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Processing speed is impaired in patients with psychosis, and 
deteriorates as a function of normal aging. These observa-
tions, in combination with other lines of research, suggest 
that psychosis may be a syndrome of accelerated aging. But 
do patients with psychosis perform poorly on tasks of pro-
cessing speed for the same reasons as older adults? Fifty-one 
patients with psychotic illnesses and 90 controls with similar 
mean IQ (aged 19–69  years, all African American) com-
pleted a computerized processing-speed task, reminiscent 
of the classic digit–symbol coding task. The data were ana-
lyzed using the drift-diffusion model (DDM), and Bayesian 
inference was used to determine whether psychosis and aging 
had similar or divergent effects on the DDM parameters. 
Psychosis and aging were both associated with poor perfor-
mance, but had divergent effects on the DDM parameters. 
Patients had lower information-processing efficiency (“drift 
rate”) and longer nondecision time than controls, and psy-
chosis per se did not influence response caution. By contrast, 
the primary effect of aging was to increase response cau-
tion, and had inconsistent effects on drift rate and nonde-
cision time across patients and controls. The results reveal 
that psychosis and aging influenced performance in different 
ways, suggesting that the processing-speed impairment in 
psychosis is more than just accelerated aging. This study also 
demonstrates the potential utility of computational models 
and Bayesian inference for finely mapping the contributions 
of cognitive functions on simple neurocognitive tests.

Keywords:  psychosis/aging/digit–symbol/processing 
speed/Bayesian inference/computational psychiatry

Introduction

Cognitive deficits are a core feature of disorders involving 
psychosis, including schizophrenia1–4 and bipolar disorder 

with psychotic symptoms.5,6 Meta-analyses have shown 
that, out of all cognitive measures, digit–symbol coding 
tasks yield the largest differences between patients with 
psychosis and controls.7,8 These tasks require subjects 
to match digits and symbols as quickly as possible, and 
the dependent variable is usually the number of correct 
responses made within a time limit (eg, ref.9). Traditionally, 
they have been considered relatively pure measures of 
“processing speed,”10 commonly defined as the speed with 
which an individual can perform any cognitive operation.11

In healthy individuals, performance on processing-
speed tasks declines as a function of age, with measurable 
differences appearing as early as 30 years old (eg, refs.12,13). 
Thus, as famously noted by Kraeplin,14 the pattern of cog-
nitive deficits associated with psychosis appears to mirror 
the pattern of decline seen in normal aging. This observa-
tion was the first to lead to the conceptualization of psy-
chosis as a syndrome of accelerated aging.15,16 Although 
originally posed in regard to cognition, it has developed 
into a general biological hypothesis. Indeed, patients with 
psychosis exhibit other physical symptoms, such as struc-
tural brain abnormalities, that are reminiscent of those 
seen in older adults.17,18 Patients with psychosis also have 
dramatically decreased life expectancy compared to the 
general population, some—but not all—of which may be 
explained by increased rates of suicide, accidental death, 
and lifestyle risk factors.19

There is an important problem with the interpretation 
of the processing-speed impairment as evidence for the 
accelerated-aging hypothesis. Even relatively “pure” mea-
sures of processing speed, such as digit–symbol coding, 
rely on a far more complex set of cognitive functions than 
traditionally assumed,20,21 and deficits in various subsets 
of these functions may cause poor performance.22,23 Thus, 
it is quite possible for patients with psychosis and older 
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adults to perform poorly on such tasks for completely dif-
ferent reasons—if so, this would imply that the process-
ing-speed impairment in psychosis is more than just the 
result of accelerated aging.

