Table 2.
Result for drug target protein prediction using machine learning methods
| SVM | Recall | Precision | F1 |
|---|---|---|---|
| Set A, W | 0.7326 | 0.6594 | 0.6941 |
| Set A, W ′ | 0.7516 | 0.7422 | 0.7469 |
| Set A, W+N | 0.7947 | 0.6681 | 0.7259 |
| Set A, W ′ + N ′ | 0.8137 | 0.6982 | 0.7515 |
| Set B, W | 0.7866 | 0.6416 | 0.7067 |
| Set B, W ′ | 0.7374 | 0.6496 | 0.6907 |
| Set B, W+N | 0.7424 | 0.6585 | 0.6979 |
| Set B, W ′ + N ′ | 0.8018 | 0.6580 | 0.7228 |
| Set C, W | 0.7516 | 0.7808 | 0.7659 |
| Set C, W ′ | 0.7972 | 0.8003 | 0.7987 |
| Set C, W+N | 0.8137 | 0.7965 | 0.8050 |
| Set C, W ′ + N ′ | 0.8409 | 0.8207 | 0.8307 |
| Set D, W | 0.7820 | 0.7367 | 0.7587 |
| Set D, W ′ | 0.8083 | 0.7588 | 0.7828 |
| Set D, W+N | 0.8120 | 0.7500 | 0.7798 |
| Set D, W ′ + N ′ | 0.8271 | 0.7710 | 0.7981 |
| RF | |||
| Set A, W | 0.7541 | 0.7682 | 0.7605 |
| Set A, W ′ | 0.6483 | 0.8130 | 0.7260 |
| Set A, W+N | 0.7936 | 0.6763 | 0.7299 |
| Set A, W ′ + N ′ | 0.8229 | 0.6986 | 0.7556 |
| Set B, W | 0.7821 | 0.6547 | 0.7124 |
| Set B, W ′ | 0.7490 | 0.6493 | 0.6953 |
| Set B, W+N | 0.7551 | 0.7805 | 0.7677 |
| Set B, W ′ + N ′ | 0.8076 | 0.6767 | 0.7363 |
| Set C, W | 0.7847 | 0.7358 | 0.7589 |
| Set C, W ′ | 0.8165 | 0.7960 | 0.8057 |
| Set C, W+N | 0.8292 | 0.8118 | 0.8200 |
| Set C, W ′ + N ′ | 0.8509 | 0.8218 | 0.8354 |
| Set D, W | 0.7885 | 0.7409 | 0.7636 |
| Set D, W ′ | 0.8343 | 0.7564 | 0.7934 |
| Set D, W+N | 0.8305 | 0.7550 | 0.7908 |
| Set D, W ′ + N ′ | 0.8382 | 0.7818 | 0.8088 |
Feature sets W and N represent widely used and newly proposed properties, respectively. W ′ and N ′ represent statistically significant widely used and newly proposed properties, respectively
The underline bold numbers indicate the highest values in each evaluation