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Kynurenic acid (KYNA) is an endogenous antagonist of 
N-methyl-D-aspartate and α7 nicotinic acetylcholine 
receptors that is derived from astrocytes as part of the 
kynurenine pathway of tryptophan degradation. Evidence 
suggests that abnormal KYNA levels are involved in the 
pathophysiology of schizophrenia. However, this has never 
been assessed through a meta-analysis. A literature search 
was conducted through Ovid using Embase, Medline, and 
PsycINFO databases (last search: December 2016)  with 
the search terms: (kynuren* or KYNA) and (schizophreni* 
or psychosis). English language studies measuring KYNA 
levels using any method in patients with schizophrenia and 
healthy controls (HCs) were identified. Standardized mean 
differences (SMDs) were calculated to determine differ-
ences in KYNA levels between groups. Subgroup analyses 
were separately performed for nonoverlapping participant 
samples, KYNA measurement techniques, and KYNA 
sample source. The influences of patients’ age, antipsy-
chotic status (%medicated), and sex (%male) on study 
SMDs were assessed through a meta-regression. Thirteen 
studies were deemed eligible for inclusion in the meta-anal-
ysis. In the main analysis, KYNA levels were elevated in 
the patient group. Subgroup analyses demonstrated that 
KYNA levels were increased in nonoverlapping participant 
samples, and centrally (cerebrospinal fluid and brain tis-
sue) but not peripherally. Patients’ age, %medicated, and 
%male were each positively associated with study SMDs. 
Overall, KYNA levels are increased in patients with schizo-
phrenia, specifically within the central nervous system. An 
improved understanding of KYNA in patients with schizo-
phrenia may contribute to the development of novel diag-
nostic approaches and therapeutic strategies.

Key words:   kynurenine/tryptophan/psychosis/ 
neuroinflammation

Introduction

Schizophrenia

While schizophrenia is characterized by positive, negative, 
and cognitive symptoms, neurometabolic abnormalities 
have also been identified as key features of the illness.1,2 
The longstanding dopamine hypothesis of schizophrenia 
suggests that dysregulated functioning of the dopaminer-
gic system underlies its pathophysiology.3–7 However, the 
dopamine hypothesis does not readily explain negative 
and cognitive symptoms.8,9 Moreover, a subset of patients 
(20%–35%) show partial or no response to standard anti-
psychotic treatments, which exert their effect primarily 
through dopamine receptor antagonism.10,11

Another widely purported pathophysiological mecha-
nism is the glutamatergic hypothesis of schizophrenia. 
Evidence for this hypothesis arises from pharmaco-
logical studies in which N-methyl-D-aspartate receptor 
(NMDAR) antagonist administration leads to the emer-
gence of positive, negative, and cognitive symptoms in 
human volunteers.12–17 These agents also elicit symptom 
exacerbation in patients with schizophrenia.16,18,19 Olney 
and Farber proposed that hypofunctioning NMDARs 
on gamma-aminobutyric acid (GABA)-ergic inhibitory 
interneurons result in the disinhibition of downstream 
pyramidal neurons, increasing presynaptic glutamate 
release within various brain regions.20 In support, dis-
turbed glutamatergic signaling has been observed in 
healthy volunteers following acute exposure to an 
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NMDAR antagonist21,22 and in patients with schizo-
phrenia.23–28 The known effects of exogenous NMDAR 
antagonists on glutamatergic dysregulation and schizo-
phrenia-like symptomatology have resulted in increased 
attention towards kynurenic acid (KYNA), the only cur-
rently known endogenous NMDAR antagonist.

Kynurenine Pathway

KYNA is produced through the kynurenine (KYN) 
pathway of  tryptophan (TRP) degradation, accounting 
for over 90% of  the metabolism of  this essential amino 
acid.29 TRP is oxidized to N-formylkynurenine by 1 
of  3 enzymes: indoleamine 2,3-dioxygenase 1 (IDO1), 
IDO2, or tryptophan 2,3-dioxygenase (TDO2). Next, 
deformylation of  N-formylkynurenine by formami-
dase produces KYN. KYN is thereafter metabolized 
through 3 distinct branches of  the KYN pathway. 
KYN can be irreversibly transaminated to KYNA by 
4 kynurenine aminotransferases (KATs). KYN can also 
be oxidized by kynurenine 3-monooxygenase (KMO) 
to produce 3-hydroxykynurenine (3-HK). Lastly, KYN 
can undergo oxidative cleavage by kynureninase to form 
anthranilic acid (for additional details on this pathway, 
see reviews by Dounay et  al,30 Schwarcz et  al,31 and 
Vécsei et al32).

