considered to construct the dihydrides of palladium and Pd-Rh-H system alloys.

It is known that the addition of a second metal to palladium changes hydrogen absorption properties of sys-
tem. It is a consequence of the alteration of crystal lattice structure, elastic and electronic properties10–13. Among 
various Pd alloys, the Pd-Rh system is an exceptional system because the amount of absorbed hydrogen in 
Pd-rich Pd-Rh alloys is larger than in case of pure Pd14. This is in contrast to the general rule that Pd alloys with a 
non-absorbing metal (e.g., Au, Ag and Pt) are characterised by a decrease in the maximum amount of absorbed 
hydrogen15. An Pd-Rh alloy containing 92.6 at.% Pd has been characterised by the highest hydrogen absorption 
capacity with H/M ratio exceeding 0.8016 using cyclic voltammetry and chronoamperometry in acidic solution.

In this work, we have calculated the formation enthalpy of the hydrides (mono-, di- and tri-) of palladium 
and rhodium and also Pd-Rh dihydride alloys using DFT approach under high pressure to study the formation 
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possibility. The electronic structure of Pd-Rh dihydride alloys are also analysed by total and partial density of 
states calculation. The concentration of Pd in Pd-Rh dihydride system alloys is 25%, 50% and 75%, respectively.

Results and Discussion
Crystal Structure. The total energy of Pd-Rh-H compounds as a function of volume are shown in Fig. 1. The 
results show that the PdH2 compound in fcc phase is energetically more stable than in hcp phase for the volume 
range from 7.5 Å3/atom to 6.1 Å3/atom. PdH3 in hcp phase is more stable than fcc phase for the volume range of 
7.1 Å3/atom to 5.6 Å3/atom.

In our calculations, the metal hydride are stabilized in fcc and hcp structures. For monohydride compound 
PdH, the crystal structure is fcc in space group Fm3m and the hydrogen atom resides in a octahedral sites. For 
dihydride compounds PdH2 and RhH2, the crystal structures are same with monohydrides, but the hydrogen 
atom resides the tetrahedral sites. The trihydride compound RhH3 is stabllized in fcc structure, in which the 
hydrogen atoms are occupied in both tetrahedral and octahedral sites. but PdH3 is stabllized in hcp structure in 
space group of P63/mmc.

Table 1 shows the lattice parameters and bulk modulus of all the compounds compared with experimental 
data. The bulk modulus are obtained by fitting B-M equation of state with fixed B0′ = 4. The bulk modulus B0 for 
Rh-hydrides are larger than Pd-hydrides. As the insertion of H in the octahedral sites of Pd leads to an expansion 
of the lattice constant from Pd to PdH, the bulk modulus are increased as hydrogen concentration increased. 
With Rh doped, the bulk modulus of PdxRh1−xH2 are increased with various Rh concentration from 0% to 100%.

Formation possibility driven by high pressure. The enthalpy deferences for Pd-H and Rh-H systems 
are shown in Fig. 2(a). For PdH and RhH, the enthalpy energy differences is regarding to the chemical reaction 
equations:

Figure 1. Total energy as a function of volume of fcc and hcp phases for both PdH2 and PdH3.

Compounds Space Group

Lattice constant (Å) B0(GPa)

Present work Expt. Present work Expt.

Rh Fm3m 3.8327 3.803121 264.5 270.422

Pd Fm3m 3.9486 3.889821 171.7 180.822

RhH Fm3m 4.040(8) 4.02023 233.9

PdH Fm3m 4.134(7) 4.09024 177.0 130.025 (PdH0.7)

RhH2 Fm3m 4.3583 4.33958 190.8 194.3h

Pd0.25Rh0.75H2 Fm3m 4.3583 4.33958 175.9

Pd0.5Rh0.5H2 P4/nbm a = 4.3167, 
c/a = 1.05 165.0

Pd0.75Rh 0.25H2 Fm3m 4.4429 158.0

PdH2 Fm3m 4.4701 151.5

PdH2 P6/mmm a = 2,9485, 
c/a = 0.94 159.2

RhH3 Fm3m 4.5220 182.9

PdH3 P63/mmc a = 3.0785, 
c/a = 2.23 126.4

Table 1. Crystal structure properties of Rh, Pd, RhH, PdH, PdxRh1−xH2, RhH3 and PdH3 together with available 
experimental data.
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= +PdH Pd H2 2 (1)2

= +RhH Rh H2 2 (2)2

The PdH has the negative enthalpy of formation, which is consistent with the knowledge that the formation of 
PdH should be favourable under pressure17. The PdH2 also should be formed under pressure higher than 2.1 GPa 
due to the negative enthalpy of formation. The formation properties for RhH and RhH2, which both compounds 
can be formed under pressure, are in good aggreement with the recent work of rhodium dihydride8. Whereas for 
the trihydirde compounds, the positive enthalpy of formation for PdH3 and RhH3 suggest that they are unfavour-
able to be formed even with compressing upto 10 GPa.

The formation enthalpy of PdxRh1−xH2 system as a function of pressure is shown in Fig. 2(b). As is shown, the 
negative enthalpy of formation for Pd0.5Rh0.5H2 in the range of pressure suggests it can be formed even at ambient 
pressure. While for Pd0.25Rh0.75H2 and Pd0.75Rh0.25H2, the formation enthalpy convert to negative at 0.1 GPa and 
0.4 GPa, respectively. Therefore they are more favour to be formed when pressure respectively above 0.1 GPa and 
0.4 GPa. Besides, with pressure increasing, the decrease trend of negative formation enthalpy for PdxRh1−xH2 
suggests they are more likely to be formed with compressing.

