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Introduction

Negative symptom pathology in patients with schizo-
phrenia is an unmet therapeutic need. Beyond schizo-
phrenia, however, amotivation, alogia, and affective 
flattening are also observed in several other disorders 
(see Strauss and Cohen, this issue1). Given that nega-
tive symptoms, together with impaired cognition, pre-
dict functional outcome in schizophrenia and depression 
patients,2–4 the development of effective treatment strate-
gies is urgently required. Developing targeted treatments 
requires a greater understanding of the mechanisms 
underlying such symptoms. This understanding requires 
objective quantification of negative symptom features 
that can be applied in animal models. Recent reviews 
provided insights on techniques and targets to be investi-
gated,5–8 including a review by Green and colleagues7 that 
culminated in a drive toward understanding effort-based 
decision making. The potential that delineating the mech-
anisms underlying effort-based decision making could 
provide novel treatment targets is an important direction 
for the field. The impact of this research and their result-
ing assessment of mechanisms underlying negative symp-
toms of patients with schizophrenia and other psychiatric 
conditions using preclinical models are discussed below.

This novel direction toward quantifying effort-based 
decision making is being increasingly reflected in pre-
clinical research, including parsing contributions to 
such decision making. Early rodent-based investigations 
of schizophrenia-related negative symptoms focused 
on depression-relevant tests such as sucrose/saccharin 
preference tests,9–12 but evidence suggests patients with 
schizophrenia exhibit normal sweet solution preference 

despite their high negative symptom scores.13 In con-
trast, people with schizophrenia have consistently exhib-
ited poor reward-associative behaviors (eg, probabilistic 
learning14,15), when rewards are explicitly linked to out-
come. Deficits in probabilistic learning are also evident 
in patients with major depression. In contrast to patients 
with schizophrenia, however, whose deficits are linked 
to reductions in reward sensitivity, patients with depres-
sion display a greater sensitivity to misleading negative 
feedback.16 Similarly, implicit reward-associative learn-
ing deficits, which can be measured across species,5,17 is 
seen in other psychiatric conditions, such as depression 
and bipolar disorder,18,19 but not schizophrenia.20,21 Such 
reward-associative learning forms one aspect of effort-
based decision making, wherein subjects weigh the ben-
efit of an outcome (ie, reward) against the costs required 
to obtain it (ie, effort expenditure). Increased physical 
effort to obtain a reward can be assessed by measur-
ing whether an animal scales a surmountable barrier or 
presses a lever multiple times to obtain a desirable reward 
(eg, 4 sucrose pellets), as opposed to opting for the less 
desirable alternative reward (eg, 2 sucrose pellets) by not 
expending additional effort.22,23 Willingness to engage in 
more cognitively demanding behavior to receive a desir-
able reward can be assessed by letting the animal choose 
between trials that present long or short visual stimuli 
that must be accurately detected.24 The short visual stim-
ulus is more difficult to detect and is, therefore, the more 
cognitively demanding choice. An abnormal inflation of 
perceived effort (cognitive or physical) to obtain a reward, 
or a reduced perceived value of a reward, would affect a 
subject’s willingness to engage in such effortful behavior. 
Hence, deficits in the ability to accurately compute effort/
cost may translate into motivational impairments evident 
in schizophrenia patients. Effort-based decision making 
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is therefore subserved by domains including: physical 
effortful motivation25; cognitive effortful motivation; and 
reward associative learning (reviewed in6, see figure  1). 
Delineating the neural mechanisms subserving these 
domains, and their commonalities and differences, may 
result in novel treatment targets that could be individu-
ally tailored to the patient.

Rodent studies investigating neural mechanisms of 
physical and cognitive effort have begun given the elevated 
perceived cost of cognitive effort observed in patients,26–29 
ultimately leading to reduced overall effort.30,31 Both 
physical and cognitive effortful motivation were able 
to predict global cognitive scores (outcome) in schizo-
phrenia patients.27 Interestingly, in rodents both physi-
cal and cognitive effortful discounting were reduced by 
perturbation of the prefrontal cortex (PFC),32,33 similar 
to behavioral deficits and observations of altered PFC 
functioning in schizophrenia patients. Furthermore, can-
nabis treatment reduced effortful choices and reduced 
response-bias development in humans.34 Similarly, treat-
ment with the psychoactive ingredient of cannabis, tetra-
hydrocannabinoid (THC), also reduced cognitive effort.35 
Hence, the endocannabinoid system—an on-demand sys-
tem only activated when required—could be involved in 
the overall reduced motivation of patients with schizo-
phrenia. It is also important to note, however, that these 2 
domains are also dissociable because dopamine receptor 
antagonists reduce physical but not cognitive effort.33 The 
dopamine system is also important for reward learning, 
whereby adeno-associated viral dopamine D1 receptor 
suppression in the striatum impaired probabilistic learn-
ing, but not effortful breakpoint in mice.36 Similarly, infu-
sion of the dopamine D1 receptor antagonist SCH23390, 
although not the D2 antagonist eticlopride, into the 

