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Abstract

CF2 and Mef2 influence a variety of developmental muscle processes at distinct stages of

development. Nevertheless, the exact nature of the CF2-Mef2 relationship and its effects on

muscle building remain yet to be resolved. Here, we explored the regulatory role of CF2 in

the Drosophila embryo muscle formation. To address this question and not having proper

null CF2 mutants we exploited loss or gain of function strategies to study the contribution of

CF2 to Mef2 transcription regulation and to muscle formation. Our data point to CF2 as a

factor involved in the regulation of muscle final size and/or the number of nuclei present in

each muscle. This function is independent of its role as a Mef2 collaborative factor in the

transcriptional regulation of muscle-structural genes. Although Mef2 expression patterns do

not change, reductions or increases in parallel in CF2 and Mef2 transcript abundance were

observed in interfered and overexpressed CF2 embryos. Since CF2 expression variations

yield altered Mef2 expression levels but with correct spatio-temporal Mef2 expression pat-

terns, it can be concluded that only the mechanism controlling expression levels is de-regu-

lated. Here, it is proposed that CF2 regulates Mef2 expression through a Feedforward Loop

circuit.

Introduction

The formation of skeletal muscle during embryogenesis involves the commitment of meso-

dermal progenitors to the myogenic lineage and their fusion to form fibers followed by the

expression of muscle structural genes [1–4]. In the Drosophila embryo, each muscle is consti-

tuted by a single fiber. They are physiologically identical, but have unique morphological char-

acteristics, as size, number of fusions, shape, spatial orientation and attachment sites to the

body wall [3–6].

In the last steps of Drosophila muscle development the highly regulated sarcomeric protein

expression and sarcomere assembly are crucial to ensure proper thick and thin filament stoi-

chiometry, so the adequate forces will be generated by each muscle [3,7]. However, even
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though all events should be very tightly controlled, little is known about the mechanisms that

sense and adjust filament ratios. One point of control is the transcription of muscle structural

genes, and the actions of various transcription factors, particularly at embryonic stages, have

been characterized [4,8,9]. The MADS box protein Mef2 is a major player in muscle differenti-

ation. In a Mef2 mutant background, specification of muscle precursors proceeds normally but

multinucleate myotubes are lacking [10–13]. Mef2 binding to their regulatory sequences is

essential for the expression of structural genes such as mhc, malc, mlc2 pm/mpm, Tn I and TnT,

Tp1 or act57B in embryos and adult muscle tissues [13–18]. Mef2 expression starts during mid

gastrulation, and after that, muscle specification occurs [11,19]. Mef2 expression is maintained

throughout muscle specification and differentiation in every muscle cell [20,21]. Shortly after

the identification of Mef2, it was also clear that activation of muscle-structural genes and mus-

cle formation required not only different levels of Mef2 but a large amount of tissue specific

transcriptional cofactors [9,22].

The Drosophila Chorion factor 2, a zinc finger transcription factor, was first identified

through its repressor role in dorso-ventral patterning during oogenesis [23,24][24]. CF2 pro-

tein was the first Mef2 collaborating factor characterized during embryogenesis [25]. Around

mid-stage 12 (8–9 h AEL), after induction of Mef2 expression, CF2 is detectable in both vis-

ceral and somatic mesoderm with a pattern similar to Mef2 and it is expressed in the nuclei

of all three-muscle types [26]. In Mef2 null mutants, muscle precursors are specified but no

myoblast fusion and no CF2 mRNA are detected, demonstrating that CF2 transcription is

dependent, direct or indirectly, on Mef2 [26]. In the Drosophila embryo, Mef2 and CF2 syner-

gistically activate a number of structural muscle genes and loss of CF2 function results in

the reduction of their expression levels. The combination of Mef2 and CF2 has a synergistic

effect on actin 57B, Tn I, and mhc transcription in embryonic muscles [25,27], while there are

clusters of Mef2 and CF2 binding sites upstream of troponin T, tropomyosin 1 and 2, and para-
myosin promoters [28]. Previous work reported impaired flight and deregulation in two hypo-

morphic CF2 mutants [27,28]. In adult flight muscles, as in embryonic muscles, CF2 may

participate in the fine-tuning of structural gene expression to ensure proper stoichiometry of

contractile proteins and filament balance maintenance, contributing to the regulation of the

fiber final size [27,28].