One approach to understanding the roles of different 
cognitive functions on a task is to model the dynamics 
of performance.24–26 The drift-diffusion model (DDM) 
is a popular model of this kind.27 The DDM explains 
performance in terms of latent parameters with distinct 
interpretations, including the “drift rate,” which reflects 
efficiency of information processing, response caution, 
and “nondecision time,” which incorporates factors such 
as sensory encoding, motor preparation, and motor 
execution. The DDM has proven extremely popular in 
basic science due to its ability to explain accuracy and 
reaction-time distributions across a vast range of experi-
mental designs,28 the validity of the interpretations of 
its parameters,29 and its ability to provide insights into 
the effects of experimental manipulations and subject 
characteristics on performance. For example, prior work 
has shown that, across tasks, normal aging is associated 
with increased response caution, but that the association 
between aging and drift rate is weaker (eg, ref.30).

Here, patients with psychosis and controls completed 
a computerized, two-alternative forced-choice variant 
of the digit–symbol coding task. Our task differed from 
traditional pen-and-paper versions in several ways, most 
notably in terms of its reduced motor demands. However, 
despite these qualitative differences, this variant of the 
task has been shown to produce similar differences 
between patients with psychosis and controls,31,32 and 
demonstrates similar changes with advancing age,33 as tra-
ditional versions. Crucially, the forced-choice version had 
the key advantage that it allowed us to record trial-level 
accuracy and reaction times, and thus fit the DDM to the 
data. We compared the effects of psychosis and aging on 
subjects’ DDM parameters to determine if  they influenced 
performance in similar or divergent ways. Based on previ-
ous work (eg, ref.30), we expected aging to strongly influ-
ence response caution, and to weakly influence drift rate. 
If  psychosis impairs processing speed in a similar way to 
aging, it should influence response caution more strongly 
than drift rate. On the other hand, if  psychosis and aging 
impair processing speed differently, psychosis may influ-
ence drift rate more strongly than response caution.

Methods

Subjects

Data from 51 patients with psychosis and 90 unaffected 
individuals from the same community were included 
in the analysis. All subjects were African Americans. 
The patient group included subjects with various diag-
noses including substantial psychotic features, namely 
schizophrenia (n = 25), schizoaffective disorder (n = 11), 
psychotic bipolar disorder (n  =  6), psychotic major 

depression (n  =  3), and psychosis not otherwise speci-
fied (n = 6). DSM-IV diagnoses were confirmed through 
structured clinical interviews34 and a consensus process. 
Neither patients nor controls were excluded for having 
nonpsychotic psychiatric disorders or substance depen-
dencies, and as a consequence of this liberal strategy, 
patients and controls had similar full-scale IQ (FSIQ) 
scores, obtained from the Wechsler Abbreviated Scale of 
Intelligence (WASI35). Subjects were excluded for a his-
tory of major nonpsychiatric medical disorders or FSIQ 
<70. Table 1 provides additional subject information.

Digit–Symbol Coding Task

The task, illustrated in figure  1A, was similar to those 
from previous studies (eg, refs.5,31,32,36). On each trial, sub-
jects saw a key comprising the digits 1–9 and 9 symbols. 
They also saw a digit–symbol combination in the middle 
of the screen, and indicated whether the digit and symbol 
matched according to the key. Responses were made using 
the left and right arrow keys. Subjects were instructed to 
make as many correct responses as possible within 90 s. 
The task was administered as part of our publically avail-
able test battery, “Charlie”.37

Conventional Analysis

In addition to our DDM analysis, we analyzed the 
data conventionally with two analyses of covariance 
(ANCOVAs). The first ANCOVA included diagnostic 
group, sex, and age in years as independent variables, 
and the number of correct trials as the dependent vari-
able. The second ANCOVA was the same except that 
the dependent variable was the proportion of correct 
responses. We also performed a number of Welch’s inde-
pendent-samples t-tests to determine whether medication 
influenced performance in the patient group.

Description of the DDM

The DDM assumes that decisions in two-choice tasks are 
based on a latent decision variable that represents the evi-
dence for the possible responses. The initial value of this 
variable sits between two boundaries, and is updated sto-
chastically. When the decision variable crosses a bound-
ary, the corresponding response is executed. As illustrated 
in the top part of figure 1B, the DDM predicts response 
probabilities (ie, accuracy) and the shapes of both reac-
tion-time distributions. For a detailed explanation of the 
DDM and a comparison to other models, see ref.24 For a 
more accessible introduction, see ref.38

The “basic” DDM contains four parameters. Drift rate 
(v) reflects the quality of evidence extracted from the stim-
ulus, or information-processing efficiency. It can be con-
sidered roughly analogous to sensitivity (d′) from signal 
detection theory.39 Smaller v leads to more error responses. 
Boundary separation (a) reflects the amount of information 
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Table 1. Demographic and Clinical Sample Characteristics

Patients Controls Total P value

N 51 90 141
Female (%) 25 (49.0) 42 (46.7) 67 (47.5) .672a

Right handed (%) 47 (92.2) 87 (96.6) 126 (89.3) .306a

Age (range) 36 (19–69) 43 (19–62) 39 (19–69) .138b

High school diploma or GED (%) 36 (70.6) 61 (67.8) 97 (68.8) .440a

Bachelors or higher (%) 4 (7.84) 19 (21.1) 23 (16.3) .031a,c

WASI FSIQ (range; SD) 90 (70–124; 12.3) 91 (70–124; 11.9) 91 (70–124; 12.0) .346b

Mean duration of psychotic illness 
in years (range)

11 (1–40) — — —

Prescribed antipsychotics (%) 38 (74.5) 1 (1.11) 39 (27.7) .000a,c

Prescribed mood stabilizers (%) 5 (9.80) 0 (0) 5 (3.54) .005a,c

Prescribed antidepressants (%) 25 (49.0) 2 (2.22) 27 (19.1) .000a,c

Prescribed benzodiazepines/ 
barbiturates (%)

6 (11.8) 2 (2.22) 8 (5.67) .027a,c

Prescribed lithium (%) 1 (1.96) 0 (0) 1 (0.709) .362a

Prescribed stimulants (%) 0 (0) 1 (1.11) 1 (0.709) .638a

Note: GED, general educational development; WASI FSIQ, Wechsler Abbreviated Scale of Intelligence full-scale IQ; SD, standard 
deviation.
aFisher’s exact test.
bWelch’s t-test.
cNominally significant at the 0.05 level.

Fig. 1. (A) Example trial and task instructions. This is a “match” trial, so the correct response is “yes.” (B) The top part shows a 
schematic of the drift-diffusion model. It is valid only for match trials. The blue shaded region at the top is the reaction-time distribution 
for “yes” (correct) responses, and the red shaded region at the bottom is the reaction-time distribution for “no” (incorrect) responses. 
The blue and red traces are example diffusion patterns (ie, different trials in the experiment). Note that the corresponding schematic for 
nonmatch trials would be flipped, and “no” responses would be correct. The bottom part of the panel illustrates how changes in v, a, and 
t independently influence accuracy and response-time distributions. Smaller v causes more errors, indicated by the increasing height of 
the error distributions. Greater a causes fewer errors, but also causes the correct distribution to become more rightward-skewed, leading 
to slower responses on average. Greater t causes both the distributions to be shifted rightward, leading to slower responses. Any one or 
combination of these effects would lead to poorer performance on the task.
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required before making a response (ie, response caution). 
Although larger a leads to fewer errors, it also causes slower 
responses, and thus poorer performance on time-sensitive 
tasks. Nondecision time (t) accounts for factors that are 
not directly related to the decision process, such as sensory-
encoding time, motor preparation, and motor execution. 
Larger t leads to slower responses. The final parameter in 
the basic DDM is the starting point (z), reflecting response 
bias. The “full” DDM includes three additional param-
eters that reflect trial-by-trial fluctuations in drift rate (sv), 
starting point (sz), and nondecision time (st). It is also com-
mon to allow v to differ between the different categories of 
trials presented during the experiment (eg, ref.40).

