
J Physiol 595.12 (2017) pp 3753–3763 3753

Th
e

Jo
u

rn
al

o
f

Ph
ys

io
lo

g
y

TO P ICAL REV IEW

Mitochondrial energetics and calcium coupling in the heart
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Abstract Contraction and relaxation of the heart consume large amounts of energy that
need to be replenished by oxidative phosphorylation in mitochondria, and matching energy
supply to demand involves the complimentary control of respiration through ADP and Ca2+.
In heart failure, an imbalance between ADP and Ca2+ leads to oxidation of mitochondrial
pyridine nucleotides, where NADH oxidation may limit ATP production and contractile function,
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while NADPH oxidation can induce oxidative stress with consecutive maladaptive remodelling.
Understanding the complex mechanisms that disturb this finely tuned equilibrium may aid the
development of drugs that could ameliorate the progression of heart failure beyond the classical
neuroendocrine inhibition.
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Abstract figure legend Mitochondrial redox balance is under the control of Ca2+ and ADP in the normal heart and heart
failure. Under physiological conditions, parallel activation of energy consumption (via force transduction) and energy
regeneration (via Krebs cycle stimulation) by Ca2+ balances the redox states of NADH/NAD+ and NADPH/NADP+,
maintaining reducing equivalents for ATP production and the antioxidative capacity. In heart failure, a mismatch of
workload and mitochondrial Ca2+ uptake induces a redox mismatch that results in oxidation of pyridine nucleotides
and that accounts for energy deprivation and oxidative stress. Drugs directed against this mismatch and oxidative stress
are indicated in pale brown (CGP-37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger; SS-31, a tetrapeptide
binding to cardiolipin; MitoQ, an antioxidant accumulating in mitochondria). ATP, adenosine triphosphate; cyto,
cytosolic; ETC, electron transport chain; mito, mitochondrial; ROS, reactive oxygen species; SR, sarcoplasmic reticulum.

Abbreviations β-AR, β-adrenergic receptor; DN, dominant negative; EC, excitation–contraction; ETC, electron
transport chain; H2O2, hydrogen peroxide; KO, knock-out; MCU, mitochondrial Ca2+ uniporter; MitoQ, mitoquinone;
NNT, nicotinamide nucleotide transhydrogenase; ROS, reactive oxygen species; SR, sarcoplasmic reticulum.

Introduction

Chronic heart failure is the most common cause of
hospital admissions in Western countries, and its pre-
valence is expected to increase further. The current
medical treatments target in particular the excessive
activation of the sympathetic nervous system and
the renin–angiotensin–aldosterone system. Beyond these
neuroendocrine interventions, few novel targets to treat
heart failure have been identified. Over recent years,
metabolic aspects to heart failure have gained increasing
interest, since in patients with heart failure, the energy
stores of the heart are depleted, with decreased ratios of
phosphocreatine to adenosine triphosphate (ATP) pre-
dicting an adverse outcome (Neubauer, 2007). More recent
work suggests that while depletion of phosphocreatine
per se may limit maximal exercise capacity, maladaptive
remodelling – typically closely associated with the
prognosis – is not affected by such an energetic deficit
(Lygate et al. 2013). Instead, the accumulation of metabolic
intermediates of glycolysis and fatty acid oxidation as
well as oxidative stress, which can all induce maladaptive
signalling in their own right, may be the more relevant
triggers for disease progression than the mere depletion
of ATP (or phosphocreatine) stores (Chatham & Young,
2012; Nickel et al. 2013).

In the plasma and hearts of patients with heart failure,
the levels of oxidative stress are increased and correlate
with left ventricular dysfunction (Belch et al. 1991; Maack
et al. 2003). Oxidative stress is an imbalance between
the production and detoxification of reactive oxygen
species (ROS), and their major sources in the heart are
NADPH oxidases, uncoupled nitric oxide synthases and
mitochondria (Burgoyne et al. 2012; Nickel et al. 2014).

Mitochondria are considered to be the main source of ROS
in most cell types and in particular in cardiac myocytes
by most (Turrens, 2003; Adam-Vizi, 2005; Balaban et al.
2005; Hool et al. 2005; Murphy, 2009) but not all authors
(Brown & Borutaite, 2012). Oxidative stress impairs
excitation–contraction (EC) coupling in cardiac myocytes,
causes arrhythmias (Wagner et al. 2013; Yang et al. 2015),
activates pro-hypertrophic signalling (Ago et al. 2008;
Erickson et al. 2008) and induces apoptotic and/or necrotic
cell death through activation of the permeability transition
pore (Halestrap, 2005). In particular, mitochondrial ROS
play a causal role in the development and progression of
heart failure in response to various pathological stimuli,
such as ischaemia–reperfusion, pressure overload and
angiotensin II (Matsushima et al. 2006; Dai et al. 2011,
2012). Moreover, mitochondria appear to amplify ROS
production from other ROS sources, such as NADPH
oxidase, by a mechanism termed ROS-induced ROS
release (Zorov et al. 2000; Aon et al. 2003; Brandes, 2005;
Kimura et al. 2005; Dai et al. 2011; Maack & Böhm, 2011).
Therefore, understanding the regulation of mitochondrial
ROS is key to eventually developing treatments that may
prevent or ameliorate heart failure development beyond
the inhibition of neuroendocrine activation.

In the past 10 years, we (Nickel et al. 2014, 2015)
and others (Aon et al. 2010; Gauthier et al. 2013;
Kembro et al. 2013) have developed a concept in which
ROS emission from cardiac mitochondria is dynamically
regulated by Ca2+ and ADP, with the redox state of
mitochondrial pyridine nucleotides as a central level of
control. According to this concept, a mismatch between
decreased mitochondrial Ca2+ uptake and increased
cardiac workload induces net oxidation of NADH,
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which also oxidizes NADPH and thereby depletes the
anti-oxidative capacity of the matrix, giving rise to
excessive emission of H2O2 (Fig. 1). In the following, we
will discuss the pathophysiological basis of this concept
and address current controversies, future directions of
research and potential points of intervention.

Energy supply and demand matching

During EC coupling, Ca2+ influx via L-type Ca2+
channels triggers an even greater release of Ca2+ from
the sarcoplasmic reticulum (SR), and this Ca2+ binds
to troponin C and thereby induces contraction. During
diastole, Ca2+ is taken back up into the SR by the
SR Ca2+-ATPase or exported across the cell membrane
via the Na+/Ca2+ exchanger (Bers, 2006). A physio-
logical increase in workload is triggered by β-adrenergic
stimulation, elevating the rate and amplitude of cytosolic
Ca2+ transients and thereby increasing force generation
at the myofilaments. Through this increase of work,
ATP is hydrolysed to adenosine diphosphate (ADP),
and after shuttling into mitochondria via the adenine
nucleotide transporter, ADP activates the F1Fo-ATPase to
regenerate ATP (Fig. 1A). This hastens electron flux along
the electron transport chain (ETC), oxidizing NADH
to NAD+ (so-called ‘pull’ condition; Fig. 1A). At the
same time, Ca2+ is taken up into mitochondria via the
mitochondrial Ca2+ uniporter (MCU), where it activates
Krebs cycle dehydrogenases to adapt NADH regeneration
to ETC-induced oxidation (‘push’ condition). This dual
role of Ca2+, i.e. increasing both energy consumption
(‘pull’ on electrons along the ETC) and regeneration
(‘push’ of electrons from the Krebs cycle into the ETC),
is termed ‘parallel activation’ (Fig. 1A) (Balaban, 2002;
Cortassa et al. 2006).

The discovery of the molecular identity of the MCU
(Baughman et al. 2011; De Stefani et al. 2011) has led
to the consecutive identification of its various regulatory
proteins, such as MICU1, MICU2, MCUR and EMRE,
together forming the mitochondrial Ca2+ ‘uniplex’ (Finkel
et al. 2015; Kamer & Mootha, 2015) (Kwong (2017),
in this issue). Since the affinity of the MCU for Ca2+
is rather low (i.e. in the micromolar range), the close
association of mitochondria to the SR creates a Ca2+
microdomain between these two organelles that allows
efficient mitochondrial Ca2+ uptake and privileges this
pathway over trans-sarcolemmal Ca2+ influx (Kohlhaas
& Maack, 2010, 2013). This microdomain is governed by
physical tethers that link both organelles, one of these
being mitofusin 2 (Mfn-2) (de Brito & Scorrano, 2008;
Chen et al. 2012; Naon et al. 2016) (Fig. 1A). Ca2+
is exported from mitochondria by a Na+/Ca2+ (Li+)
exchanger (Palty et al. 2010), whose kinetics are much
slower than those of uptake via the MCU and therefore
Ca2+ accumulates in mitochondria when amplitude

and/or rate of cytosolic Ca2+ transients increase (Di Lisa
et al. 1993; Maack et al. 2006).

The absolute amounts of Ca2+ taken up by
mitochondrial, and whether these are consequential for
cytosolic Ca2+ handling, is currently not fully resolved
yet. While in other, non-cardiomyocyte cell types,
mitochondrial Ca2+ uptake commonly buffers cytosolic
Ca2+ (Rizzuto & Pozzan, 2006), this has been suggested
to be the case in cardiac myocytes as well in some models,
but refuted by others, as previously reviewed (O’Rourke
& Blatter, 2009; Kohlhaas & Maack, 2013; Williams
et al. 2013). These controversies are related to technical
challenges, but also potential species differences. In this
context, it should be considered that in humans, cardiac
output during exertion can increase 4- to 6-fold (Chapman
et al. 1960; Grimby et al. 1966), while in the mouse,
baseline heart rate is already �600 beats per minute and
increases by a factor of only �1.5 during maximal exertion
with no increase in blood pressure (Desai et al. 1997;
Georgakopoulos & Kass, 2001), indicating that workload
variance requiring energetic adaptations is clearly much
smaller in mice than in humans. Since mitochondrial Ca2+
uptake is required to match energy supply to demand,
particularly during β-adrenergic stimulation, it is likely
that in humans, mitochondrial Ca2+ uptake may play a
more important role than in the mouse. In fact, when
comparing MCU current density in various organs within
the mouse, it is lowest in the heart (Fieni et al. 2012).
However, no study has systematically compared cardiac
MCU current densities between different species so far.
Therefore, the interesting results obtained in mice with
genetic inactivation of the MCU (Pan et al. 2013; Kwong
et al. 2015; Luongo et al. 2015; Rasmussen et al. 2015;
Wu et al. 2015), which will be discussed in more detail
further below, have to be extrapolated with some care
and may to some extent underestimate the importance of
mitochondrial Ca2+ uptake in the human situation.

Regulation of mitochondrial ROS emission

During respiration, the superoxide anion radical (.O2
−)

is generated at complexes I and III of the ETC,
and is dismutated to hydrogen peroxide (H2O2) by
the Mn2+-dependent superoxide dismutase (Balaban
et al. 2005; Murphy, 2009; Chen & Zweier, 2014;
Zorov et al. 2014; Murphy et al. 2016). H2O2 is
then detoxified by glutathione peroxidase (GPX) and
the thioredoxin/peroxiredoxin systems that all require
reduced NADPH (Fig. 1A). The regeneration of NADPH
is governed by enzymes that derive their substrates from
the Krebs cycle, in particular, isocitrate dehydrogenase
and nicotinamide nucleotide transhydrogenase (NNT)
(Ying, 2008; Nickel et al. 2015) (Fig. 1A). Therefore,
Ca2+-induced stimulation of the Krebs cycle not only
matches energy supply to demand, but also regenerates
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Figure 1. Regulation of mitochondrial respiration and redox state by Ca2+ and ADP
A, integration of mitochondrial ROS production with ROS elimination and the control through ion handling.
Abbreviations: �μH, proton motive force; ANT, adenine nucleotide translocator; GPX, glutathione peroxidase;
GR, glutathione reductase; GSH/GSSG, reduced/oxidized glutathione; IDH, isocitrate dehydrogenase; IMM, inner
mitochondrial membrane; MCU, mitochondrial Ca2+ uniporter; Mfn, mitofusin; Mn-SOD, Mn2+-dependent
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superoxide dismutase; NCLX, mitochondrial Na+/Ca2+ (and Li+) exchanger; NNT, nicotinamide nucleotide trans-
hydrogenase; OMM; outer mitochondrial membrane; PRX, peroxiredoxin; TR, thioredoxin reductase; TRXr/o,
reduced/oxidized thioredoxin; RyR, ryanodine receptor; SERCA, SR Ca2+ ATPase; SR, sarcoplasmic reticulum.
B, reverse-mode of the nicotinamide nucleotide transhydrogenase (NNT). Through an increase in cardiac afterload,
NADH is consumed by the ETC, and the NNT reverses, oxidizing NADPH to regenerate NADH and ATP, but at the
cost of the antioxidative capacity, giving rise to ROS emission.

the antioxidative capacity of the matrix to prevent
the emission of H2O2 during transitions of workload
(Kohlhaas et al. 2010). Together with studies from isolated
mitochondria, this helped to establish the concept of a
‘redox-optimized ROS balance’ (Aon et al. 2010), in which
the physiological steady state in cardiac mitochondria is
tuned to an intermediate redox state that on the one
hand prevents excessive formation of ROS at the ETC
under highly reduced conditions (Starkov & Fiskum,
2003; Balaban et al. 2005), and on the other prevents
depletion of the antioxidative capacity under highly
oxidized conditions (Aon et al. 2010; Kohlhaas et al. 2010;
Gauthier et al. 2013; Kembro et al. 2013).

Pathological alterations in heart failure

In systolic heart failure, contractile dysfunction is the result
of decreased systolic Ca2+ transients, and this is primarily
related to decreased SR Ca2+ load secondary to lowered
SR Ca2+-ATPase activity and leaky ryanodine receptors
(Bers, 2006) (Fig. 1A). On the other hand, the cyto-
solic Na+ concentration is elevated, which activates the
reverse-mode of the sarcolemmal Na+/Ca2+ exchanger
to contribute to cytosolic Ca2+ influx during the action
potential (Armoundas et al. 2003; Weber et al. 2003)
(Fig. 1A). While this partly compensates for decreased SR
Ca2+ release (Weisser-Thomas et al. 2003), the rather slow
trans-sarcolemmal Na+/Ca2+ exchanger-mediated Ca2+
influx (Sipido et al. 1997) is less efficient for mitochondrial
Ca2+ uptake (Kohlhaas & Maack, 2010). Furthermore,
elevated cytosolic Na+ accelerates mitochondrial Ca2+
efflux via the mitochondrial Na+/Ca2+ (Li+) exchanger
(Maack et al. 2006; Liu & O’Rourke, 2008; Kohlhaas
et al. 2010) (Fig. 1A). Finally, in human cardiac
mitochondria from patients with heart failure, the open
probability of the MCU is decreased (Michels et al.
2009). Therefore, deterioration of EC coupling in heart
failure compromises the well-tuned mitochondrial Ca2+
uptake machinery. This has consequences for both energy
supply-and-demand matching as well as the anti-oxidative
capacity: in isolated cardiac myocytes from a guinea-pig
model of systolic heart failure, NADH and NADPH
oxidized, decreasing the amount of reducing equivalents
for ATP production at the ETC and provoking the emission
of ROS (Fig. 1A) (Liu & O’Rourke, 2008; Kohlhaas et al.
2010). Since the inhibition of the mitochondrial Na+/Ca2+
(Li+) exchanger prevented NAD(P)H oxidation in myo-
cytes (Liu & O’Rourke, 2008) and the development of
heart failure in vivo (Liu et al. 2014), the Na+-induced

redox and energetic mismatch may play a causal role for
heart failure progression and possibly represent a potential
novel therapeutic target for patients with heart failure.
However, this approach has not been followed up by large
animal or clinical studies yet.

Mitochondrial transhydrogenase: the yin and yang of
antioxidative capacity

Besides contractile dysfunction of the heart, cardiac
haemodynamics are further compromised by an
elevation of cardiac afterload due to increased systemic
vascular resistance (Mason et al. 1964) as a result
of the neuroendocrine activation that triggers vaso-
constriction (Francis et al. 1984). We recently identified
a mechanism in which the mere increase in cardiac
afterload provokes mitochondrial ROS emission (Nickel
et al. 2015). The NADH and NADPH pools are
directly linked by NNT, catalysing the reaction
NADH + NADP+ ↔ NADPH + NAD+, which is
coupled to the protonmotive force (�μH; Fig. 1A).
In energized mitochondria, the forward NNT reaction
towards NADPH regeneration is strongly favoured and
therefore NNT is considered a key anti-oxidative enzyme
(Rydstrom, 2006). Intriguingly, the most commonly
used mouse strain, C57BL/6J, but not C57BL/6N, has
a loss-of-function mutation in the gene encoding NNT
(Nnt), which causes oxidative stress and impairs ATP
production in pancreatic islet cells, leading to glucose
intolerance in this strain (Toye et al. 2005; Freeman
et al. 2006). Furthermore, the Nnt mutation sensitized
BL/6J hearts to develop cardiomyopathy upon deletion
of Mn2+-dependent superoxide dismutase (Huang et al.
2006; Kim et al. 2010). In contrast to this anti-oxidative
role, we observed that in response to an increase in
cardiac afterload, NNT can reverse its direction when
oxidation of NADH at the ETC outweighs its Krebs
cycle-mediated regeneration, consuming NADPH towards
NADH and ATP regeneration, but at the cost of the
anti-oxidative capacity (Nickel et al. 2015) (Fig. 1B).
The ensuing oxidative stress accounts for necrosis, left
ventricular dysfunction and death during pressure over-
load, which was prevented in BL/6J mice (with inactivated
NNT) or when BL/6N mice (with intact NNT) were
treated with SS-31 (Nickel et al. 2015), a tetrapeptide that
accumulates �1000-fold in mitochondria and ameliorates
mitochondrial ROS production (Szeto, 2014). While
initial experiments suggested that SS-31 was a ROS
scavenger (Zhao et al. 2004), more recent work suggests

C© 2017 The Authors. The Journal of Physiology C© 2017 The Physiological Society
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that it does not have direct anti-oxidative effects (Brown
et al. 2014), but binds to cardiolipin, an essential
phospholipid of the inner mitochondrial membrane
(Szeto, 2014). This interaction with SS-31 protects
cardiolipin from oxidation and dysfunction, preventing
disassembly of the ETC supercomplexes and thereby
energetic deficit and mitochondrial ROS production
(Szeto, 2014). SS-31 also improved left ventricular
function in the short and long term in a dog model of
heart failure (Sabbah et al. 2016) and is currently being
tested in phase II clinical trials on patients with systolic
(NCT02788747, NCT02914665) and diastolic heart failure
(NCT02814097).

Although the reverse-mode of NNT mediates oxidative
stress during pathological cardiac workload, targeting
NNT itself may not be a valuable pharmacological concept
since the forward mode of NNT is required in most cells
and conditions for anti-oxidative capacity (Rydstrom,
2006), and C57BL/6J mice, which lack a functional NNT,
have impaired glucose tolerance and thereby are more
prone to develop diabetes. Furthermore, mutations of
Nnt in humans are associated with familial glucocorticoid
deficiency (Meimaridou et al. 2012). Therefore, inhibiting
NNT in humans globally may cause more harm than
benefit.

An alternative therapeutic approach to reduce
mitochondrial ROS is targeting the antioxidant electron
acceptor ubiquinone to mitochondria using lipophilic
cations, as with mitoquinone (MitoQ) (Murphy, 2016).
MitoQ reduced infarct size after cardiac ischaemia–
reperfusion (Adlam et al. 2005) and ameliorated
cardiac remodelling in hypertensive rats (Graham et al.
2009). In clinical trials, MitoQ ameliorated hepatic
necroinflammation in patients with hepatitis C (Gane et al.
2010), but had neutral results in patients with Parkinson’s
disease (Snow et al. 2010). MitoQ has not yet been tested
in patients with cardiovascular diseases.

Lessons learned from novel MCU-deficient mouse
models for bioenergetic feedback coupling

After the molecular identity of the MCU was resolved,
three different mouse models with either constitutive
global (Pan et al. 2013; Holmström et al. 2015) or
conditional cardiac myocyte-specific MCU knock-out
(KO) (Kwong et al. 2015; Luongo et al. 2015) or
overexpression of a dominant negative (DN-) MCU
(Rasmussen et al. 2015; Wu et al. 2015) were generated
(reviewed by Kwong (2017) in this issue). They all have
in common that although mitochondria isolated from
hearts are unable to rapidly accumulate Ca2+, their cardiac
and/or cardiomyocyte function is normal in the absence of
β-adrenergic receptor (β-AR) stimulation, indicating that
MCU-mediated mitochondrial Ca2+ uptake is required
during physiological increases of workload, but not to

sustain cardiac function at rest. Interestingly, mice with
cardiomyocyte-specific MCU-KO had limited capacity to
sprint at high speed (Kwong et al. 2015), which was
attributed to a delay and/or blunting of the positive
inotropic, but not chronotropic, effect of catecholamines
in vivo (Kwong et al. 2015; Luongo et al. 2015). In
DN-MCU mice, both the positive inotropic and the
chronotropic responses to β-AR stimulation were blunted
(Rasmussen et al. 2015; Wu et al. 2015). In both models,
cytosolic Ca2+ concentrations in isolated cardiac myo-
cytes were unaffected at baseline, but increased during
systole in response to β-AR stimulation in the absence
of an MCU (Luongo et al. 2015; Rasmussen et al. 2015),
in agreement with a study on neonatal cardiac myocytes
with siRNA-induced silencing of the MCU. This may
suggest that, at least to some extent, mitochondrial Ca2+
uptake may contribute to cytosolic Ca2+ buffering, which,
however, is a subject of continual debate (O’Rourke &
Blatter, 2009; Williams et al. 2013). Rasmussen et al. (2015)
argue that this increase in cytosolic Ca2+ may increase ATP
demand through the activation of EC coupling.

As a metabolic consequence, and in agreement with
our previous results on guinea pig cardiac myocytes,
in which we acutely inhibited the MCU with Ru360
(Kohlhaas et al. 2010), the β-AR-induced stimulation of
Krebs cycle-mediated NAD(P)H production is blunted
also by genetic MCU inactivation (Luongo et al. 2015;
Wu et al. 2015). In quiescent cells, in which little ATP is
consumed and thereby only a small ADP-induced ‘pull’
on electrons along the ETC occurs, β-AR stimulation
increases NAD(P)H, while MCU inactivation blunts this
increase (Fig. 2B) (Luongo et al. 2015; Wu et al. 2015). In
contrast, in working hearts of wild-type animals, the redox
states of NADH/NAD+ and NADPH/NADP+ remained
balanced after β-AR stimulation (Luongo et al. 2015), in
agreement with the concept of the ‘parallel activation’ of
‘push’ and ‘pull’ conditions (Fig. 2A). In MCU-KO hearts,
NADH/NAD+ and NADPH/NADP+ oxidized after β-AR
stimulation (Luongo et al. 2015), indicating that ‘pull’
(through ATP consumption) now outweighs the ‘push’ (in
the absence of Ca2+-induced and Krebs cycle-mediated
NADH production; Figs 1A and 2B). These data are in
agreement with our previous results on beating guinea pig
cardiac myocytes (Kohlhaas et al. 2010).

In experiments on the MCU-KO model, Ca2+
activated respiration and ATP production in wild-type
mitochondria that respired maximally in the presence of
ADP (‘state 3’ respiration) (Kwong et al. 2015; Luongo
et al. 2015). However, computational modelling predicted
that during state 3 respiration, when respiratory control is
dominated by the ADP-induced acceleration of electron
flux along the ETC (‘pull’), Ca2+-induced activation of the
Krebs cycle with increased NADH generation would only
increase ATP production by 5% (Cortassa et al. 2003). In
addition to this Ca2+-mediated ‘push’ effect on NADH,

C© 2017 The Authors. The Journal of Physiology C© 2017 The Physiological Society
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however, Ca2+ can also directly activate the F1Fo-ATPase
by �2-fold (Territo et al. 2000). Therefore, the observed
Ca2+-induced (and MCU-sensitive) acceleration of O2

consumption rates (Kwong et al. 2015; Luongo et al. 2015)
are therefore presumably related to both Ca2+-induced
activation the Krebs cycle and of the F1Fo-ATPase (arrow
in Fig. 2A).

One conflicting observation from studies on genetically
modified mice deserves further considerations. While in
both the conditional MCU-KO and the DN-MCU model,
MCU inactivation increased cytosolic Ca2+ transients in
unloaded cardiac myocytes, it decreased (and/or delayed)
the inotropic response to β-AR stimulation or an increase
in stimulation rate in whole hearts (Kwong et al. 2015;
Luongo et al. 2015; Rasmussen et al. 2015). It is unlikely
that a decrease of myofilament Ca2+ affinity accounts for
this effect, since under baseline conditions, contractility
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Figure 2. The impact of deficient mitochondrial Ca2+ uptake
on mitochondrial redox state and energetics
A, control of respiration from upstream by Ca2+, which increases the
availability of NADH through the Krebs cycle (KC) to ‘push’ electrons
into the electron transport chain (ETC), and from downstream by
ADP, which ‘pulls’ electrons (e−) down the ETC to regenerate the
proton gradient (�H+) that fuels the F1Fo-ATPase. B, changes that
occur in the control of respiration and redox state, according to
experimental results by Luongo et al. 2015, Kwong et al. 2015,
Rasmussen et al. 2015 and Kohlhaas et al. 2010. Abbreviations:
ATPases, energy consumption by myosin ATPase, SR Ca2+-ATPase,
Na+/K+-ATPase and other ATP-consuming enzymes; ECC,
excitation–contraction coupling; NNT, nicotinamide nucleotide
transhydrogenase; PCr, phosphocreatinine. Red arrows indicate
increases or decreases.

was similar in wild-type and MCU-deficient mouse
hearts. It may therefore be assumed that the more cardiac
workload increases, NADH oxidation may actually limit
electron supply of the ETC and thereby ATP production.
This would further demand that decreases in ATP affect
contraction and relaxation. In fact, the SR Ca2+-ATPase
is the enzyme that is most sensitive to a decrease in the
free energy of ATP (Tian & Ingwall, 1996). Furthermore,
the parallel oxidation of NADPH/NADP+ may provoke
excessive emission of H2O2 from mitochondria (Kohlhaas
et al. 2010; Nickel et al. 2015), which may additionally
hamper EC coupling (Wagner et al. 2013; Yang et al. 2015).
This, however, remains to be addressed by future studies.

Conclusions

There is now ample evidence for the tight and bidirectional
interplay between cytosolic ion handling, mitochondrial
redox regulation and ATP production in cardiac myo-
cytes. Mitochondrial Ca2+ uptake and its impact on the
redox state of pyridine nucleotides is a central element
of this interplay (Fig. 1A), and disease conditions that
interfere at this level are likely to induce catastrophic
events that induce contractile dysfunction, arrhythmias
and maladaptive remodelling through oxidative stress and
energetic deficit. The data of the novel mouse models
have aided in further characterization of this interplay,
but since the dynamic range of cardiac workloads is much
smaller in the mouse than in humans, and mitochondrial
Ca2+ uptake is required for matching ATP supply to
demand particularly during these variations, these results
may still underestimate the true effects that may occur
in humans when mitochondrial Ca2+ uptake is impaired.
Our growing understanding of the pathophysiology of
these processes in heart failure may aid the development
of novel mitochondria-directed treatment options to
ameliorate disease progression in these patients.
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