The KYN pathway of TRP degradation is initiated by 
IDO and TDO2.30 These enzymes are known to exist at 
higher levels in the periphery compared to the central ner-
vous system (CNS).31 Downstream, KYN readily crosses 
the blood-brain barrier through the large neutral amino 
acid transporter33; approximately 60% of brain KYN is 
believed to be contributed from the periphery.34 In con-
trast, due to its polar structure, KYNA does not cross 
the blood-brain barrier.33 Thus, brain KYNA is predomi-
nantly derived from brain KYN.31 The conversion of 
KYN to KYNA takes place primarily within astrocytes, 
as these cells contain KATs but not KMO and therefore 
cannot degrade KYN to 3-HK and its metabolites.35 Of 
the 4 existing KATs, KAT II is thought to be the main 
enzyme of KYNA production.36

KYNA acts as an antagonist of all 3 ionotropic glu-
tamate receptors, including NMDARs, α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptors, 
and kainate receptors.37 However, of these, KYNA pref-
erentially and competitively inhibits the glycine site of the 
NMDAR.38,39 KYNA is also an antagonist of α7 nicotinic 
acetylcholine receptors (α7nAChR)40; its inhibitory effect 
on these receptors is achieved noncompetitively through 
its interaction with an allosteric potentiating site, which 
is oppositely stimulated by galantamine, an α7nAChR 
positive allosteric modulator.41 KYNA also activates the 
G-protein-coupled receptor GPR 35 and the aryl hydro-
carbon receptor.42,43 Additionally, KYNA functions as 
a free radical scavenger and an antioxidant.44 Given its 
capacity to block neuronal excitation and scavenge free 

radicals, KYNA is widely considered to have neuropro-
tective and anticonvulsant properties.45

KYNA Hypothesis of Schizophrenia

The KYNA hypothesis of schizophrenia posits that dis-
rupted KYNA levels are implicated in the pathophysiol-
ogy of the illness.46 This hypothesis is supported by the 
notion that KYNA, as an endogenous glutamate recep-
tor antagonist, may mimic schizophrenia-like phenomena 
induced by exogenous glutamate receptor antagonists, 
along with evidence from both preclinical and clinical 
literature.41,47,48 Preclinical studies manipulating levels of 
KYNA have demonstrated its influence on both behavior 
(eg, cognitive functioning) and neurotransmission (eg, 
glutamatergic, dopaminergic) observed to be aberrant 
in patients with schizophrenia.41,48 Furthermore, KYNA 
levels have also been measured in schizophrenia patient 
populations and deviations from healthy controls (HCs) 
have often been reported.41

Study Aims

Although individual studies have reported KYNA disrup-
tions in patients with schizophrenia, their findings have not 
been assessed through a meta-analysis. The primary aim 
of this systematic review and meta-analysis was to evalu-
ate the difference in KYNA levels between patients with 
schizophrenia and HCs. As secondary aims, subgroup 
analyses examined nonoverlapping participant samples, 
KYNA measurement techniques, and KYNA sample 
source. Also, the influences of patients’ age, antipsychotic 
status, and sex were explored through a meta-regression.

Methods

Literature Search

This meta-analysis was performed in accordance with 
the Preferred Reporting Items for Systematic reviews and 
Meta-Analysis group.49 Two authors (E.P., J.K.) inde-
pendently performed the search (last search: December 
2016) and assessed eligibility, and 2 authors (E.P., J.K.C.) 
independently extracted data. English language human 
published articles were searched for using Embase, 
Medline, and PsycINFO. The Ovid search was con-
ducted using the following terms: (kynuren* or KYNA) 
and (schizophreni* or psychosis). The reference sections 
of major review articles30–32,41,46–48,50–54 were also searched.

Inclusion Criteria

Full-length English language articles were included if: (1) 
they included patients with schizophrenia or related dis-
orders, (2) they included a HC group, (3) KYNA levels 
were measured in both groups using any method, and (4) 
data were sufficient to calculate standardized mean dif-
ferences (SMDs).
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Exclusion Criteria

When studies reported upon a sample completely over-
lapping with another study, as described within their 
texts, the study with the largest sample size was used and 
the other excluded. Where publications reported partially 
overlapping samples, both were included in the primary 
analysis. Studies missing baseline KYNA levels or exam-
ining KYNA production were excluded.

Outcome Measures

The main outcome measure was KYNA levels. We 
aimed to investigate group differences in KYNA between 
patients with schizophrenia and HCs.

Recorded Variables

The variables recorded from each included study were 
KYNA levels, diagnoses, age, sex, antipsychotic status, 
method of KYNA measurement, and participant sample 
overlap with other studies.

Data Analysis

Meta-analysis.  The primary meta-analysis, subgroup 
analyses, and sensitivity analyses were conducted using 
Review Manager Version 5.2 (http://tech.cochrane.org/
revman). The meta-regression was carried out using 
Comprehensive Meta Analysis (www.meta-analysis.com). 
Differences in KYNA  levels between patients with schizo-
phrenia and HCs were determined by calculating SMDs.55 
If  the total number of study participants exceeded the num-
ber that underwent KYNA measurement, only subjects in 
whom KYNA was measured were included. When stud-
ies separately reported KYNA levels from multiple brain 
areas, average SMDs were calculated and utilized. Where 
mean values were not stated, authors were contacted for 
additional data or, if  reported, median values were uti-
lized. Where SD values were not reported, values were 
obtained through calculations from available data accord-
ing to the Cochrane Handbook for Systematic Reviews 
of Interventions (http://www.handbook.cochrane.org). 
Effects were interpreted as small (SMD = 0.2), moderate 
(SMD = 0.5) or large (SMD = 0.8),55 with positive val-
ues indicating elevated KYNA levels in the schizophrenia 
group. To adjust for study heterogeneity, the inverse vari-
ance statistical method and random effects model were 
employed.56 Significance was assessed using 2-sided 95% 
confidence intervals (CIs).

The I2 statistic was utilized to assess study heterogeneity 
for the primary analysis; I2 ≥ 50% represented significant 
heterogeneity. If  heterogeneity was found, one-leave-out 
sensitivity analyses were performed to examine influences 
of any single study on the pooled SMD and associated P 
values. The possibility of publication bias was assessed 
using funnel plots and Egger’s regression test57; if  identi-
fied, the trim-and-fill procedure58 was utilized.

Moderator Analyses.  Moderator analyses were con-
ducted to investigate the influence of study and patient 
characteristics on KYNA levels. Subgroup analyses were 
separately examined for: (1) nonoverlapping participant 
samples using the study with the largest sample size, (2) 
KYNA measurement technique (ie, cerebrospinal fluid 
(CSF), brain tissue, plasma/serum, saliva), and (3) KYNA 
sample source (ie, central, peripheral). Meta-regression 
analyses were conducted for patients’ age, the proportion 
of antipsychotic-medicated patients (%medicated), and 
the proportion of male patients (%male). When partici-
pant information was presented only for the full sample, 
this data was used for meta-regression analyses.

Risk of Bias.  The Risk of Bias Assessment tool for 
Nonrandomized Studies59 was employed, using the follow-
ing factors: participant selection, confounding variables, 
measurement of exposure, blinding of outcome assessment, 
incomplete outcome data, and selective outcome reporting.

Significance for all tests was set at P < .05 (2-tailed). 
Continuous variables are reported as mean ± SD.

Results

Included Individual Studies

Thirteen studies were deemed eligible for inclusion in the 
meta-analysis (total number of subjects, n = 961).60–72 The 
PRISMA flow diagram is presented in supplementary  
figure 1 and characteristics of included studies are sum-
marized in table  1. The average number of subjects was 
73.9  ±  47.1 (range: 26 to 174). Average age and %male 
of the patient group were 37.7 ± 7.0 years and 68.0% ± 
17.5%, respectively. Average age and %male of the control 
group were 34.2 ± 9.7 years and 64.0% ± 18.6%, respec-
tively. Average %medicated was 69.0% ± 35.3%. Four 
studies measured KYNA in CSF,64,65,68,72 3 in brain tis-
sue,66,70,71 5 in plasma/serum,60,62,63,67,69 and 1 in saliva.61 Of 
the 13 included studies, 10 had completely nonoverlapping 
samples.60–63,66–71

Risk of Bias

Six (46.2%) of 13 studies showed a “low” risk of bias 
for all items. The detailed assessment is displayed in  
supplementary figure 2.

Meta-analyses

KYNA levels were moderately higher in patients with 
schizophrenia in comparison to HCs (SMD  =  0.66, 
CI = 0.25 to 1.06, P = .001) (figure 1).

Moderator Analyses

Subgroup Analyses. Nonoverlapping Samples  Excluding 2 
studies64,65 with smaller, partially overlapping samples with 
another study,72 KYNA levels were still moderately elevated in 
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patients with schizophrenia compared to HCs (SMD = 0.62, 
CI = 0.17 to 1.07, P = .007) (supplementary figure 3).

KYNA Measurement Technique  KYNA levels were mod-
erately increased in patients with schizophrenia compared 
to HCs in studies using CSF (SMD = 0.66, CI = 0.42 to 
0.91, P < .00001) and brain tissue samples (SMD = 0.55, 
CI = 0.31 to 0.79, P < .0001). KYNA levels did not dif-
fer between groups in studies using plasma/serum mea-
surement techniques (SMD = 0.51, CI = −0.32 to 1.33, 
P = .23) (supplementary figure 4). There were insufficient 
studies using saliva to permit an analysis in this subgroup.

KYNA Sample Source  In the 7 studies measuring 
KYNA centrally, KYNA levels were moderately higher 
in patients with schizophrenia in comparison to HCs 
(SMD = 0.61, CI = 0.43 to 0.78, P < .00001). In contrast, 
in the 6 studies measuring KYNA peripherally, KYNA 
levels did not differ between groups (SMD  =  0.74, 
CI = −0.12 to 1.59, P = .09) (supplementary figure 5).

Meta-regression Analyses.  Meta-regression analyses 
showed that the higher the patients’ age, the higher (ie, more 
positive) the study SMD (12 studies, n = 931, slope = 0.022, 
95% CI: 0.005 to 0.039, P  =  .012). Also, the higher the 
%medicated, the higher the study SMD (13 studies, n = 961, 
slope = 0.008, 95% CI: 0.004 to 0.013, P < .001). Lastly, 
the higher the patients’ %male, the higher the study SMD 
(13 studies, n = 961, slope = 0.012, 95% CI: 0.004 to 0.020, 
P = .002) (supplementary figure 6). Notably, excluding the 
study with the lowest SMD67 led to the loss of significance 
for the meta-regression analyses mentioned above (all P val-
ues > .17). In contrast, excluding the study with the highest 
SMD61,69 did not alter findings (all P values < .012).

Sensitivity Analysis

Significant study heterogeneity existed in the main analy-
sis (I2 = 90%). Sensitivity analyses indicated that no single 
study significantly contributed to heterogeneity.

Publication Bias

Egger’s test showed no publication bias in the analysis. 
The funnel plot is displayed in supplementary figure 7.

Discussion

Main Findings

This is the first meta-analysis to compare KYNA lev-
els between patients with schizophrenia and HCs. The 
main analysis found elevated KYNA in patients with 
schizophrenia. Subgroup analyses demonstrated that: 
(1) this group difference remained when studies with 
partially overlapping samples were removed, (2) KYNA 
was increased in patients with schizophrenia when mea-
sured in CSF and brain tissue samples, and (3) KYNA 
was increased in patients with schizophrenia when mea-
sured in the CNS but not in the periphery. Lastly, meta-
regression analyses revealed that the higher patients’ age, 
%medicated, and %male, the more positive the SMDs 
comparing KYNA between groups. Upon removing the 
study with the lowest SMD, significance for these rela-
tionships was lost.

Analysis of Included Studies

Four included studies measured KYNA in CSF. Nilsson 
et al68 found elevated KYNA levels in a mostly unmedicated 
sample of patients with schizophrenia compared to HCs. 
The other 3 studies measuring KYNA in CSF used par-
tially overlapping participant samples, each investigating a 
unique primary objective. In their samples of olanzapine-
treated patients with schizophrenia or schizoaffective dis-
order (SA), each of the 3 studies found increased KYNA 
levels in the patient group compared to HCs.64,65,72

Three included studies measured KYNA in brain tis-
sue samples. In a seminal study, Schwarcz et al71 found 
increased KYNA in a sample of mostly medicated 
patients with schizophrenia within Brodmann area 
(BA) 9 but not 10 or 19, although a trend towards an 
increase was seen in the latter 2 areas. Sathyasaikumar 

Fig. 1.  Group differences in KYNA levels between patients with schizophrenia and healthy controls. CI, confidence interval; IV, inverse 
variance; Std, standardized.
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et al70 found increased KYNA within BA 10 but not 9 in 
a mostly medicated sample of patients with schizophre-
nia; the elevation in BA 9 approached significance. Miller 
et al66 noted an increase in KYNA in samples of the ante-
rior cingulate gyrus from mostly medicated patients with 
schizophrenia as compared to HCs, but the study was 
only powered to assess significance for a greater degree of 
change than that seen.

Five included studies measured KYNA in the plasma or 
serum. Fazio et al62 reported increased KYNA levels in a 
mostly medicated sample of patients with schizophrenia. 
Ravikumar et al69 found elevated plasma KYNA levels in 
unmedicated patients with schizophrenia. Contrastingly, 
Myint et  al67 reported decreased plasma KYNA in 
antipsychotic-naïve or antipsychotic-free patients with 
schizophrenia. Also, Fukushima et al63 reported no dif-
ference in serum KYNA between medicated patients 
with schizophrenia and HCs, and Barry et al60 found no 
difference in plasma KYNA between mostly medicated 
patients with schizophrenia, SA, or psychosis not other-
wise specified (NOS) and HCs.

Lastly, 1 included study measured KYNA in saliva. 
Chiappelli et al61 reported higher mean saliva KYNA in a 
mostly medicated sample of patients with schizophrenia 
or SA compared to HCs.

Analysis of Meta-regression Findings

The findings from meta-regression analyses suggest that 
patients’ age, %medicated, and %male are positively 
related to study SMDs. First, with respect to age, the 
current meta-regression results are in line with previous 
studies that report a positive correlation between age and 
KYNA in patients with schizophrenia.68,73 This supports 
the notion that increasing KYNA levels may explain 
cognitive deterioration with age.50,54 Also, given that 
α7nAChRs may be the preferred target of endogenous 
KYNA,40 and have been linked to cognitive impairment, 
increases in KYNA with age may also explain why cog-
nitive symptoms arise early in the course of schizophre-
nia.74 However, it should be noted that not all studies find 
an association between age and KYNA levels.65,71 Second, 
in terms of antipsychotic status, these findings contrast 
those of previous studies suggesting that antipsychotic 
medication reduces brain KYNA levels.71,75 One included 
study showed a trend towards decreased KYNA within 
brain tissue samples of treated vs untreated patients,66 
although other studies have found no relationship between 
antipsychotic status and KYNA levels.61,65 Finally, with 
respect to sex, results from the present meta-analysis con-
trast those of a previous study that found higher KYNA 
levels in female HCs than male HCs.76

However, the removal of Myint et al67 from the meta-
regression analysis led to the loss of significance in each 
of the aforementioned relationships. Thus, the meta-
regression results may in fact hold greater implications 

for interpreting the findings from Myint et al67 than those 
of the entire meta-analysis. It is proposed that the results 
of Myint et  al,67 which was the only study to report 
decreased KYNA in the patient group, were influenced 
by their comparatively young, unmedicated, and mostly 
female patient sample.

Putative Mechanisms of KYNA Elevation in 
Schizophrenia

One explanation for elevated KYNA in schizophrenia 
might be a greater availability of KYN to be metabo-
lized by KAT II to KYNA. In keeping with the notion 
that schizophrenia has an inflammatory component,77–79 
evidence suggests that inflammatory processes activate 
KYN pathway enzymes in the periphery, leading to 
increases in peripheral KYN.31,47,53,80,81 As KYN readily 
crosses the blood-brain barrier, elevated peripheral KYN 
may contribute to elevated brain KYNA. Accordingly, 
elevated KYN has been detected centrally and peripher-
ally in patients with schizophrenia63–66,71,72 and has been 
shown to correlate with brain KYNA.65,71

Further, studies examining KYN pathway enzyme 
expression and activity within brain areas highly impli-
cated in schizophrenia pathophysiology have reported 
increased TDO2 and decreased KMO, with no change 
in IDO or KAT II.66,70,82,83 An increase in TDO2 would 
contribute to elevated brain KYN. This would be increas-
ingly directed towards KYNA production in the presence 
of KMO disturbances, as supported by genetic stud-
ies that report KMO gene alterations to be related to 
increased KYNA.84,85 Likewise, preclinical studies admin-
istering a KMO blocker or genetically disrupting KMO 
have observed KYNA elevations.86–89

In addition, astrocytic activation may have an impor-
tant role in explaining elevated KYNA. As previously 
described, KAT II, the enzyme primarily responsible 
for converting KYN to KYNA in the brain, has been 
found to exist preferentially in astrocytes. Thus, astro-
cytic activation may increase KYNA production. In sup-
port, increases in S100B, a marker for astrocyte function, 
have been found in patients with schizophrenia, reflecting 
increased astrocytic activity.90 Moreover, administration 
of interleukin 6 to cultured human astrocytes has been 
shown to increase KYNA, consistent with the aforemen-
tioned inflammation and astrocyte mechanisms.72

Overall, peripheral inflammation, altered brain TDO2 
and KMO, and astrocytic activation may provide a 
framework through which to understand elevated KYNA 
in schizophrenia.

Implications of KYNA Dysregulation

KYNA and Behavior.  KYNA has a demonstrated capac-
ity to affect behavior and has been posited to be especially 
influential in cognitive dysfunction.31,52 In the present 
review, 4 included studies reported upon relationships 
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between KYNA and behavior. Fazio et al62 found nega-
tive correlations between KYNA levels and Positive and 
Negative Syndrome Scale (PANSS) positive symptom 
scores, and between KYNA levels and speed of process-
ing, in subgroups of patients with multi-episode schizo-
phrenia and first-episode schizophrenia, respectively; the 
authors identified no other relationships between KYNA 
levels and measures of symptomatology and functioning. 
Chiappelli et al61 noted that patients who experienced dis-
tress intolerance had higher KYNA levels both at base-
line and following a stressor paradigm than patients who 
tolerated the psychological stressor and HCs. Also, in 
patients with distress intolerance, the change in KYNA 
was positively related to Brief  Psychiatric Rating Scale 
(BPRS) total scores; however, baseline KYNA levels were 
not related to BPRS total scores. In addition, neither base-
line KYNA nor change in KYNA levels were correlated 
with processing speed or working memory in patients or 
HCs.61 Linderholm et al65 noted no relationship between 
KYNA levels and BPRS and the Global Assessment of 
Functioning scores. Finally, Myint et al67 found that ini-
tial plasma KYNA levels were associated with a greater 
reduction in PANSS positive symptom scores as well 
as Korean Version of the Calgary Depression Scale for 
Schizophrenia depressive symptom scores after 6 weeks 
of antipsychotic treatment, though no cross-sectional 
relationships existed.

Beyond the included studies, other investigations in 
humans have provided evidence for associations between 
KYNA and behavior in patients with schizophrenia. 
Wonodi et  al83 found that a single-nucleotide polymor-
phism in the KMO gene (the rate-limiting enzyme of 
KYN breakdown) was related to impaired smooth pur-
suit eye movement and visuospatial working memory in 
a clinical sample. Similarly, Wonodi et al91 found an asso-
ciation between variations in the KMO gene and deficits 
in cognitive function, an effect that was more marked in 
patients with schizophrenia than in HCs.

While human studies provide some evidence for the role 
of KYNA in modulating schizophrenia-like behavior, 
stronger support arises from preclinical work. In animal 
studies, KYNA levels can be raised through focal applica-
tion of KYNA, administration of KYN, genomic KMO 
elimination, or KMO blockade.41,52 These manipulations 
cause cognitive impairments similar to those observed in 
patients with schizophrenia, including deficits in prepulse 
inhibition,92,93 auditory sensory-gating,94 stimulus pro-
cessing and conditioned responding,95 spatial working 
memory,96 contextual fear conditioning and context dis-
crimination,97 spatial learning and memory,98–100 and cog-
nitive flexibility.101–103 In addition, KYNA increases have 
been shown to enhance spontaneous and amphetamine-
induced locomotor activity.104

Conversely, experimentally induced reductions in 
KYNA by genetic deletion or acute inhibition of KAT II 
have led to improved cognitive functioning. Improvements 

have been noted in contextual memory and spatial dis-
crimination,105 spatial learning and memory,100 sustained 
attention, amphetamine- and ketamine-induced disrup-
tions in auditory gating, and ketamine-induced deficits in 
working memory and spatial memory.106

In summary, while human literature on the topic is 
emergent, preclinical studies provide evidence to sug-
gest that increased KYNA levels may account for certain 
schizophrenia-like behaviors, specifically those observed 
within cognitive and social domains.

KYNA and Neurotransmission.  Of the studies included 
in the current review, only one measured indices of 
neurotransmission. Among other neurometabolites, 
Fukushima et al63 found decreased plasma serotonin and 
increased glutamate in the schizophrenia group, although 
relationships with KYNA were not reported. Moreover, 
another human study reported positive correlations 
between CSF KYNA and CSF homovanillic acid and 
5-hydroxy-indoleacetic acid, indicative of dopamine and 
serotonin turnover, respectively.107

Unlike currently available human studies, preclini-
cal literature has provided ample evidence to suggest 
that KYNA has inverse bi-directional relationships with 
several neurotransmitters, including glutamate, dopa-
mine, acetylcholine, and GABA. Studies have dem-
onstrated that increasing KYNA results in decreased 
glutamate99,100,102,108–112; notably galantamine administra-
tion normalizes this effect.102,110,112 Accordingly, decreas-
ing KYNA leads to increased glutamate.100,105,108,110,112

Similarly, studies investigating dopaminergic neuro-
transmission have found that increasing KYNA results in 
decreased dopamine levels87,113,114—an effect that can also 
be attenuated by galantamine113,114—whereas decreasing 
KYNA increases dopamine levels.114,115 Furthermore, 
KYNA’s influence on midbrain dopamine neurons has 
been thoroughly studied; reliably, increased KYNA leads 
to increased firing rate and burst firing activity,93,116–119 
whereas decreased KYNA has an opposite effect.119,120 
These effects are believed to result from KYNA’s block-
ade of glutamate receptors.116,118,119 Moreover, the influ-
ence of KYNA on the dopamine system has been 
explored through the assessment of its effect on amphet-
amine-induced responses. Akin to NMDAR antagonists, 
KYNA has an amplifying effect on amphetamine-
induced dopamine release through a mechanism involv-
ing reduced inhibition by amphetamine on firing rate and 
burst activity of ventral tegmental area dopamine neu-
rons.121,122 Finally, it deserves mention that KYNA modu-
lates the effects of clozapine—an atypical antipsychotic 
with particular efficacy in patients with treatment-resis-
tant schizophrenia—and nicotine on midbrain dopamine 
neurons.46,120,123

Further, an inverse relationship between KYNA and 
acetylcholine is observed, with a decrease in KYNA 
leading to increased acetylcholine levels.124 Lastly, a 
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bi-directional relationship between KYNA and GABA 
has been noted. An increase in KYNA results in decreased 
GABA—an effect prevented by galantamine—while a 
decrease in KYNA increases GABA.108,125

In summary, preclinical literature supports KYNA’s 
inverse effects on glutamate, dopamine, acetylcholine, and 
GABA, through its antagonism of α7nAChRs. In con-
trast, KYNA’s influence on midbrain dopamine neurons’ 
firing rate and burst firing activity, and amphetamine-
induced responses, is likely related to its antagonism of 
glutamate receptors. These inverse associations remain 
unclear in schizophrenia, as hallmark neurotransmitter 
disruptions such as elevated striatal dopamine synthesis 
and release,4,6 and increased subcortical glutamate,2 seem 
incongruent with observed elevations in KYNA levels; 
heterogeneous brain KYNA distribution might explain 
this discrepancy.

KYNA and Drugs.  Several pharmacological agents 
can be utilized to manipulate KYNA levels. As per the 
above evidence, treatments that are intended to benefit 
patients with schizophrenia might aim to reduce KYNA 
levels. Given that there are no known KYNA degrada-
tion enzymes or specific targetable reuptake sites, the 
optimal method to lower KYNA appears to be via KAT 
II inhibition.41 KAT II has been shown to be highly 
substrate-specific, further making it an attractive tar-
get.41 Preclinical studies have shown that agents inhibit-
ing KAT II lower KYNA levels by approximately 30% 
to 40%.52,100,106,112,124,126–128 Additionally, preclinical work 
suggests that these agents are procognitive100,106,128 and 
increase neurotransmitter levels described to be influ-
enced by KYNA above.100,108,110,112,115,124,125

