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Abstract

Through genome-wide association studies, numerous genes have been shown to be associated with 

multiple phenotypes. To determine the overlap of genetic susceptibility of correlated phenotypes, 

one can apply multivariate regression or dimension reduction techniques, such as principal 

components analysis, and test for the association with the principal components of the phenotypes 

rather than the individual phenotypes. However, as these approaches test whether there is a genetic 

effect for at least one of the phenotypes, a significant test result does not necessarily imply 

pleiotropy. Recently, a method called Pleiotropy Estimation and Test Bootstrap (PET-B) has been 

proposed to specifically test for pleiotropy, (i.e. that 2 normally distributed phenotypes are both 

associated with the single nucleotide polymorphism (SNP) of interest). While the method 

examines the genetic overlap between the 2 quantitative phenotypes, the extension to binary 

phenotypes, 3 or more phenotypes, and rare variants is not straightforward. We provide two 

approaches to formally test this pleiotropic relationship in multiple scenarios. These approaches 

depend on permuting the phenotypes of interest and comparing the set of observed p-values to the 

set of permuted p-values in relation to the origin (e.g. a vector of zeros) either using the Hausdorff 

metric or a cut-off based approach. These approaches are appropriate for categorical and 

quantitative phenotypes, more than 2 phenotypes, common variants and rare variants. We evaluate 

these approaches under various simulation scenarios and apply them to the COPDGene study, a 

case-control study of Chronic Obstructive Pulmonary Disease (COPD) in current and former 

smokers.
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Introduction

As genome-wide association studies (GWAS) have become a commonly used research tool 

over the last decade, genetic associations of the same locus with multiple phenotypes (e.g 

pleiotropy) have been observed for several phenotypes and disease groups. For example, 

multiple GWAS have found significant signals in the chromosome 15q25 region for clinical 

outcomes such as lung cancer [Chen et al., 2015], Chronic Obstructive Lung Disease 

(COPD) [Cho et al, 2014], emphysema [Cho et al., 2015] and cigarette smoking [Hancock et 

al., 2015]. Often, the associated phenotypes are correlated, and it is not straight forward to 

see whether the joint associations with multiple phenotypes are attributable to environmental 

correlation of the phenotypes or, indeed, by shared genetic components between phenotypes. 

As the research questions of genetic overlap between diseases becomes more and more the 

focus of substantive research, statistical methods are needed to formally address this 

important question and test for pleiotropy.

A variety of multiple phenotype analysis methods have been proposed [Suo et al., 2013] for 

both case-control and family based genetic association studies. Multiple phenotype analysis 

methods for unrelated subjects include the canonical correlation analysis (CCA) [Ferreira et 

al., 2009], extended generalized estimating equation method (EGEE) [Liu et al., 2009], and 

parameterized multiple phenotype mixed model (MTMM) [Korte et al., 2012]. Family based 

multiple phenotype analysis methods include principal components based methods [Bensen 

et al., 2003], [Lange et al, 2004], and FBAT-GEE [Lange et al., 2003]. Multiple phenotype 

analysis methods that are applicable for both unrelated and related subjects include principal 

components based methods [Klei et al., 2008], combined multivariate (CMV) analysis 

[Medland at al., 2010], univariate-statistic combined test [Yang et al., 2010], pleiotropic 

region identification method (PRIMe) [Huang et al., 2011], and correlated meta-analysis 

(CMA) [Province et al., 2013]. These methods primarily test whether there is a genetic 

effect for at least one of the phenotypes, but do not formally test for pleiotropy. While 

approaches have been suggested to estimate the genetic overlap between phenotypes at a 

genome-level or chromosomal level [Stoney et al., 2015], only a handful methods are 

available to characterize pleiotropy at locus level.

Recently, a method has been proposed to specifically test for pleiotropy, (i.e. that 2 normally 

distributed phenotypes are both associated with the SNP of interest). [Zhang et al., 2014] 

This method, called Pleiotropy Estimation and Test- Bootstrap (PET-B), estimates the 

pleiotropy of two normally distributed phenotypes as the ratio of the genetic effect sizes of 

both phenotypes times the genetic variance over the standard deviation of both phenotypes. 

[Zhang et al., 2014] While this method examines the genetic overlap between the 2 

quantitative phenotypes, extensions to binary phenotypes, 3 or more phenotypes, and rare 

variants are not straightforward. In practice, an ad hoc approach is to simply observe 

whether the p-value of each phenotype is less than some alpha level cut-off (e.g. 0.05 or 5e – 

8) or that the maximum p-value of the set is less than this cut-off, but this approach does not 

provide a formal way to test for pleiotropy of these phenotypes and it is not clear how to 

pick the alpha level cut-off.
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Here, we provide two methods to formally test whether the data are consistent with a 

pleiotropic relationship between 2 or more phenotypes at one locus. These approaches 

depend on permuting the phenotypes of interest and comparing the set of observed p-values 

to the set of permuted p-values in relation to the origin either using a cut-off based approach 

(Approach 1) or the Hausdorff metric (Approach 2). Theses approaches work for binary, 

categorical, and continuous phenotypes, more than 2 phenotypes, common variants, and rare 

variants. We evaluate these approaches under various simulation scenarios and apply the 

approaches to the COPDGene study, a case- control study of COPD in current and former 

smokers.

Methods

Let the variables Y1..Yk denote k vectors of phenotypes where k ≥ 2 for n subjects and let X 
denote the genetic region or variant where X is a vector for the SNP of interest for the n 
subjects when considering common variants or X is a matrix of several rare variants in a 

region when considering rare variant associations. For instance, the variable Y1 could be 

COPD affection status, Y2 could be percent emphysema, Y3 could be pack-years of smoking 

history, and X could be rs16969968, a common coding variant in the CHRNA5 gene on 

chromosome 15q25. The proposed method consists of the following steps.

Step 1

For each set of phenotypes Y1..Yk, the corresponding p-values are calculated for genetic 

association with the particular locus, e.g. SNP, or, if rare variant data is analyzed, with the 

genetic region of interest X. For instance, for common variants and a quantitative, normally 

distributed phenotype, the observed p-value is the result of a linear regression of the 

phenotype Yi on the SNP X for i = 1..k. For common variants and a binary phenotype, the 

observed p-value is the result of a logistic regression of the phenotype Yi on the SNP X for i 
= 1...k. For rare variants, instead of using a linear or logistic regression to calculate the p-

value for each phenotype with the SNP of interest, a variance or burden approach such as 

SKAT [Wu et al., 2011] can be used to obtain a p-value for the association with the 

phenotype Yi and X where X is a matrix of the rare variants in a region for i = 1..k.

Step 2

Once observed p-values are calculated for the association with each observed phenotype 

Y1,...Yk and the genetic variant or region X, the phenotypes are then permuted to form 

permuted phenotypes Ỹsi for phenotypes i = 1,..k and permutation set s = 1, ..,Nperm where 

Nperm is the number of permutations. A set of permuted p-values are calculated for each 

permuted phenotype Ỹs1,.. Ỹsk with the genetic variant or region X. For common variants, 

the SNP is permuted and for rare variants, the collection of rare variants are permuted across 

subjects in order to maintain the structure of the region.

A reasonable choice for Nperm is 10,000 or 50,000. Although, the choice of the number of 

required permutations, Nperm, may need to be increased as it depends on the pre-specified 

overall significance level and the bound on the error of the p-values in order to achieve 

overall-significance. For instance, a permutation-based method that uses an alpha level of 
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10−8 would require at least 108 permutations in order for the p-value estimate to achieve 

genome-wide significance. This number of permutations would have to be increased even 

further, if one wants to assure that the bounds on the error of the p-value estimate are 

sufficiently small.

Step 3a

For the first approach, we propose a method that mirrors the ad hoc approach that simply 

checks if the p-value of each phenotype is less than 0.05 or the appropriate alpha level. 

Instead of this ad hoc approach, we propose an approach that compares the observed p-value 

to the permuted p-value for each phenotype. For the proposed approach, the p-value to test 

the pleiotropy for phenotypes Y1,..., Yk with the genetic variant or region X is the following:

(1)

where pobservedi is the p-value for the association with the observed phenotype Yi with the 

genetic region or variant X and ppermutedsi is the p-value for the association with the 

permuted phenotype Ỹsi for phenotype i = 1,.., k and s = 1,..,Nperm with the genetic region or 

variant X. I [(pobserved1 < ppermuteds1)&...&(pobservedk < ppermutedsk)] is an indicator function 

that each of the observed p-values are less than the permuted p-values for all k phenotypes 

for permutation set s.

Consider one of the most extreme situations where none of the k phenotypes are associated 

with the genetic variant or region X (e.g. pobservedj = 1 for j = 1,.., k). When the observed p-

values for all k phenotypes are 1 then I [(pobserved1 < ppermuteds1)&...&(pobservedk < 

ppermutedsk)] = 0 for all s permutations and the resulting p-value for the proposed approach is 

1.

Consider the other most extreme situation where all of the k phenotypes are associated with 

the genetic variant or region X with p-values of 0. Then, assuming none of the permuted p-

values perfectly equal 0, the I [(pobserved1 < ppermuteds1)&...&(pobservedk < ppermutedsk)] = 1 

for all s permutations and the resulting p-value for the proposed approach is 0.

Step 3b

An alternative approach for calculating the p-value for pleiotropy is to use a distance 

measure between the observed and permuted p-values. To compare the set of observed p-

values to the set of permuted p-values, we consider the Hausdorff metric, which is the 

greatest of all the distances from a point in one set to the closest point in the other set. Two 

sets are close in the Hausdorff distance if every point of one set is close to some point of the 

other set. Consider two non-empty sets Po and Pp with elements po and pp respectively and 

the manhattan distance for the distance metric d. Then Hausdorff Metric is the following:
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(2)

To calculate the p-value to test the pleiotropy between the genetic region or variant X and 

phenotypes Y1,..Yk, consider the following:

(3)

where I [DHausdorff (pobserved, 0) > DHausdorff (pobserved, ppermutaions)] is an indicator function 

that the hausdorff metric for the observed p-values for the k phenotypes with the set of 0 (i.e. 

the origin) is greater than the hausdorff metric for the observed p-values for the k 
phenotypes with the permuted p-values for the k phenotypes for permutation set s for s = 

1,...,Nperm. The quantity (kk + 2) in the above p-value is multiple comparison correction for 

the dimensionality of the space and the multiple comparisons the Hausdorff metric makes 

between the 2 sets.

Both of the proposed methods (i.e. Step 3a: cut-off threshold based on permutation and Step 

3b: Hausdorff metric) can also accommodate covariate adjustment. Since the genotype is 

permuted rather than the phenotype, the covariates can be regressed on the phenotypes and 

the residuals used for these methods as long as the covariates are not associated with the 

genotype (i.e. age, gender, etc.). [Freedman and Lane, 1983], [Wagner et al., 2008], [Abney, 

2015] Since many forms of population structure can cause confounding that can invalidate a 

permutation test, careful consideration needs to be given when adjusting for genetic ancestry 

in permutation based tests. [Abney, 2015] When a limited number of principal components 

can adjust for the background genetic confounding (e.g. a simple population stratification 

scenario), it is possible to formulate a valid permutation test [Epstein et al., 2012]. However, 

in more complicated scenarios of population substructure, other methods are needed such as 

a parametric bootstrap or MVNpermute, a method designed for permutation testing in the 

presence of polygenic variation. [Abney, 2015]

Comparison Methods for 2 Quantitative Phenotypes

PET-B, CCA, and CMA—For the simulations when considering two continuous, normally 

distributed phenotypes, we compare the proposed approaches to PET-B [Zhang et al., 2014] 

since this method formally tests for pleiotropy. In the PET-B manuscript, the authors 

compare the PET-B approach to the canonical correlation analysis (CCA) [Ferreira et al., 

2009] and correlated meta-analysis (CMA) [Province et al., 2013] approaches. For 

consistency, we have compared our approaches to the CCA and CMA methods for the 

simulations studies with two continuous, normally distributed phenotypes. A brief 

description of these methods is given here. The Pleiotropy Estimation and Test- Bootstrap 

(PET-B) method [Zhang et al., 2014] firsts fits 2 separate linear models for normally 
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distributed phenotypes Y1 and Y2 and estimates the pleiotropy correlation coefficient (PCC) 

as  where  is the variance of X, βi is the genetic effect size for phenotype i, and 

σi is the standard deviation of Yi where i = 1, 2. The pleiotropy correlation ρ coefficient is 

estimated using a bootstrap approach. Note that if either βi = 0, then the PCC will be 0. CCA 

is a multivariate approach for analyzing correlation between two groups of variables. 

[Ferreira et al., 2009] CCA tests the overall association between a variant and two 

phenotypes by calculating Wilks statistic through an eigen analysis of raw data and 

obtaining a p-value based on a simplified F-approximation. CMA is a meta-analysis 

approach that takes between-phenotype correlation into account. [Province et al., 2013] 

CMA combines statistics from individual phenotypes into a summarized statistic and tests its 

significance through a correlated multivariate normal distribution.

Simulations

Common variants—The SNP is generated from a binomial distribution with minor allele 

frequency = 20% for n = 1000 subjects. Binary phenotypes are generated such that

(4)

for subject j = 1,..., n, genotype Xj, and phenotype Yk for k = 1,.. where pjk = Prob(Yjk = 1). 

Normally distributed phenotypes are generated such that

(5)

for subject j = 1,..., n & phenotype k = 1,... For simplicity, we vary β1 from 0 to 0.5 by 0.1 

for each simulation and fix βm = 0.2 for m ≥ 2; other values for βm when m ≥ 2 produced 

similar results. When at least one βk = 0 (i.e. β1 = 0), then this is the null distribution of no 

pleiotropic effect. For each scenario, we generated 6 sets of 10,000 simulated datasets and 

ran the proposed approaches for 50,000 permutations each. We evaluated the proposed 

approaches in the following 6 scenarios for a various number of phenotypes associated with 

a common variant. In Figure 1, we evaluated the type 1 error rate and power of the proposed 

methods via simulation studies for 2 normally distributed phenotypes. In the supplemental 

figures, we evaluated the power and type 1 error rate for the following 5 scenarios: 1 

normally distributed phenotype and 1 binary phenotype (Supplemental Figure 1), 2 binary 

phenotypes (Supplemental Figure 2), 3 normally distributed phenotypes (Supplemental 

Figure 3), 4 normally distributed phenotypes (Supplemental Figure 4), and 5 normally 

distributed phenotypes (Supplemental Figure 5).

Rare Variants—The rare variant data was generated using SKAT for a 3kb region where 

10% of the markers with MAF< 0.001 are causal for n = 5000 subjects. Binary phenotypes 

are generated such that
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(6)

for subject j = 1,..., n and phenotype Yk for k = 1,.. where pjk = Prob(Yjk = 1) and Ij is an 

indicator that subject j has any causal variants in the region. Normally distributed 

phenotypes are generated such that

(7)

for subject j = 1,..., n and phenotype k = 1,... Similar to the common variant scenario, we 

vary β1 from 0 to 5 by 0.5 for each simulation and fix β2 = 2. To determine the p-value of 

phenotype k with the rare variants in the region, we used the SKAT-O test statistic [Wu et 

al., 2011]. SKAT-O is an extension of the SKAT method that allows for a combined burden 

and variance based test of rare variants. While we used this method for the simulations, other 

rare variant methods could have been easily used.

For each scenario, we generated 11 sets of 10,000 simulated datasets and ran the proposed 

approaches for 10,000 permutations each. In the supplemental Figures 6–8, we evaluated the 

power and type 1 error rate for the following 3 scenarios: 2 normally distributed phenotypes 

(Supplemental Figure 6), 1 normally distributed phenotype and 1 binary phenotype 

(Supplemental Figure 7), and 2 binary phenotypes (Supplemental Figure 8).

Results

Common Variant Simulations—As seen in Figure 1 for 2 normally distributed 

phenotypes, we compare the approaches to the standard method (PET-B) [Zhang et al., 

2014], canonical correlation analysis (CCA) [Province et al., 2013] and correlated meta-

analysis (CMA) [Province et al., 2013]. Both CCA and CMA have an inflated type-1 error 

rate as shown in the PET-B paper [Zhang et al., 2014] and in Figure 1. For all 6 scenarios 

(Figure 1 and Supplemental Figures 1–5), we compare the two proposed approaches to the 

ad-hoc approach where pleiotropy is achieved if each of the observed p-values is less than 

the α cut-off (i.e. α = 0.05) since existing methods are not applicable. The type-1 error rate 

is maintained for all methods across all scenarios, except CCA and CMA. When various 

combinations of βm = 0 for m ≥ 1, both proposed methods maintain the type 1 error rate. 

The power is also comparable for the 2 proposed approaches, PET-B (for 2 normally 

distributed phenotypes), and the ad-hoc approach of using a cut-off of 0.05. While the ad-

hoc approach does not formally test for pleiotropy (e.g. provide a p-value), the 2 proposed 

approaches (i.e. Step 3a: cut-off threshold based on permutation and Step 3b: Hausdorff 

metric) allow to formally test for the pleiotropy, perform well in all of the simulation 

scenarios, and work for various phenotypes.

In Figure 2, we also evaluated the type 1 error rate of the 2 proposed approaches when 1 

normally distributed phenotype is not associated with the SNP of interest, but the other 4 
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normally distributed phenotypes are strongly associated with the SNP. For this scenario, we 

fixed β1 = 0 and β2 = β3 = β4 = β5 vary from 0 to 1 by 0.1. Note that the ad hoc approach 

and the cut-off based permutation approaches both maintain the type 1 error rate, but the 

Hausdorff based approach has a slightly inflated type 1 error rate of 0.06 to 0.07. Therefore, 

if several phenotypes are strongly associated with the SNP of interest, then we recommend 

using the cut-off based permutation approach instead of the Hausdorff based approach.

Rare Variant Simulations—The results for the rare variant simulations are similar to 

those of the common variant scenarios. For all 3 scenarios as seen in Supplemental Figures 

6–8, the 2 proposed approached and the ad hoc approach maintain the type 1 error rate and 

achieve similar power.

Data Analysis

We applied these methods to the Genetic Epidemiology of COPD (COPDGene) Study which 

is a multi-center case-control study designed to identify genetic determinant of COPD and 

COPD-related phenotypes. [Regan et al., 2010] The study recruited COPD cases and 

controls who were non-Hispanic Whites and African Americans ages 45 to 80 all with at 

least 10 pack-years of smoking history. Among non-Hispanic Whites COPDGene subjects, 

we considered rs16969968 on chromosome 15 [CHRNA5], which is associated with FEV1 

(p-value=1.38e-08), the log of pack-years of smoking history (p-value=2.30e-9), COPD 

affection status (p-value=6.36e-06), and the log of percent emphysema (p-value=7.88e-11). 

However, rs16969968 is not associated with height (p-value=0.43). Table 1 shows that the 

SNP has a pleiotropic effect for various combinations of FEV1, pack-years of smoking 

history, COPD affection status, and emphysema. However, when height is considered, the 2 

proposed methods and PET-B do not find a pleiotropic effect as expected. Among non-

Hispanic Whites COPDGene subjects, we also considered 40 rare variants (MAF< 0.01) 

from 78729773 bp to 79027837 bp [CHRNA3/5, CHRNB4, IREB2, AGHPD1]. Using 

SKAT-O, the region is not significantly associated with any of the phenotypes: FEV1 (p-

value=0.48), the log of pack-years of smoking history (p-value=0.04), COPD affection status 

(p-value=0.51), the log of percent emphysema (p-value=0.14), and height (p-value=0.09). 

As expected, Table 1 shows that this region has no pleiotropic effect for any of the various 

combinations of FEV1, pack-years of smoking history, COPD affection status, emphysema, 

and height. This analysis shows that while the common variant rs16969968 has a pleiotropic 

effect on FEV1, pack-years of smoking history, COPD affection status, and emphysema, the 

rare variants in the 15q25 region do not have a pleiotropic effect on these phenotypes.

Discussion

The successful applications of GWAS to numerous complex diseases established a large 

number of robust genetic associations. As many of these associations are for the same locus 

or region, it also triggered the old question of genetic overlap between diseases, as a further 

step to better understand the underlying mechanisms of complex diseases. At a genome-

wide level/chromosomal level, approaches have been developed that quantify the genetic 

overlap between phenotypes/diseases in terms of variance, but they cannot identify the 

causal genomic areas that are shared between the phenotypes. As the question of genetic 
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overlap has moved to the forefront of standard substantive research, locus-specific 

approaches are required. Here, we provide such approaches that provide a formal statistical 

test for pleiotropy that is generally applicable to most genetic association studies, as it can 

handle any type of genetic data, ( e.g. GWAS, sequencing data, etc), and different types of 

phenotypic variables, (e.g. affection status, quantitative phenotypes). It is computationally 

fast and easy to implement. The simulations studies and the data analysis show that both of 

the proposed approaches perform well under various scenarios. The code for the proposed 

approaches is available upon request.

As examined in Figure 2, while the cut-off based permutation approach maintains the type 1 

error rate when 4 phenotypes are strongly associated with the SNP of interest and 1 

phenotype is not associated with the SNP of interest, there is a decrease in power when more 

phenotypes are tested for a pleiotropic relationship. For instance, the power shown in Figure 

1 when 2 normally distributed phenotypes are considered is much higher then the power 

shown in Supplemental Figures 3–5 which consider 3, 4, and 5 normally distributed 

phenotypes, respectively. Therefore, care needs to be given to the number of phenotypes that 

are tested for a pleiotropic relationship with common or rare variants. For instance, if several 

phenotypes are highly correlated such as FEV1, FEV6, and FEV1 percent predicated, then it 

would be prudent to include only one of these phenotypes (e.g FEV1) instead of all 3 

phenotypes.

Additionally, the null hypothesis will fail to be rejected if only a proportion of the traits are 

pleiotropic. For example, if four traits are pleiotropic and the fifth trait is not associated with 

the gene or SNP of interest, then the method will fail to reject the null hypothesis since the 

SNP does not have a pleiotropic relationship with all five traits. This scenario was 

demonstrated in the Data Analysis Section when both of the proposed methods rejected the 

null hypothesis that rs16969968 on chromosome 15 [CHRNA5] was not jointly associated 

with FEV1, pack-years of smoking history, COPD affection status, and percent emphysema. 

However, when height was considered with this set of four traits, the proposed methods 

failed to reject the null hypothesis since height is not associated with rs16969968 on 

chromosome 15 [CHRNA5]. Thus, careful consideration is needed to select the traits to test 

for a pleiotropic relationship with the SNP or gene of interest. A literature review can be 

used to help identify which subset of traits most likely contribute to the pleiotropic effects.

While the proposed approaches are able to determine if a gene is associated with multiple 

phenotypes, it is unclear if the joint associations with multiple phenotypes are attributable to 

environmental correlation of the phenotypes or, indeed, by shared genetic components 

between phenotypes. It is possible that the phenotypes are associated with the same genetic 

region due to ascertainment bias. In case-control genetic association studies, the subjects are 

ascertained based on case-control status which may be correlated with any additional 

secondary phenotypes that are collected. As a result, analyzing secondary phenotypes that 

are correlated with case-control status may produce a spurious genetic association. For 

instance, in the COPDGene study, a gene could be associated with emphysema strictly 

because (a) that gene is associated with COPD, (b) the subjects were ascertained based on 

COPD status, and (c) COPD is correlated with emphysema. However, the proposed 

approaches can be adjusted for this case-control sampling by using an adjusted score test 
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that properly reflects the case-control sampling when the p-values are calculated. [Lin et al., 

2009], [Lutz et al., 2014] A similar adjustment can also be used to determine if the 

pleiotropic effect is the result of correlated (environmental) secondary phenotypes.

While the proposed approaches can determine if a gene is associated with multiple 

phenotypes, these methods do not determine how the gene is associated with multiple 

phenotypes. Mediation analysis and causal inference can be used to determine the path from 

gene to disease once this pleiotropy is established. [Lutz et al., 2014b], [Vansteelandt et al., 

2009]

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
For 2 normally distributed phenotypes, β2 = 0.2 and β1 varies from 0 to 0.5. For β1 = 0 (e.g. 

the null hypotheses of no pleiotropic effect), the PET-B, ad-hoc method (e.g. checking if 

each phenotype has a p-value less than 0.05 for the association with the SNP), and the 2 

proposed approaches all maintain the type 1 error rate. The CCA and CMA approaches do 

not maintain the type 1 error rate since they are testing that at least one phenotype is 

associated with the SNP, which is true since β2 = 0.2. For β1 > 0, all 4 methods (PET-B, the 

ad-hoc method and the 2 proposed methods) have similar power.
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Figure 2. 
For 5 normally distributed phenotypes, we evaluated the type-1 error rate of the proposed 

approaches when one phenotype is not associated with the SNP, but the other 4 phenotypes 

are strongly associated with the SNP. We fixed β1 = 0 and β2 = β3 = β4 = β5 vary from 0 to 1 

by 0.1. Note that the ad hoc approach and the cut-off based permutation approaches both 

maintain the type 1 error rate, but the Hausdorff based approach has a slightly inflated type 1 

error rate of 0.06 to 0.07.
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