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TOPICAL REVIEW
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Abstract Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF
are needed to reduce AF-associated morbidity and mortality. There are several major mechanisms
that cause AF in patients, including a genetic predisposition to develop AF. Genome-wide
association studies have identified genetic variants associated with AF populations, with the
strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription
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factor PITX2. The effect of these common gene variants on cardiac PITX2 mRNA is currently
under study. PITX2 protein regulates right—left differentiation of the embryonic heart, thorax
and aorta. PITX2 is expressed in the adult left atrium, but much less so in other heart chambers.
Pitx2 deficiency results in electrical and structural remodelling, and impaired repair of the heart
in murine models, all of which may influence AF through divergent mechanisms. PITX2 levels
and single nucleotide polymorphisms on chromosome 4q25 may also be a predictor of the
effectiveness of anti-arrhythmic drug therapy.
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Abstract figure legend Reduced Pitx2 expression leads to proarrhythmic cardiac electrical atrial remodelling. Several
different murine models of Pitx2 downregulation have shown atrial action potential shortening and a depolarised
atrial resting membrane, two established causes of arrhythmia. Alterations in calcium and potassium handling genes
and TASK-like background currents have been postulated to contribute in different models. The type of electrical
remodelling may be a predictor of the anti-arrhythmic effectiveness of rhythm control therapy. Sodium currents
may also contribute. IRK, Inwardly rectifying potassium channels; K2P, Two-pore domain potassium channels; TASK,
TWIK-related acid-sensitive K channel.

Abbreviations AF, atrial fibrillation; GWAS, genome-wide association studies; miRNA, microRNA; PITX, paired-like
homeodomain transcription factor human and murine protein; PITX, paired-like homeodomain transcription factor
human gene; Pitx, paired-like homeodomain transcription factor murine gene; SNP, single nucleotide polymorphism.
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Introduction

Atrial fibrillation (AF) affects 2-3% of the population in
Europe and the US and the prevalence of AF is rising
(Schnabel et al. 2015; Kirchhof et al. 2016). AF is a
significant cause of death, stroke, dementia and reduced
quality of life in the Western world and this issue is
complicated by a lack of effective therapies. The treatment
of AF has four different domains: treatment of under-
lying cardiovascular conditions, stroke prevention, rate
control and rhythm control. Even on optimal stroke pre-
vention and rate control therapy, cardiovascular morbidity
and mortality remains high (Marijon ef al. 2013; Bassand
et al. 2016). The success of rhythm control therapy is
often unpredictable and recurrence is common. This
outcome is partly attributable to our limited under-
standing of the underlying genetic causes of AF and the
interaction of these causes with type of rhythm control
therapy. Initial observations suggest that the haplotype
of common AF-related variants modifies the outcome of
anti-arrhythmic therapy (Parvez et al. 2012; Huang &
Darbar, 2016), suggesting that rhythm control therapy
could benefit from precision and personalisation based
on genomic information.

AF has a heritable component

AF appears to be familial in approximately 15% of
early-onset AF without concomitant diseases and 5% of
all AF cases (Darbar et al. 2003), and a family history of
early-onset AF increases overall AF risk (Fox et al. 2004).
Linkage and functional studies have revealed the mutation

of several potassium channels such as KCNQ1, KCNE2,
KCNH2 in rare, monogenic families with a Mendelian
pattern of AF inheritance (Chen et al. 2003; Yang et al.
2004; Hong et al. 2005; Xia et al. 2005). These gain or loss
of function potassium channel mutations may account for
some of the electrophysiological changes that promote AF,
such as reduced wavelength or early after-depolarisations,
respectively. However, most AF patients do not harbour
these rare genotypes with clear phenotypes, so the poly-
genic and multifactorial nature of AF is an important
avenue of research. Therefore, transcriptional regulators
with multiple effectors may play a significant role in
familial AF caused by common genetic variants.

Common gene variants associated with AF

Genome-wide association studies (GWAS), unbiased
correlation studies designed to identify associations
between allele frequencies and trait variation, have
identified multiple loci that associate with AF
(Gudbyjartsson et al. 2007; Benjamin et al. 2009; Kaab et al.
2009; Ellinor et al. 2010, 2012; Schnabel et al. 2011). Initial
GWAS identified two single nucleotide polymorphisms
(SNPs; rs2200733 and rs10033464) in European and
Chinese populations (Gudbjartsson et al. 2007) on
chromosome 4q25. Other loci exist on chromosome
16q22 within intron 1 of the gene encoding ZHFX3,
i.e. zinc finger homeobox protein 3 (Benjamin et al.
2009) and on chromosome 1q21 on intron 1 of the
gene for KCNN3 (involved in calcium-activated potassium
channels; Ellinor et al. 2010). Since these initial studies,
a multitude of SNPs that associate with AF have been
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identified on chromosome 4q25. The gene variants on
chromosome 4q25 are intergenic, but many of them are
in a genomic ‘desert’ approximately 150 kb upstream
from the gene for PITX2 (paired-like homeodomain
transcription factor).

The PITX gene family

The PITX family of homeobox transcription factors
consists of PITX1, PITX2 and PITX3, each of which has
distinct and overlapping expression patterns, therefore
functions, in different organs (Cox ef al. 2002). All three
members of the PITX family, but predominantly PITX2
and PITX3, are expressed in the anterior segment of
the eye. In humans, PITX2 mutations are associated
with Axenfeld-Rieger syndrome and PITX3 mutations
with congenital cataracts (Semina et al. 1998). PITX1
is also essential for hindlimb and pituitary development
(Szeto et al. 1999), and PITX2 for tooth, heart, lung and
abdominal development in the mouse (Lin et al. 1999).

Three PITX2 isoforms (PITX2a, PITX2b and PITX2c),
which are generated by alternative splicing and differential
promoter usage of the PITX2 gene, are highly expressed
in mice and humans during development (Schweickert
et al. 2000). The PITX2d isoform, which exists in humans
only, suppresses the transcriptional activity of the PITX2a
and PITX2c isoforms (Cox et al. 2002). The predominant
cardiac isoform of PITX2 is PITX2c (Kirchhof et al
2011).

PITX2 promotes left-right asymmetry

PITX2 was initially described in the context of embryonic
development of left-right asymmetry of internal organs:
it is expressed in the left heart and gut of the mouse, chick
and Xenopus, and its misexpression alters position and
the twisting of organs (Ryan et al. 1998; Lin et al. 1999;
Campione et al. 2001).

The cardiac system shows left-right asymmetry, e.g.
normal coordinated heartbeat is generated from the sino-
atrial nodal pacemaker cells in the right atrium. The
development of cardiac left-right specific characteristics
such as the restriction of the sinoatrial node to the
right atrium is critically dependent on asymmetrical
organ morphogenesis (Mommersteeg et al. 2007; Galli
et al. 2008). Cardiac left-right asymmetry is subject to
left-sided PITX2 expression (Galli et al. 2008; Tessari
et al. 2008), particularly the PITX2c isoform (Schweickert
et al. 2000; Kirchhof et al. 2011) through the lefty—nodal
programming pathway (Wang et al. 2010).

PITX2-dependent gene expression in the adult heart

Triggered by the GWAS study pointing to a possible role
for PITX2 in AF, the role of PITX2 in the adult heart, in
addition to its role in left-right asymmetry and cardiac
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development, has been investigated: Pitx2c expression
continues in the postnatal left atrium in mice and humans
(Wang et al. 2010; Kahr et al. 2011; Kirchhof et al. 2011)
and there is progressive loss of Pitx2c with age in mice
(Wang et al. 2010). Thus, Pitx2c dysregulation has the
potential to influence AF in adulthood and senescence.

In AF, fast irregular atrial beats overtake the sinoatrial
node, sometimes also resulting in ventricular arrhythmias.
The origins of ectopic electrical activity are often in the
pulmonary veins (Haissaguerre et al. 1998; Po et al. 2005)
and if from the left atrium, then predominantly from
the left atrial posterior wall (Sanders ef al. 2005; Holmes
et al. 2016). Given the crucial role of PITX2 in left-right
asymmetry, it is probable that loss of PITX2 in some
cases of heritable AF causes incomplete suppression of
pacemaker activity in the left heart. This has been shown
to be mediated by the loss of Shox2-silencing and increase
in Hen4 (Wang et al. 2010).

PITX2 mRNA concentrations regulate atrial function

Both under- and overexpression of PITX2 has been
found to be associated with AF (Chinchilla et al. 2011;
Perez-Hernandez et al. 2016) in humans. The variability
of PITX2 in AF patients suggests that there is a critical
level of PITX2 for normal atrial function in the adult.
We have recently shown a PITX2 mRNA gradient in AF
patients requiring AF ablation. Hence, AF patients could
be categorised according to PITX2 levels (Syeda et al.
2016). The mechanisms of AF promotion are diverse,
and there are multiple pathways by which PITX2 could
regulate arrhythmogenesis. This is unsurprising given
that PITX2 is a transcription factor with multiple targets
(Hjalt & Semina, 2005). Reduced Pitx2 expression was
associated with higher susceptibility to inducible atrial
arrhythmias including AF in mice as observed by several
groups (Wang et al. 2010; Chinchilla ef al. 2011; Kirchhof
et al. 2011). Shortened atrial action potential durations,
a phenomenon facilitating re-entry, were associated with
Pitx2 deficiency (Kirchhof et al. 2011).

Postnatal conditional deletion of all Pitx2 isoforms
in the left atrium (Pitx2 CKO; achieved by using the
muscle creatine kinase-Cre driver) generally resulted
in upregulation of genes signifying that, on the whole,
PITX2 represses translation. The Pitx2 CKO mouse
had irregular resting heart rates and low amplitude
P waves (Tao et al. 2014). The upregulation of genes
associated with structural remodelling (e.g. integrin «
3 and 5) and cell-junction assembly (e.g. desmoplakin
and connexin43) indicates that loss of Pitx2 may cause
structural remodelling and damage to the intercalated
disc (Tao et al. 2014). Prenatal atrial-specific deletion of
all Pitx2 isoforms achieved by using a Nppa-Cre driver
(NppaCre® Pitx2~'~) results in modest atrial enlargement
and wall thinning during embryonic development
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(Chinchilla et al. 2011). Heterozygous deletion of
isoform c-specific exon 4 resulting in a 40% reduced left
atrial Pitx2c expression (Pitx2ct'7), in contrast, did not
cause any obvious structural abnormalities (Kirchhof
etal 2011).

Pitx2 overexpression can promote repair after myo-
cardial injury. So it appears that there is a dynamic
Pitx2 response to stress and metabolic changes (Tao
et al. 2016). Cis-regulatory elements for the transcription
factor Tbx5 in regions analogous to the human PITX2
risk locus have also been found in the mouse. Postnatal
deletion of Tbhx5 led to Pitx2 reduction and caused atrial
arrhythmias by action potential duration prolongation
(Nadadur et al. 2016). Interestingly, an inverse relationship
between the effects of Thx5 on some AF-relevant ion
channel expression and the effects of Pitx2 on the same
ion channels was observed (Tao et al. 2014) and the loss
of Pitx2 reversed the pro-arrhythmic effects of the loss
of Tbx5 because the loss of either facilitated AF through
opposite mechanisms (Nadadur et al. 2016).

Based on several animal models of Pitx2 loss, where
haploinsufficiency of Pitx2 has resulted in a less severe
phenotype than complete deletion, it can be deduced that
there is a dose-dependent regulation of atrial function by
Pitx2 in the adult left atrium (Wang et al. 2010; Kirchhof
et al. 2011; Lozano-Velasco et al. 2016).

PITX2-dependent ion channel regulation

Several potassium channel (Wang et al. 2010; Chinchilla
et al. 2011; Kirchhof et al. 2011; Syeda et al. 2016) and
calcium handling genes (Tao et al. 2014; Lozano-Velasco
et al. 2016) are regulated by Pitx2, as seen in
mutant Pitx2 models (see Abstract figure). The action
potential duration shortening observed in Pitx2c¢*/~ mice
(Kirchhof et al. 2011) and depolarised resting membrane
potential in NppaCre™ Pitx2~/~ mice and Pitx2c*/~ mice
suggests that Pitx2 regulates the expression of several
potassium channels contributing to atrial repolarisation
and to the resting membrane potential. Indeed, in
NppaCrePitx2~/~, expression of Kcnj2 is decreased
(Chinchilla et al. 2011), which would cause a decrease
in inward rectifier potassium ion channel (Ig;), the
primary determinant of the resting membrane potential.
In Pitx2ct/~ mice, both the expression of TWIK-related
acid-sensitive K+ channel (TASK-2) and TASK-like back-
ground currents, contributors to the resting membrane
potential, were reduced, though Ix; was not altered (Syeda
etal. 2016).

Non-protein targets of PITX2

Multiple microRNAs (miRNAs), short non-coding
strands of RNA that usually induce post-transcriptional
gene-silencing and fine-tune gene signalling during
tissue development and homeostatic control (Beermann
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et al. 2016), are downstream from Pitx2 and involved
in AF pathogenesis. Pitx2 expression co-localises with
miR-17-92 cluster expression, and loss of Pitx2 results in
loss of multiple miRNAs that are encoded by miR-17-92
and its closely related homologue miR-106b-25. Mice
deficient in these miRNA clusters share similar
characteristics to Pitx2-deficient mice including induced
arrhythmia susceptibility and dysregulation of Shox2 and
Tbx3 (Wang et al. 2014). The multiple miRNAs regulated
by Pitx2 may partly explain how Pitx2 modulates several
pathways potentially leading to AF (Li ef al. 2016).

Interactions between SNPs and transcription factors

Several genes that are either associated with AF in patients
who have common intronic or distal variants shown by
GWAS or rare variants that directly cause AF as shown by
linkage analysis, interact with PITX2. These include genes
for TBX5 (Huang et al. 2015; Ma et al. 2016; Nadadur
et al. 2016), HCN4 (Wang ef al. 2010; Mahida & Ellinor,
2012), KCNN3 (Ellinor et al. 2010; Mahida & Ellinor,
2012; Lozano-Velasco et al. 2016), KCNJ2 (Xia et al. 2005;
Chinchilla et al. 2011), CAV-1 (Mahida & Ellinor, 2012;
Lozano-Velasco et al. 2016) and KCNQ1 (Chen et al. 2003;
Wang et al. 2010), as seen in murine models. Thus, PITX2
potentially regulates AF through several genes already
implicated in AE.

It has also been observed that SNPs on different AF
susceptibility loci (e.g. rs2200733 on chromosome 4q25
and rs2106261 on chromosome 16q22) interact with each
other in AF (Huang et al. 2015) and Zfhx3 has been
identified as a possible target for Pitx2 through CHIP-Seq
analysis (Tao ef al. 2014). Furthermore, the expression
of Pitx2c mRNA positively correlates with ZFHX3 mRNA
expression through miR-1 (Huang et al. 2015).

Chromosome conformation capture studies have
shown that there is long-range interaction between the
risk locus at 4925 and the PITX2c promoter (Aguirre et al.
2015), but beyond this finding, there is little information
on how variants distal to PITX2 interact with PITX2 to
cause AFE. Interestingly, an AF-associated SNP proximal
to PITX2 has been shown to regulate PITX2c expression
in human stem cell-derived cardiomyocytes by regulating
PITX2 enhancer activity (Ye et al. 2016).

Though the interaction between genetic variants close
to PITX2 and PITX2 itself is not completely understood,
the effects of the loss of PITX2 appear to converge with the
presence of AF-associated SNPs.

The potential to use PITX2 to personalise AF therapy

Clinical observational studies have suggested that
common AF risk alleles at chromosome 4q25 near PITX2
modify response to anti-arrhythmic therapy in patients
(Parvez et al. 2012). Low Pitx2 mRNA also improved the
effectiveness of sodium channel blockers in a prospective
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experimental study (Syeda et al. 2016). PITX2 levels vary
in AF patients (Syeda et al. 2016) and given the observation
thatloss of left atrial Pitx2 facilitates AF, it may be desirable
to target those AF patients who have low PITX2 as a
distinct population for therapy. There is, however, no clear
relation between atrial tissue PITX2 mRNA levels and SNP
haplotype of the common gene variants associated with
AF in patients (Gore-Panter et al. 2014, 2016; Syeda et al.
2016).

The current limited success of rhythm control therapy
is thought to be due to heterogeneous drivers causing
recurrent AF and modulating treatment response (Fabritz
et al. 2016). Amongst the plethora of putative down-
stream targets of Pitx2, the resting membrane potential
(Chinchilla et al. 2011; Syeda et al. 2016) is one that
has been seen to be a good predictor of the sodium
channel blocking effects of flecainide in isolated cells
of human and mouse origin (Syeda et al. 2016). The
resting membrane potential is also a good predictor
of flecainide’s anti-arrhythmic effectiveness. By using
a more precisely targeted approach, these observations
of PITX2-dependent effects may help improve rhythm
therapy in the future.

Open questions regarding research into PITX2

(1) A robust method for identification of patients with
high and low atrial PITX2 levels is needed. Clearly,
measuring PITX2 expression in atrial tissue of people
who are not candidates for surgery is impracticable,
so surrogate blood biomarkers of PITX could be used
to subtype AF patient populations to bring about
much-needed leaps in personalised predictions of
both AF risk and response to therapy. Currently, the P
wave in the ECG still remains the best biomarker for
AF (Fabritz, 2016).

(2) Well-designed clinical trials to assess the PITX2
dependence of the effectiveness of rhythm control
therapy could help to re-evaluate anti-arrhythmic
drugs that have often been ineffective thus far. It is
likely that these findings are not limited to PITX2
and the assessment of genotype dependence on the
effectiveness of other anti-arrhythmic drugs could be
approached in this manner.

(3) Further exploration of the relevance of the resting
membrane potential for anti-arrhythmic drug
therapy success in patients could be valuable.

(4) Determination of the major clinical types of AF
reflecting different drivers of the arrhythmia, e.g.
‘early onset AF as a proxy for genetic predisposition
to AE

(5) Characterisation of the interaction of atrial stressors
that are often concurrent with AF, with different
PITX2 expression levels could also guide the choice
of anti-arrhythmic drug.

PITX2-dependent gene regulation in AF and rhythm control
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Conclusions

Although the entire scope of the activities and interactions
of PITX2 are yet to be elucidated, it is clear that PITX2 has
important functions in the adult left atrium and there
is evidence in animal models that reduced Pitx2 mRNA
levels predispose atria to AF by changing its electrical
function, whether by abnormal pacemaker activity or
adverse electrical remodelling. While complete deletion
of Pitx2 results in structural abnormalities, moderate
reduction in atrial Pitx2 levels primarily alters electrical
function of the atria, for example the resting membrane
potential and ion channel function.

Apparently, AF-associated SNPs on chromosome 4q25
in close proximity to the PITX2 gene do not directly
relate to atrial PITX2 mRNA concentrations. Nonetheless,
given emerging evidence that PITX2 not only contributes
to AF but could be used to predict effectiveness of
rhythm control therapy, further investigations into the key
co-factors, regulators and targets of PITX2 could change
the current strategies used to determine the choice of
anti-arrhythmic drugs.

Pitx2 alters the atrial resting membrane potential and
thereby modulates the effectiveness of sodium channel
blockers in mice. Reliable methods to identify alterations
in PITX2 expression in humans may help to make an
informed choice on anti-arrhythmic drug therapy.
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