In summary, CF2 has been known for a long time to be a muscle expressed transcription

factor involved in the regulation of sarcomeric gene expression. Despite the datasets acquired

to date, our knowledge about the role of CF2 in muscle development is far from complete and

many important questions, beyond its role as Mef2 cofactor, remain unsolved. In this paper,

we investigated the role of the Zn finger transcription factor CF2 in muscle development in

the Drosophila embryo and its contribution to muscle differentiation. We used RNA interfer-

ence and gain of function strategies to address these questions. We demonstrated that, in addi-

tion to its contribution to Mef2 transcriptional regulation of sarcomeric genes, CF2 is involved

in the control of the fiber final size and in the regulation of the number of nuclei present in

each individual muscle. CF2 over-expression causes an increase in muscle size and in the num-

ber of nuclei per fiber while CF2 down-regulation causes a decline in muscle size and nuclei

number. In contrast, no increase in nuclei number is observed when Mef2 transcription factor

is over-expressed.

Materials & methods

Fly strains, crosses and genetics

Drosophila melanogaster strains were reared at 25˚ on standard culture medium. We used the

Gal4/UAS system [29] for tissue-specific expression of transgenes UAS-CF2RNAi, UAS-CF2

CF2 controls muscle nuclei number and fiber size
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and UAS-Mef2 [10,30]. Mef2-Gal4 [13] and twi-Gal4;twi-Gal4 lines [31] were used as drivers.

All lines used in this study are described below.

The pUAST-CF2 construct was generated from a full-length cDNA fragment of CF2
flanked by NcoI sites cloned into NcoI sites in pUAST vector [29] and used to generate the

UAS-CF2 fly line. UAS-CF2RNAi construct was generated in two steps. First, a genomic CF2
fragment containing exons 2 and 3, as well as introns 2 and 3, was cloned into pGEMTeasy

vector, as a NotI and SfiI fragment, making the CF2RNAi Direct construct. To generate the

CF2RNAicDNA Invert construction, an inverted fragment of the CF2 cDNA containing exons

2 and 3 and flanked by SfiI / XbaI sites was cloned into pGEMTeasy vector. Then, Not/SfiI and

SfiI/XbaI fragments from both plasmids were cloned into pUAST vector, generating the final

pUAST- CF2RNAi vector.

Several independent homozygotes UAS-CF2 and UAS-CF2 RNAi lines were generated by P-

element mediated transformation using standard procedures [32] and yw as host. In the analy-

sis, all of them showed the same phenotype. Df2 γ27 deficiency [24–26], UAS-Mef2 [10,30]

Mef2-Gal4 [13] and twi-Gal4; twi-Gal4 lines [31,33] were previously described. All lines used

in the study were balanced with GFP or LacZ marked chromosomes (Tm3SerAct5C-GFP and

CyoWgLacZ) for embryo genotype selection (Table 1).

Quantitative RT-PCR

Individual embryos from 12 to 14 hours of development were genotyped according to the

presence or absence of the balancer chromosome marker gene, GFP or LacZ, detected by con-

ventional PCR as described previously [34]. Embryos displaying the absence of the balancer

chromosome marker gene, LacZ plus absence of CF2 (Fig 1A) or GFP plus presence of UAS

(Fig 1B) or Gal4 (Fig 1C) were selected (see magenta arrows in Fig 1A–1C). Note that in

Df2©27 homozygous embryos CF2 gene is absent. Next, 5 homogenates of individual geno-

typed embryos of each desired genotype were pulled together and total RNA was isolated

using an RNeasy protect mini kit (Qiagen). First-strand cDNA was primed with poly dT and

SuperScript III (Invitrogen) according to manufacturer’s instructions. Quantitative PCR was

carried out with TAQMan probes (Invitrogen) according to manufacturer’s standard condi-

tions in an ABI Prism 7900HT instrument (Applied Biosystems). rRNA 18S was used as refer-

ence. Measurements were performed in triplicates and mean results were plotted as 2-ΔΔCt

relative to the wild type level [35].

Immunohistochemistry

Immunohistochemistry analyses were performed as previously [36,37]. Polyclonal rabbit CF2

antibody was produced in our laboratory. A His-CF2 fusion protein was produced from the

pRSETB-CF2 construct and purified in HisTrapHP columns (GE, HealthCare). After standard

immunization protocol, CF2 serums were affinity purified using Affigel 10–15 (BioRad). The

following antibodies were used at indicated dilutions: polyclonal rabbit anti-CF2 (1/500), anti-

Table 1. List of Drosophila lines used in this study.

Line Genotype

Mef2>CF2i UAS- CF2RNAi; Mef2-Gal4/TM3SerAct5C-GFP

Mef2>CF2 UAS-CF2; Mef2-Gal4 / TM3Ser Act5C-GFP

twi>CF2 twi-Gal4; twi-Gal4; UAS-CF2 / Tm3SerAct5C-GFP

twi>CF2i twi-Gal4; twi-Gal4; UAS-CF2RNAi / Tm3SerAct5C-GFP

Mef2>Mef2 UAS-Mef2; Mef2-Gal4 / TM3SerAct5C-GFP

Df2©27 Df2©27 / CyoWgLacZ

https://doi.org/10.1371/journal.pone.0179194.t001
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TnT (1/1000), anti-Mef2 (1:1000, kindly provided by G. Melkhiany from Bodmer’s lab), anti

MHC (1/1000 kindly provided by Bernstein’s lab), mouse monoclonal anti-Eve (2B8, 1/20,

Developmental Studies Hybridoma Bank), anti GFP (1/1000, Roche) and anti β-galactosidase

(1/2000, Promega). Goat anti-rabbit or anti-mouse Alexa Fluor 647, 546 and/or 488 (1:1000)

from Molecular Probes, were used as secondary antibodies in different combinations. Experi-

ments were carried out at least 6 times to rule out that observed differences could be due to

technical issues. All staining were performed following exactly the same protocol for both

staining and acquisition. The yw control was carried along in every experiment. Dozens of

embryos were assayed in each experiment and they always showed mendelian proportion

according to the parental genotypes.

Samples were analyzed in Leica TCS-SP2 and Leica TCS-SP5 Confocal systems. All pre-

sented pictures were collected using the same settings and images were equally processed. All

presented pictures correspond to maximum projections collected with maximum intensity.

Statistics

Data are expressed as mean ± SEM obtained from, at least, three separate, independent experi-

ments carried out in different days and with different preparations. The statistical analyses p-
values were generated using Student’s t-test (unpaired, 2-tailed), using the SPSS 17.0 for statis-

tical program (SPSS Inc.); p-value < 0.05 was considered significant.

Results

CF2 interference or overexpression generates muscle phenotypes in

Drosophila embryos

CF2 expression onset has been described to initiate just after stage 11, 7.5 hours after egg laying

(AEL), coinciding with skeletal myoblast fusion [26,38]. To more precisely delineate CF2 func-

tion in muscle development, and using Gal4-UAS system, we carried out two complementary

approaches. On the one hand we interfered CF2 expression and on the other hand we per-

formed gain of function experiments, both followed by phenotype analysis. Since CF2 expres-

sion pattern fully overlaps with that of Mef2, we selected Mef2-Gal4 and twi-Gal4 drivers

for both approaches [26]. First, we generated stable fly lines for the two drivers: Mef2-Gal4;
UAS-CF2RNAi and twi-Gal4; UAS-CF2RNAi, both carrying a TM3SerAct5c-GFP balancer that

allowed us to identify homozygous embryos, those not expressing GFP. In homozygous ani-

mals, carrying two copies of UAS-CF2RNAi, CF2 knockdown (KD) driven by two copies of

Mef2 driver resulted in embryonic lethality while CF2 KD driven by two copies of twi driver

caused lethality at 3rd larval stage. Since we interpreted these results as the consequence of twi
driver being weaker and hence achieving lower interference levels, we decided to introduce

another driver copy. Homozygous twi-Gal4; twi-Gal4, UAS-CF2RNAi embryos turned out to

be early embryonic lethal (not shown). Unless otherwise mentioned, all interfered embryos

shown in this work are homozygous for both drivers and for UAS-CF2RNAi insertions, from

now on they will be referred as Mef2>CF2i or twi>CF2i. We also analyzed the Df2©27 line

that carries a 25kb deletion covering the entire CF2 locus plus 20 different loci more and it is

homozygous larval lethal [24,26].

In order to perform gain of function experiments, we generated fly lines heterozygous for

Mef2-Gal4 and twi-Gal4 drivers and homozygous for the UAS-CF2 insertion. They will be

referred to as Mef2>CF2 or twi>CF2.

CF2 KD and overexpression (OE) at early stage 17 (17–18 hours AEL) were examined by

CF2 immuno-staining. As shown in Fig 2, although no obvious morphological defects can be

CF2 controls muscle nuclei number and fiber size
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detected, CF2 expression in Mef2>CF2i embryos was clearly reduced as compared with yw
control embryos. Moreover, as expected, homozygous Df2©27 embryos showed no CF2 expres-

sion (compare Fig 2A–2C). On the contrary, heterozygous Mef2>CF2 embryos showed a

strong increase in CF2 expression (Fig 2D), while double homozygous embryos for both inser-

tions, UAS-CF2 and Mef2-Gal4, were early embryonic lethal (Fig 2E) and showed a very

strong disorganization. Accumulations of CF2 expressing cells with no obvious organization

were present in late embryos. These cells also displayed a strong Mef2 expression, suggesting

that they have a mesodermal origin (see below, Fig 3). Same results were obtained in twi>CF2i

and twi>CF2 (see S1 Fig).

CF2 regulates Mef2 expression during embryo skeletal myogenesis

It has been previously reported that Mef2 expression is not affected in Df2©27 homozygous

embryos [26]. In order to confirm those results and to more precisely define muscle patterns

in embryos lacking CF2, we decided to analyze Mef2 expression in Mef2>CF2i and homozy-

gous Df2©27 embryos. Surprisingly, as shown in Fig 3, Mef2 embryo immunostaining revealed

an important reduction in Mef2 expression in both, Mef2>CF2i and Df2©27 embryos, when

contrasted to wild type (Fig 3A–3C). Since the reduction is observed in both CF2 KD and

Df2©27 embryos, we can conclude that the Mef2 diminution observed in the later was in fact

due to the lack of CF2 and not that of any of the other genes deleted by the deficiency (Fig 3B).

On the contrary and corroborating these results, Mef2>CF2 embryos, displaying high lev-

els of CF2, showed a clear increase in Mef2 expression as compared to wild type (Fig 3D).

These results supported that Mef2 levels are undoubtedly related to those of CF2, suggesting

the existence of a regulatory feedback loop among these transcription factors.

It is well known that CF2 and Mef2 collaborate in the activation of several structural muscle

genes in Drosophila [25]. It is therefore not difficult to imagine that both transcription factors

interact with each other to regulate their own transcription, regardless of whether this inter-

action is direct or indirect. Nevertheless, the results described above are also compatible

with a CF2 dependent stabilization of Mef2 protein. Bearing this in mind, to confirm and rein-

force the idea of the existence of a regulatory feedback loop in which CF2 modulates Mef2

A CG

CF2

LacZ

B CG

UAS

GFP

C CG

Gal4

GFP

Fig 1. Genotype identification of an individual embryo. The presence or absence of the balancer chromosome was assayed by conventional PCR in

individual embryos carrying the Dfγ27 deficiency, UAS-CF2 or Gal4 insertions. Homozygous embryos are indicated with arrows. For all three fly lines the

upper part of the panels show a positive control PCR against a single copy CG9650 unrelated gene. (A). Dfγ27 embryos. The middle part of the panel

shows the result obtained when the balancer marker gene LacZ was amplified. The lower part of the panel presents the results for the CF2 gene. Only

those embryos showing no amplification of both genes were considered homozygous for the Dfγ27 deficiency. (B). UAS-CF2. The middle part of the panel

shows the results obtained when the balancer marker gene GFP was amplified. The lower part of the panel shows the result for UAS sequence from the

UAS-CF2 insertion. Only those embryos showing no GFP amplification and the presence of the UAS region were considered to carry the UAS-CF2

insertion in both chromosomes. (C). Gal4 driver lines. The middle part of the panel shows the results obtained when the balancer marker gene GFP was

amplified. The lower part of the panel shows the result for Gal4 sequence in the driver. Only those embryos showing no GFP amplification and the

presence of the Gal4 region were considered to carry the two copies of the driver, one in each chromosome.

https://doi.org/10.1371/journal.pone.0179194.g001
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expression, we have investigated if the variation in Mef2 protein levels correlates with a varia-

tion in RNA levels. Thus, we determined by qPCR CF2 and Mef2 expressions levels in Df2©27,

CF2 KD and CF2 OE embryos. Stage 15–16 embryos were individually genotyped in order to

select embryos homozygous for Df2©27, twi>CF2i, Mef2>CF2i, twi>CF2, Mef2>CF2, or het-

erozygous for Mef2-Gal4 and homozygous for UAS-CF2 (see Material and Methods and Fig 1/

data not shown). