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Abstract

We present a fully automated learning-based approach for segmenting knee cartilage in presence 

of osteoarthritis (OA). The algorithm employs a hierarchical set of two random forest classifiers. 

The first is a neighborhood approximation forest, the output probability map of which is utilized as 

a feature set for the second random forest (RF) classifier. The output probabilities of the 

hierarchical approach are used as cost functions in a Layered Optimal Graph Segmentation of 

Multiple Objects and Surfaces (LOGISMOS). In this work, we highlight a novel post-processing 

interaction called just-enough interaction (JEI) which enables quick and accurate generation of a 

large set of training examples. Disjoint sets of 15 and 13 subjects were used for training and tested 

on another disjoint set of 53 knee datasets. All images were acquired using double echo steady 

state (DESS) MRI sequence and are from the osteoarthritis initiative (OAI) database. 

Segmentation performance using the learning-based cost function showed significant reduction in 

segmentation errors (p < 0.05) in comparison with conventional gradient-based cost functions.
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1 Introduction

Osteoarthritis (OA) is one of the most prevalent aging diseases in our society [3]. Early 

detection of structural differences associated with OA is important for testing interventional 

drugs in clinical trials. Segmentation is a crucial first step in structural analysis. Manual 

segmentation takes several hours of effort and is prone to inter/intra-observer variability and 

operator-induced bias. Reproducible automated segmentation is challenging in presence of 

severe OA due to cartilage thinning, osteophytes, bone marrow, and cartilage lesions in the 

MR volume.
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Several automated algorithms for knee segmentation have been proposed in the literature 

such as approximate binary k-NN classifiers [4], deformable active shape models [6], local 

image patch optimization using Markov random fields [10], hierarchical two stage cartilage 

classifiers optimized by graph cuts [15], and multi-atlas labeling with locally weighted 

voting [9]. Many of these methods make use of locally (not globally) optimal techniques to 

solve the segmentation problem. For example, Wang et al. [15] used multi-label graph cuts 

to optimize the background combining bone regions with true background and the cartilage 

classifier outputs. LOGISMOS algorithm [16] can simultaneously segment multiple surfaces 

in different objects taking contextual information between them to make the segmentation 

robust with guaranteed global optimality.

Severe OA pathology alters the tissue appearance substantially, limiting the segmentation 

performance when using simple cost functions. A major limiting factor of learning-based 

costs (used in [4,7,15,16]) is the time consuming task of curating a large numbers of 

accurate training examples. Several interactive correction methods were designed to ease the 

post-processing corrections such as thin plate splines [11], live-wires [12] and active shape 

model based interactions [13]. In these cases and others, the refinement mainly corrects the 

surface errors directly to match the object boundaries and/or are prohibitively expensive to 

be computed in real time.

We present a fully automated LOGISMOS segmentation algorithm based on learned costs 

using a two-stage hierarchical random forest classifiers (RF). Unlike in [15], our method 

uses two variations of RF classifier, the first being a neighborhood approximation forests 

(NAF) [8] followed by an RF classifier on a geometric graph thereby learning from a 

combination of local and global context and textural features. JEI approach [14] was used to 

prepare the training data, substantially reducing the interaction time compared to traditional 

voxel-by-voxel post-processing approaches. This is achieved by interacting with the 

underlying graph algorithm. While similar to [1], their graph-cut interaction approach for 

multiple objects does not guarantee global optimality. Live-wires with embedded interaction 

capabilities have a similar drawback of being unable to maintain global optimality for 

multiple surfaces and objects. LOGISMOS-JEI handles multiple object interactions while 

maintaining global optimality.

2 Methods

The proposed segmentation work-flow is outlined in Fig. 1 beginning with an automated 

LOGISMOS segmentation using gradient-based costs. The optimization finds the minimum 

closed set on a node weighted graph. The optimized residual graph and the image volume 

are loaded into the custom built graphical user interface to examine the segmentation quality 

and perform JEI. Upon completing JEI, the final edited surfaces are used as training 

examples for the hierarchical classifier system. Upon training, the classifier probability 

values on a test volume is assigned as cartilage node costs in LOGISMOS graph. For bone 

surface segmentation, the initially-employed gradient-based costs were very robust and 

remained unchanged.
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2.1 LOGISMOS Segmentation Algorithm

The algorithm segments multiple objects and surfaces simultaneously in a graph based 

framework. Initialization of the algorithm consists of volume of interest (VOI) detection 

using an AdaBoost classifier [5] trained on manually identified VOI’s. Training used 9 

different 3D Haar-like features applied at different scales. The smaller region localized by 

the VOI helps reduce the computation time. Further, these VOI bounds are used for fitting 

the mean shape mesh S0 for each bone (femur and tibia respectively) using affine 

registration. A patient-specific bone shape S is important since the final segmentation of 

both the bone and the cartilage surfaces is defined by this shape prior. S is obtained by a 

single-surface single-object LOGISMOS segmentation using S0.

A geometric graph is constructed representing each surface of the object to be segmented. 

Non-intersecting graph column construction is a crucial step in ensuring topologically 

correct segmentation. This is enforced by mimicking the behavior of electrically charged 

particles resulting in an electric lines of force (ELF) based graph column construction. All 

graph nodes are assigned unlikeliness costs based on the local image intensity gradient. To 

represent the segmentation task as a max-flow problem, columns are connected by intra- and 

inter-column arcs enforcing surface smoothness constraints. The final multi-object multi-

surface segmentation add additional arcs to enforce inter-object and inter-surface constraints 

whose arc construction and final solution are described in [16]. A 1D derivative operator, ∇
(x, y, z), along the column direction was used to determine bone-surface costs while the 

cartilage costs employed weighted (determined empirically) first and second order 

derivatives: w*∇(x, y, z)+(1−w)*∇2(x, y, z).

2.2 Just Enough Interaction

Following LOGISMOS segmentation, JEI editing on the resulting surfaces is done as 

needed. The image volume, residual graph and the ELF based geometric graph are loaded 

into a custom designed GUI. The previously reported JEI methods [14] were extended from 

a single object, two surface interaction to a multi-object multi-surface interaction for knee 

MRI. A k-dimensional tree based interaction algorithm was designed for cost modification 

based on user inputs. Furthermore, a faster max-flow optimization algorithm was utilized for 

immediate feedback on the interaction. The JEI workflow was as follows: (1) specifying 

approximately correct boundary points, referred to as nudge points hereafter, on a chosen 2D 

slice, (2) modification of local graph costs in the entire 3D neighborhood of interaction, (3) 

max-flow re-computation in 3D, resulting in corrected surfaces within milliseconds. The 

process was repeated until the results were deemed satisfactory.

Underlying Interaction and Graph Cost Modification—The user specified nudge 

points form a 3D contour and its intersection (intersecting nodes) with the graph columns is 

identified by utilizing a k-dimensional tree that stores the coordinates of all graph nodes to 

enable O(log n) query on N nearest (determined empirically) nodes for any given node. The 

node costs (i.e. unlikeness) of all columns with intersecting nodes are modified as:
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where c(i, j) is the cost of node j on column i, D((i, j), n(i, j)) is the distance between node (i, 
j) and its nearest intersecting node n(i, j), and Δ is a tolerance. The max-flow optimization 

then continues from its previous state using the updated costs and consequently produces the 

updated surfaces.

2.3 Classifier System Design

Two RF based classifiers in hierarchy were used to train cartilage regions. A NAF [8] trained 

on example image patches was used as the first stage followed by a second RF classifier [2] 

with features collected along the ELF based geometric graph nodes. The output probability 

maps of the NAF were not directly input as costs to the graph optimization. They were used 

with other image based features for training of the second RF classifier. The advantage of 

this approach is that information is gathered from a larger global neighborhood in 

combination with local features. The NAF classifier gathers contextual and textual 

information from a larger neighborhood of 3D image patches. The RF classifier collects 

local feature information along the geometric search columns of the graph. Disjoint training 

sets were used to help build a more realistic RF model based on actual NAF performance on 

unseen images.

Neighborhood Approximation Forests—NAF is based on a random forests framework 

which approximates the nearest neighbors of image patches based on a user defined distance 

function to optimize the node split. The pairwise distance function ρ(I, J) between each of 

the training image patches is defined as ρ(I, J) =||seg(I) − seg(J)||l0 where seg(.) is the 

segmentation label map for the corresponding image patch. Intuitively it measures similarity 

between image patches based on the segmentation. The algorithm learns to group image 

patches which appear similar to each other based on this neighborhood distance criteria. The 

output probability map of the unseen image (Fig. 2) was used as one of the inputs for a 

second RF classifier.

Clustered Random Forest Classifier—The second RF was trained on features 

collected at each node of the geometric graph. JEI edited bone mesh surfaces were used for 

geometric graph construction during training. Positive example labels corresponded to the 

nearest cartilage mesh intersection along each search column. The different features 

collected at each node point are shown in Table 1 with feature values interpolated to the 

search path points from corresponding feature volumes. To handle the large variability of 

cartilage intensities in the volume, a k-means clustering algorithm was applied to the S0 

mesh of femur and tibia respectively resulting in spatial parcellation of the pre-segmented 

mesh surfaces into 40 clusters each (total 80). The clustering trained regionally-specific 

appearance models by accounting for the surrounding menisci, muscle, bone and other 

anatomies. The probability response to the features along the search nodes in the testing 

datasets provided the node costs for graph optimization instead of gradient based costs.
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3 Experimental Methods

MRI volumes with independent standards are available from the OAI. All subjects were 

imaged using a DESS protocol with a voxel resolution of 0.36 × 0.36 × 0.7 mm3. All MR 

volumes in this study were from diseased subjects. The data were divided into two training 

sets with 15 and 13 which were used to train the NAF and the second RF classifier. The 

data-sets used for training the clustered RF classifier were first inspected and JEI edited. 53 

data-sets were used for testing.

All image volumes were first LOGISMOS segmented using gradient costs. The geometric 

graph had 8006 and 8002 graph columns for the femur and tibia objects respectively. The 

graph parameters are listed in Table 2.

The NAF features consisted of image patches sampled over 15 data-sets with 1521 sample 

points per patch. Because of the highly imbalanced ratio between the negative and positive 

labels, we considered a neighborhood around the cartilage labels and marked them as 

negative examples. The image patches collected consisted of all the positive and the 

surrounding negative labels. We trained a set of 200 trees with 40,000 images patches as 

inputs to each tree.

The second set of RF classifier was trained on 13 JEI-corrected data-sets with 30 features 

(see Table 1) along with the ELF search path for each node. 80 (40 × 2) RF classifiers were 

trained with each one representing the given cluster with 800 trees per forest.

4 Results

Surface positioning errors (compared against independent standard) achieved by hierarchical 

classifier, gradient cost and single stage RF classifier are listed in Table 3. It shows a 

significant reduction in signed errors for the femur using learned costs (p < 0.001). While 

the signed tibia errors were not statistically significantly different (p = 0.62, difference 

between means of 1/18 voxel), the error variance was substantially reduced showing that 

larger errors were avoided by the new strategy. The reduction in unsigned surface 

positioning errors was significant for both the femur and tibia (p < 0.001). Table 3 also 

shows the benefits of the hierarchical classifier when compared with the single stage RF 

classifier. Although the single stage RF improves the segmentation accuracy, the addition of 

the hierarchical NAF stage further improves the accuracy with the largest reduction in error 

seen in the tibial regions.

Figure 3 qualitatively compares the segmentation accuracies between the two methods and 

the independent standard. Both the femur and tibia are shown with their respective bone and 

cartilage segmentations showing good agreement between learning-based segmentation and 

the independent standard.

5 Conclusion

A novel fully automated learning-based algorithm for designing cost functions used in 

LOGISMOS segmentation was presented. Cost function was designed by optimizing a 
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hierarchical set of classifiers, each associated with one of two different learning methods. 

We also demonstrated the use of JEI for acquiring training examples. The presented method 

was highly accurate when compared to pre-JEI results. Understanding the effect of feature 

selection and the mutual combination of parameters from both classifiers remains as future 

work.
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Fig. 1. 
The learning-based segmentation algorithm workflow.
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Fig. 2. 
The output probability map of the NAF for an unseen image overlaid on the image volume. 

The color map indicates the probability output values with brighter color indicating higher 

probability of the voxel being a cartilage region.
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Fig. 3. 
Segmentation accuracy in a representative subject. (a) Gradient-costs LOGISMOS 

segmentation. (b) Independent standard. (c) Learned-costs LOGISMOS segmentation. 

Regions marked by the arrow shows clear improvement in the segmentation quality when 

using the learned costs.
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Table 1

A list of features used to train the second RF classifier.

Index Description

1–9 3 eigenvalues of Hessian matrices on intensity image at σ = 0.5, 1.0, 2.0 mm

10–15 1st Gaussian gradient on intensity and NAF probability volumes at σ = 0.36, 0.7, 1.4 mm

16–18 Intensity, Gaussian smoothed intensity, and NAF probability volumes

19–20 Laplacian derivative of intensity volume at σ = 0.36, 0.7 mm

21 Gabor texture feature

22–25 Intensity statistics: mean, variance, skewness and kurtosis of a 2 mm3 region centered around each graph node

26–28 Haar features (1.5 mm kernel) along horizontal, vertical & diagonal directions

29–30 1D directional gradient along the search column direction on NAF probability and intensity volume
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Table 3

Border positioning errors (mm) achieved by hierarchical classifier, gradient cost and single stage RF classifier.

NAF+RF (Proposed) Gradient p-value RF only

Femur signed 0.03±0.19 −0.31±0.28 ≪ 0.001 −0.06±0.18

Femur unsigned 0.55±0.11 0.68±0.20 ≪ 0.001 0.56±0.11

Tibia signed 0.10±0.17 0.08±0.35 0.62 0.16±0.24

Tibia unsigned 0.61±0.14 0.81±0.18 ≪ 0.001 0.65±0.17
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