The enthalpy difference of Pd-Rh-H were carried out in total enthalpy between production compound 
PdxRh1−xH2 and the sum enthalpy of reaction compounds Pd, Rh, and H2:

∆ = − + − +−E E Pd Rh H xE Pd x E Rh E H( ) [ ( ) (1 ) ( ) ( )] (3)x x1 2 2

Consider the reaction of Pd and H2, PdH as a product of reaction, will compete with PdH2 in all range of pres-
sure. To make a further investigation, three reaction paths of PdH2 are figured out which respectively is

= +PdH Pd H (4)2 2

= +PdH PdH H2 2 (5)2 2

= + +PdH PdH Pd H4 2 2 3 (6)2 2

Figure 3 shows the reaction enthalpy of PdH2 with compression upto 50 GPa. The enthalpy of reaction 5 keeps 
positive in the range of pressure, which suggests PdH and H2 is more favourable competing with PdH2. Whereas 
the reaction 6 suggests a decrease trend on the reaction enthalpy with pressure increase, and the reaction enthalpy 
convert to negative at 5.5 GPa. In this case, the PdH2 is more likely to be formed than PdH, Pd and H2 when pres-
sure above 5.5 GPa. Therefore, summarising the three reactions above, we conclude that PdH2 is metastable and 
will directly dissociate into PdH and H2.

Electronic Structure Properties. The density of state (DOS) of Pd-Rh-H compounds are calculated at 
equilibrium volume, as shown in Fig. 4(a). The electronic structure indicated a mixture of metallic and covalent 
bonding. Below Fermi level there are only occupied states by metal Rh or Pd, and hydrogen electron located 
in a deeply lower valence band and above fermi level states. In the doped hydrides PdxRh1−xH2, d-electron of 
Palladium shows a strong itinerant electronic properties than Rhodium. By replace 25%, 50%, 75% and 100% 
Rh atoms with Pd in fcc RhH2, the fermi surface shift to lower energy from 8.24 eV for RhH2 to 8.06 eV, 7.78 eV, 
7.62 eV and 8.03 eV for fcc type PdH2, respectively. The DOS of PdH2 shows a semimetallic property in which the 
electronic states around fermi level is less than 0.06.

Figure 2. (a) The formation enthalpy difference for Pd-H and Rh-H systems. (b) The formation enthalpy for 
PdxRh1−xH2 alloy system. The combined enthalpy of the stable constituent elements establish the reference line 
corresponding to each compound expressed with dash. ReferenceLine = ∑ [xH(Pd) + (1 − x)H(Rh) + 2H(0.5H2)].
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Figure 4(b) shows the electronic density of states as a function of hydrogen concentration on PdHx series while 
x goes from 0 to 3. In PdH due to the number of H-filled Pd octahedra, the hybridized band Hs/Pdd appeared and 
partially filled on the range of −6.2 ∼ −7.9 eV. In additional, the valence/conduction band on the fermi level is 
dominated by the 4d orbitals of the palladium atoms in PdH, but the fermi level shifted from 8.94 eV for pure Pd 
to 8.86 eV for PdH. The electronic states on fermi level are decreased from 3.32 to 0.51 states/eV/f.u.

When hydrogen number increases to 2, two structures fcc and hcp PdH2 are considered. The dispersion of 
the density of states for fcc PdH2 mainly followed the curve on fcc PdH, in which fermi level shift from 8.86 eV 
for PdH to 8.03 eV for PdH2. The observed difference is the electronic property that changed from metallic to 
“near insulator” owing to the density of states on fermi level tends to zero. For hcp PdH2 that electron dispersion 
is following the curve on hcp PdH3, in which hydrogen s orbital contributes to the valence/conduction band on 
the fermi level.

Conclusion
In conclusion, three different types of palladium and rhodium hydrides and Pd-Rh-H dihydride alloys have been 
investigated by first principle calculation. We have found that PdH2 is not stable and dissociate to PdH and H2 at 
ambient and even higher pressure. While when palladium is involved in the reaction, PdH2 can be easy formed 
from lower pressure around 10 GPa. With Rh doping alloy hydrides PdxRh1−xH2 is formed from fcc metal Pd 

Figure 3. Reaction enthalpy of PdH2 according to the three reactions paths: (a) PdH2 = Pd + H2; (b) 2PdH2 = 
 2Pd + H2; (c) = + + .PdH PdH Pd H4 2 2 32 2

Figure 4. (a) Density of state of Pd-Rh-H system at ambient pressure. (b) Density of state of palladium hydrides 
at ambient pressure.
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and Rh in H2 atmosphere at even lower pressure. The electronic density of states investigations show that the 
PdxRh1−xH2 has metallic properties whereas PdH2 semimetallic property.

Methods
The DFT calculations are carried out by employing the Vienna Ab-initio Simulation Package(VASP)18 imple-
menting the Projector Augmented Wave method. The generalized gradient approximation19 was used for the 
correlation energy function20 with the Perdew Burke Ernzerhof parameterisation. The valence electron configura-
tions for Pd and Rh were 4p65 s14d9 and 4p65 s14d8, respectively. The relaxation convergence for ions and electrons 
are 10−2 and 10−6 eV, respectively. The electronic wave function was expanded in a plane wave with an energy 
cut-off 800 eV. For energy formation calculation, the 24 × 24 × 24 Monkorst-Pack(MP) K mesh for Brillouin zone 
integration was used for the structure optimisation and static calculation. For DOS calculations, the K mesh was 
increased to 32 × 32 × 32 for fcc compounds, and 15 × 15 × 7 mesh for hcp PdH3, respectively.
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