anterior cingulate cortex (ACC) disrupted effort-cost 
decision making.37 In contrast, systemic dopamine D2-like 
receptor antagonism impaired such effort-based decision 
making that was remediated with a systemic dopamine 
D1-like receptor antagonist.38 These systemic effects may 
be mediated via the nucleus accumbens because dopa-
mine D2 receptor over-expression in this region increased 
the willingness to expend effort, confirming the role of 
ventral striatal dopamine transmission in motivational 
processing.39 In contrast, however, D2 receptor over-
expression in the striatum reduced the willingness to 
expend effort for a preferred reward in mice.40,41 Given 
that positive symptoms of schizophrenia patients are 
treated with dopamine D2-like receptor antagonists, their 
effort-cost decision making deficits may be exaggerated, 
and this dopaminergic interaction remains complicated. 
Indirect action on dopamine receptors may provide alter-
native targets for remediation of negative symptoms.42 For 
example, α7 nicotinic acetylcholine receptor (nAChR) 
activation releases dopamine43 that preferentially acts on 
dopamine D1 receptors,44 perhaps explaining why mice 
lacking these receptors exhibit some depression-relevant 
behaviors including immobility in the forced swim test 
and reduced sucrose preference45 and impaired proba-
bilistic learning, although they exhibit normal effortful 
behavior.46 Interestingly, some clinical trials indicated 
that α7 nAChR agonist treatments reduced negative 
symptoms of patients with schizophrenia.47–49 Thus, its 
contribution to reward learning may be important for 
treating negative symptoms, but large-scale follow-up 
trials are required with negative symptoms as the pri-
mary target. Hence, alterations to the endocannabinoid, 
nicotinic, and/or dopaminergic systems likely contribute 
to negative motivational states in schizophrenia. More 
studies are required, however, to test these mechanisms, 
their locations of effect, and whether they are involved 
during schizophrenia-relevant manipulations (see below). 
Moreover, additional studies are required to specifically 
investigate potential schizophrenia-related pathophysiol-
ogy in these domains.

The impact of schizophrenia-relevant manipulations 
on motivational behaviors has also been investigated. For 
example, the maternal immune activation model (wherein 
early developmental immune activation) of schizophre-
nia resulted in an elevated breakpoint in a progressive 
ratio breakpoint task.50 This finding is in direct contrast 
with schizophrenia patients who exhibit reduced break-
points,25 but the authors maintained that the elevated 
breakpoint may have been related to an inability to detect 
changes in reward/behavior contingencies, leading to 
perseverative-like behaviors.50 The increased breakpoint 
is similar, however, to our recent studies demonstrat-
ing that repeated phencyclidine treatment (a commonly 
used manipulation for modeling schizophrenia), also 
increased breakpoint in rats, even after a 2-week wash-
out period. In contrast, isolation rearing-induced deficits 

Fig. 1.  Subdomains contributing to effort-based decision making. 
Effort-based decision making is a critical component of negative 
symptoms in schizophrenia and can be readily assessed in humans 
and rodents. Further, subdomains are identified whose neural 
mechanisms can be investigated in rodent studies. Dopamine D1 
receptors have been implicated in each aspect of decision making, 
while dopamine D2 receptors contribute toward physical effort 
and reward-associative learning. Both cannabinoid CB1 and α7 
nicotinic acetylcholine receptors have been implicated in reward 
associative learning, while CB1 receptors may also drive cognitive 
effortful motivation.
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were observed in the probabilistic reversal learning task, 
although these deficits were not observed when tested 
in a single session,51 as is done in clinical populations.15 
Hence, manipulations commonly used to model cognitive 
deficits of schizophrenia patients do not always recreate 
schizophrenia-relevant effort-based decision making.

Some psychiatric disorder-relevant manipulations have 
resulted in negative symptom-related behaviors, such as 
reducing Sp4 expression in mice from birth (which nega-
tively impacts numerous systems including NMDA recep-
tor expression52), reduced physical effort and lowered 
reward-associative learning.53 Environmental manipula-
tions also induce depression-relevant behaviors such as 
social defeat disrupting implicit reward associative learn-
ing in rats.54 This profile was associated with alterations in 
stress-related peptide mRNA in the striatum and decreased 
activity in the ventral tegmental area. Environmental 
stress also induces negative affective changes in the affec-
tive bias task in rats,55 which may be useful in future stud-
ies across multiple psychiatric conditions. Other relevant 
manipulations arise from the observation that psychiat-
ric disorder diagnoses are higher in births during spring 
months, leading to the postulation that reduced vitamin 

D during development may have negative outcomes.56 
Indeed, developmental vitamin D (DVD) deficient rats 
exhibit some schizophrenia-like behaviors.57 In contrast, 
however, DVD rats exhibited normal risk-preference in a 
rat gambling task,58 unlike schizophrenia patients whom 
exhibit deficient Iowa Gambling Task performance that 
are linked to negative symptoms.59 To-date, few investiga-
tions of negative symptom-related behaviors have been 
examined using this developmental inducing condition. 
Given that DVD deficient-induced behaviors have not 
always been comparable across rats and mice,60,61 nor 
within strains of mice,62 other mechanisms may drive 
spring birth-induced schizophrenia-like behaviors.

Given the nature of this commentary, not covered here 
is a comprehensive overview of other important topics. 
Full descriptions of the tasks described have not been 
provided but if  interested, the reader is directed toward 
the appropriate references. One point that should be 
made clear irrespective of task though is that researchers 
control for any potential indirect effects of treatments or 
manipulations, eg, slowed motoric capability, persevera-
tive behavior, cognitive impairments etc. that may con-
tribute to disruptions in task performance. Exhaustively 

Table 1.  Summary of Studies on Mechanisms and Models Underlying Effort-Based Decision Making Related Negative Symptoms 
(PFC, Prefrontal Cortex; ACC, Anterior Cingulate Cortex; THC, Tetrahydrocannabinoid; GlyT, Glycine 1 Transporter)

Study Type Domain Manipulation Brain Region Effect on Behavior Ref.

Mechanistic Cost/benefit decision 
making

GABAa antagonist PFC Impaired decision making 32

Physical/ cognitive effort Dopamine D1- or D2-family 
receptor antagonists

Systemic Decreased physical effort, little 
effect on cognitive effort

33

Cognitive effort THC/CB1 receptor agonist Systemic Decreased cognitive effort
35

Reward learning Suppression of dopamine D1 
receptor expression

Striatum Impaired probabilistic learning; 
effort unaffected

36

Physical effort Dopamine D1-family receptor 
antagonist

ACC Impaired physical effort
37

Physical effort Dopamine D2-family receptor 
antagonist

Systemic Impaired physical effort
38

Physical effort Dopamine D2 receptor 
overexpression

Nucleus accumbens Increased physical effort 
expenditure

39

Physical effort Dopamine D2 receptor 
overexpression

striatum Impaired physical effort
40,41

Physical effort GlyT1 inhibition N/A No effect
52

Animal Models 
of Negative 
Symptoms

Reward learning Knockout of α7 nicotinic 
acetylcholine receptors

N/A Impaired probabilistic learning
43

Physical effort Maternal immune activation N/A Increased breakpoints
50

Physical effort Repeated phencyclidine N/A Increased breakpoint

Reward learning Social Isolation Rearing N/A Impaired probabilistic reversal 
learning

51

Physical effort Reduced Sp4 expression N/A Reduced physical effort
53

Reward learning Reduced Sp4 expression N/A Impaired reward associative 
learning

53

Reward learning Social defeat Striatum, VTA Blunted response bias
54
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discussing these necessary controls is beyond the scope of 
this short commentary, but these are important consider-
ations and are often performed within the same task (eg, 
blocking both arms in the T-maze with barriers or mea-
suring response/reward latencies in operant tasks) or by 
conducting complementary, multivariate assessment of 
behavior (eg, locomotor activity/open-field or a battery 
of cognitive testing) to aid the interpretation of a spe-
cific change in effortful decision making. Other areas not 
covered are the use/utility of social-based tasks to assess 
negative symptom-related behavioral profiles in animal 
models. Although there is increasing use of such tasks,63,64 
their links to negative symptoms remain unclear, as do 
their specificity to negative vs cognitive deficits of psychi-
atric patients. Similarly, studies have begun using rodent 
ultrasonic vocalizations.65–67 Such discussions are beyond 
the scope of this short commentary, but were reviewed in 
part by Wilson and Koenig.68 Another avenue of future 
investigations is the observation that cognitive remedia-
tion can attenuate negative symptom scores in schizo-
phrenia patients.69 Delineating the neural mechanisms 
of its effect could be useful for developing more targeted 
therapeutics, and/or for validating animal models of 
schizophrenia.

The recent work outlined above (summarized in table 1) 
provides quantifiable targets of disordered behavior in 
schizophrenia patients linked to their negative symptoms. 
The advent of modern techniques in neuroscience that 
allows unparalleled visualization and/or manipulation of 
neural activity during the assessment of reward-related 
behaviors is advancing our fundamental understanding 
of how the brain processes reward-related stimuli.70,72 
Combining these modern techniques with behavioral pro-
cedures that assess reward with high translational validity, 
and inducing conditions that impair effort-based decision 
making in a manner consistent with those observed in 
disorders characterized by negative symptoms, may lead 
to a better mechanistic understanding of this cluster of 
symptoms and the development of future treatments for 
individuals with negative symptoms behavioral profiles.
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