Model Design

We constructed a Bayesian DDM using the HDDM 
software package.41 Here, “Bayesian” refers a method of 
statistical inference that uses Bayes’ theorem to update 
beliefs about model parameters given the observed data, 
which is sharply contrasted with traditional frequentist 
inference (see ref.42). Bayesian inference has numerous 
advantages over frequentist inference,43 including more 
efficient parameter recovery through the use of priors, 
and the propagation of uncertainty throughout all lev-
els of the analysis. The latter advantage is particularly 
relevant here. Since we had a small amount of data per 
individual, the DDM parameter values associated with 
a particular subject had quite high uncertainty. A  con-
ventional frequentist analysis such as an ANOVA would 
ignore this uncertainty, treating the most likely individual 
parameter values as “point estimates.” Bayesian analysis 
does not do this, and therefore can be considered fairer.44

The design of the model is illustrated in figure  2A. 
Under the model, the value of v for a given subject on a 
given trial was linearly determined by the subject’s diag-
nostic group, age, and the type of trial (match or non-
match). Formally, this can be expressed as vijk = αvi+ βvixij 
+ δv pijk, where i indexes the group, j indexes the subject, 
k indexes the trial, αv, βv, and δv are covariates, x is the 
subject’s age in decades minus 1.8, and p is the trial type 
(coded as a categorical variable with 0 indicating a match 
trial and 1 indicating a nonmatch trial). Thus, compar-
ing the variables αv0 and αv1 reveals the average difference 
in drift rate between a hypothetical 18-year-old patient 
and a hypothetical 18-year-old control. This construction 
allowed us to examine the effects of psychosis indepen-
dently of the effects of age, which are minimal at 18 years 
and begin soon after. The variables βv0 and βv1 represent 
the average decline in drift rate per decade for patients 
and controls, respectively. The variable δv represents the 
average difference in drift rate between match and non-
match trials. Similar linear models, without effects of 
trial type, were placed on a and t; these can be expressed 
as aijk = αai+ βaixij and tijk = αti+ βtixij, respectively. A single, 
group-level z variable was also estimated in the model.

To determine whether any of the trial-by-trial variables 
from the full DDM should be included in the model, 8 can-
didate models, reflecting the power set of combinations of 
these variables, were fitted to the data separately. We assumed 
a single value of these parameters for all subjects. Figure 2B 
shows the deviance information criterion (DIC45) values for 
these models. The model containing st and sz had the small-
est (best) DIC score, and was chosen as the final model. 
However, it turned out that the choice of model made little 
difference to our conclusions (see “Results” section).

Bayesian Parameter Estimation

All random variables in the model were assigned vague 
prior distributions, which were updated using the data to 
produce posterior distributions. Posterior distributions 
were sampled using the Metropolis-within-Gibbs Markov 
chain Monte Carlo (MCMC) algorithm,46 implemented 
in PyMC.47 Four independent MCMC chains were ini-
tialized with random starting values. Each chain com-
prised 8000 posterior samples, and the first 1000 samples 
per chain were discarded.

Fig. 2. (A) Directed acyclic graph showing the probabilistic 
relationships between all the variables in the final model. Unfilled 
single-lined circles represent stochastic random variables, double-
lined circles represent deterministic variables, and the shaded 
circle represents the observed data, consisting of reaction times 
and choices. (B) DIC values of the 8 candidate models.
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Model Checking

To check whether the model captured important patterns 
within the data, we performed a posterior predictive check 
(PPC). PPCs are used to assess, in a qualitative sense, the 
goodness of fit of Bayesian models.48 They involve simu-
lating replicated data from the posterior predictive dis-
tribution of the fitted model, and then comparing these 
to the observed data. Two hundred fifty data sets were 
simulated in total. Initially, each simulation contained 
twice as many trials per subject as in the original data 
set, and trials were dropped when the cumulative reaction 
time for the subject exceeded 90 s. These simulated data 
sets were then compared to real data set in various ways 
(see Results).

Results

Results of the Conventional Analysis

The first ANCOVA revealed main effects of diagnos-
tic group [F(1, 133)  =  24.0; P  =  2.77  ×  10−6] and age  
[F(1, 133) = 47.7; P = 1.89 × 10−10] on the number of cor-
rect responses, with patients and older adults perform-
ing more poorly (figure 3). There was also a significant 
interaction between group and age [F(1, 133)  =  4.24; 
P = .00414], indicating that aging was less deleterious to 
performance in patients than in controls. Neither the main 
effect of sex nor any interaction term involving sex was 
significant (F ≤ 0.175; P ≥ .0677). The second ANCOVA 
did not yield any significant main effects or interactions 
(F ≤ 1.82; P ≥ .180), probably because accuracy was very 

Fig. 3. (A) Mean number of correct responses per group (with 95% confidence intervals). (B) Number of correct responses for all 
subjects as a function of age. Solid green and blue lines show linear regression lines for the patient and control groups, respectively, 
and shaded regions are 95% confidence intervals around the regression coefficient. Yellow lines are the results of the PPC (see text for 
explanation). (C) Distribution of reaction times collapsed across all subjects. Reaction times for error responses are plotted as negative 
values. Yellow lines are kernel-density estimates of the data simulated via the PPC.
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high overall (mean 96% correct in both groups). While 
these results point to psychosis- and age-related impair-
ments in processing speed, they cannot be used to assess 
whether the nature of  these impairments are similar or 
divergent without the use of a model such as the DDM.

To determine whether antipsychotic medication influ-
enced performance, the patient group was divided into 
two subgroups based on whether they were taking anti-
psychotics. A Welch’s t-test revealed a significant differ-
ence in performance (number of correct trials) between 
the subgroup of patients with psychosis taking antipsy-
chotic medication (n = 38) and the unmedicated subgroup 
(n = 13; t19.022 = 2.27, P = .0035). Despite this signifi-
cant difference, the unmedicated subgroup was too small 
to reliably investigate the influence of antipsychotics on 
the DDM parameters. Similar tests were performed for 
mood stabilizers, antidepressants, and benzodiazepines/
barbiturates, none of which yielded significant differ-
ences between the subgroups (t ≤ 0.869, P ≥ .418).

PPC Results

Accuracy and reaction times within the simulated data 
sets were very similar to those in the real data, and exhib-
ited effects of psychosis and aging that were similar in 
magnitude to those observed in the real data (figure 3). 
Thus, the model successfully captured the important fea-
tures of the real data.

Effects of Psychosis on the DDM Parameters

Figure  4A shows the effects of psychosis on drift rate, 
response caution, and nondecision time. The posterior 
mean of αv was smaller for patients (1.12) than controls 
(1.37). In other words, for an average 18 year-old subject, 
psychosis conferred a decrease in drift rate of 0.25. Since 
the 95% highest-density regions (HDRs) of these 2 random 
variables did not overlap (patients: 1.01–1.23; controls: 
1.29–1.45), this difference is considered credibly nonzero. 
The posterior means of αa were almost the same for both 
groups (patients: 2.48; controls: 2.50), and the 95% HDRs 
overlapped (patients: 2.25–2.70; controls: 2.30–2.69). Thus, 
psychosis alone did not appear to influence response cau-
tion. There was a large difference in the posterior means of 
αt between the groups (patients: 1.22; controls: 0.75), and 
the 95% HDRs did not overlap (patients: 1.15–1.30; con-
trols: 0.67–0.83). For an average 18 year-old subject, psy-
chosis conferred an increase in nondecision time of 0.47 s.

Effects of Aging on DDM Parameters

Figure 4B shows the effects of aging on drift rate, response 
caution, and nondecision time in the patient group and 
control group. For controls, the 95% HDR of βv was below 
zero (mean: −0.07; 95% HDR: −0.11 to −0.04). However, 
for the patients, the 95% HDR of βv included zero (mean: 
−0.04; 95% HDR: −0.08 to 0.001). In other words, aging 

was likely to have affected drift rate only for the control 
group. By contrast, βa did not overlap with zero for either 
patients (mean: 0.46; 95% HDR: 0.36–0.56) or controls 
(mean: 0.26; 95% HDR: 0.16–0.36); indicating a likely 
effect of aging across all subjects. On average, aging by 
one decade conferred a 0.26–0.46 increase in response 
caution. Finally, the effect of aging on nondecision time 
was inconsistent across groups: aging decreased nonde-
cision time for patients (mean: −0.08; 95% HDR: −0.10 
to −0.06) but increased it for controls (mean: 0.08; 95% 
HDR: 0.04–0.12).

Remaining Parameters and Alternative Models

Summary statistics for all parameters in the model are pro-
vided in Supplementary Material 1. To determine whether 
our choice of model affected the results, we re-analyzed 
the data using the simplest candidate model (containing 
no trial-to-trial parameters) and the most complex one 
(containing all the trial-to-trial parameters); the results are 
shown in Supplementary Material 2 and Supplementary 
Material 3, respectively. The results from all three mod-
els were consistent with the notion of divergent effects of 
psychosis and aging on the DDM parameters.

Discussion

We tested whether the processing-speed impairment in 
psychosis is similar to the decline observed in normal 
aging. This question could not be answered by conven-
tional analyses, but using the DDM,27 we uncovered 
divergent influences of psychosis and aging. Patients 
had lower drift rates and larger nondecision times than 
controls, and psychosis per se did not influence response 
caution. By contrast, the primary effect of aging was to 
increase response caution. Aging had inconsistent effects 
on drift rate and nondecision time across patients and 
controls: drift rate increased with age in controls only, 
whereas nondecision time increased with age in controls 
but decreased with age in patients. The results suggest 
that the processing-speed impairment in psychosis is not 
simply the result of accelerated aging.

Accelerated aging in psychosis is a general biologi-
cal hypothesis, and other features of  psychosis sup-
port this idea.17,18,49 In our view, the present findings 
should not be used to argue against the hypothesis 
generally. Instead, we suggest that although acceler-
ated aging may contribute to the observed impairments, 
additional factors, such as differences in task strategy 
between patients and controls, also play an important 
role. This suggestion dovetails with evidence of  impov-
erished “executive functioning” or “cognitive control” 
in patients with psychosis.50,51 Consider, for example, 
the work by Knowles et  al.22,23 Using structural equa-
tion modeling, they examined the relationships between 
pen-and-paper digit–symbol coding and other tasks in 
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patients with schizophrenia and controls. Put simply, 
they found that patients with psychosis and controls 
approach processing-speed tasks differently (see also 
ref.52). This difference could have driven the substantial 
differences in the DDM parameters between the groups 
in the present study.

Although our results are consistent with the idea of 
a difference in task strategy, it is difficult to be specific 
about the nature of this difference. The DDM has been 
used primarily in basic science, with little application to 

psychiatry: to our knowledge, only one previous study 
has applied the DDM to data from patients with psy-
chosis.53 Little is known about how executive functioning 
or cognitive control influence DDM parameters in pro-
cessing-speed tasks, especially in patients with psychosis. 
A promising direction for future research is to combine 
the DDM approach with structural equation modeling in 
an attempt to understand these influences (eg, refs.22,23). 
The DDM could also be combined with functional neuro-
imaging—for example, perhaps the reduction in drift rate 

Fig. 4. (A) Posterior densities reflecting the effects of psychosis on drift rate (top left), response caution (top right), and nondecision 
time (bottom left), with shaded areas representing 95% HDRs. The bottom-right schematic shows the predicted (posterior mean) values 
of drift rate, response caution, and nondecision time for the average 18-year-old patient and 18-year-old control. (B) Posterior densities 
reflecting the effects of psychosis on drift rate (top left), response caution (top right), and nondecision time (bottom left), with shaded 
areas representing 95% HDRs. Solid vertical lines represent a value of 0, reflecting no effect of aging. The bottom-right schematic shows 
the predicted (posterior mean) values of drift rate, response caution, and nondecision time for the average 20 (solid lines), 40 (dashed 
lines), and 60 (dotted lines) year-old patient and control.
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in patients with psychosis is associated with inadequate 
recruitment of the dorsolateral prefrontal cortex.54,55

A limitation of the present study is that the sample was 
relatively young. Although the maximum age was 69 years, 
there were few subjects older than 60. Deterioration in per-
formance on processing-speed tasks begins much earlier 
than on other tasks,12,13 so a younger sample is appropri-
ate for measuring the influences of psychosis and normal 
aging on processing speed. However, cognitive decline 
accelerates after 60 in normal adults,56 and impairments in 
patients with psychosis are usually broader and more severe 
in later life, especially in those with a history of chronic 
institutional stay.57–60 Furthermore, although the obser-
vation that aging was associated with increased response 
caution is highly consistent with previous DDM studies 
(eg, refs.30,61–63), the older subjects in those studies tended 
to be over 60 years old. Thus, an important concern, which 
could be addressed in future studies, is whether the present 
results generalize to samples of even older subjects.

All of the subjects in the present study were African 
Americans. Like other minority groups, African 
Americans are underserved by psychiatric research, 
and we specifically chose to study them for this rea-
son. However, focusing on one specific group necessar-
ily raises the question of generalizability. Previous work 
has revealed race effects on the traditional pen-and-
paper version of the digit–symbol coding task, with 
Black subjects performing worse than White subjects on 
average (eg, ref.64). Such effects are notoriously difficult 
to understand.65 Crucially, however, the rate at which 
digit–symbol coding performance declines with age does 
not appear to differ between racial groups.66 In or view, 
this result suggests that the underlying cognitive func-
tions are largely the same across groups, and therefore 
that the present results would generalize beyond African 
American subjects.

It is widely recognized that patients with psychosis 
experience a general cognitive deficit.2 Consequently, 
when a difference in performance is observed between 
patients with psychosis and controls on a given task, it 
is often unclear how much of  this difference is specific 
to the task, and how much is a reflection of  the gen-
eral deficit. One way to address this question is to have 
subjects complete a comprehensive battery of  tests, and 
then estimate the general and task-specific deficits simul-
taneously (eg, ref.67). However, given that digit–symbol 
coding performance correlates strongly with composite 
measures of  general intellectual ability (eg, ref.68), and 
that patients with psychosis experience the greatest defi-
cits on digit–symbol coding tasks,7,8 it could be argued 
that the processing-speed deficit and the general deficit 
might be one and the same. If  this were true, it would 
not be meaningful to estimate the processing-speed defi-
cit in the context of  a general deficit. Models such as the 
DDM might provide a way to shed more light on this 
issue in future studies. For instance, an index of  general 

cognition (eg, IQ or g) could be included as a predic-
tor in a DDM, which could reveal whether psychosis 
and general intellectual ability have similar or divergent 
effects on DDM parameters.

The present study demonstrates the utility of com-
bining computational modeling and Bayesian inference 
in future psychiatric research. Using traditional tech-
niques, very many trials per subject are usually needed to 
obtain meaningful parameter estimates from models like 
the DDM.69 This is problematic for psychiatric research 
because it is often not possible to collect this many data 
from individuals with mental illness. Bayesian methods 
meliorate this limitation by recovering parameters more 
efficiently than traditional approaches.41,70 Here, we show 
that Bayesian methods allow computational models to 
be applied to data from brief  neurocognitive tests, where 
previously it was infeasible to do so.

Supplementary Material

Supplementary data are available at Schizophrenia 
Bulletin online.
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