Pharmacological treatments might also attempt to 
counter KYNA’s mechanism of action. Preclinical find-
ings presented above suggest that agonism of α7nAChRs 
or NMDARs might mitigate schizophrenia-like behavior 
and/or neurotransmission derangements. However, stud-
ies examining such agents in patients with schizophrenia 
have shown minimal efficacy to-date.55,129–131

Other possible targets to reduce KYNA are peripheral 
IDO and TDO2. Decreasing their activity might attenu-
ate overproduction of peripheral KYN, thereby prevent-
ing increases in brain KYN and ultimately, brain KYNA. 
While IDO and TDO2 inhibitors have been studied as 
possible cancer treatments, their use in psychiatric dis-
eases has been limited.31 IDO and TDO2 have important 
physiological functions, including immunomodulation 
and NAD production, respectively, and their inhibition 
can cause significant adverse effects.132–135

Nonselective inhibitors of cyclooxygenase (COX)-1 
and COX-2 have also been found to influence KYNA 
levels: the former elevating KYNA and the latter decreas-
ing it.136 COX-2 inhibitors have also been suggested 
to rebalance a disrupted immune response74,137 and 
have demonstrated beneficial effects for patients with 

schizophrenia80,138; however, the latter notion may be 
influenced by publication bias.139

Another strategy is activation of central KMO and its 
downstream enzymes along the quinolinic acid (QUIN)-
producing branch, which may be decreased in schizo-
phrenia.70 Doing so may shift brain KYN degradation 
towards QUIN and away from KYNA production. 
However, this would increase production of potentially 
harmful neurotoxins.32,53,54

Finally, nonspecific reduction of KYNA through TRP 
depletion has been attempted. Thus far, it has produced 
mixed results with respect to symptoms in patients with 
schizophrenia.140–142

Limitations of Present Study

The present work should be considered in light of its limi-
tations. First, the primary aim may have been too nar-
row in that other KYN pathway metabolites were not 
evaluated. Second, some studies included patients with 
SA and psychosis NOS, which may have alternate patho-
physiologies. Third, since some included studies did not 
report upon certain variables, such as duration of illness, 
antipsychotic dose, and symptom severity, and multiple 
measurement scales were utilized for the latter, the pres-
ent study was unable to include these variables in meta-
regression analyses. Fourth, some included studies did 
not account for the influence of food, smoking, or drug 
use. Fifth, compared to other major meta-analyses, our 
sample size was small. This may be especially relevant 
for the interpretation of subgroup analyses, as accumu-
lating evidence may also reveal disruptions in peripheral 
KYNA levels. Finally, the possibility of publication bias 
should not be discounted.

Conclusion

The present meta-analysis found increased KYNA lev-
els in patients with schizophrenia, a phenomenon that 
appears to be localized to the CNS. While age, anti-
psychotic status, and sex may have modulating effects, 
elevated central KYNA might help to explain disrup-
tions in behavior and neurotransmission in patients with 
schizophrenia, thereby providing further clarity towards 
the understanding of schizophrenia pathophysiology and 
contributing to the development of novel potential treat-
ment targets.

Future Directions

Future clinical studies should aim to replicate preclini-
cal findings by testing the relationships between KYNA 
levels and measures of behavior and neurotransmission. 
The former can be achieved by utilizing well-character-
ized symptom (eg, PANSS143) and neuropsychological 
(eg, MATRICS144) batteries while the latter can be stud-
ied using in vivo brain imaging. Moreover, the regional 
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distribution of KYNA levels should be explored in these 
relationships. Specifically, the investigation of possible 
relationships among KYNA levels, elevated striatal pre-
synaptic dopamine synthesis, and increased subcorti-
cal glutamatergic neurometabolites early in the illness is 
warranted. Furthermore, measuring KYNA longitudi-
nally over the course of illness would help define its role 
in schizophrenia pathophysiology. Additionally, future 
investigations should clarify the relationship between 
CSF, brain, plasma, and saliva KYNA levels, while 
ensuring that methodological issues such as fasting status 
are accounted for. This may elucidate whether studies in 
patients with schizophrenia should employ a particular 
KYNA sampling method. It may also be beneficial for 
future work to concurrently measure KYNA with other 
KYN pathway components to further examine pathway 
dysregulation. Overall, a better understanding of the 
cause and consequences of elevated KYNA in patients 
with schizophrenia may lead to the development of 
improved diagnostic and therapeutic strategies.
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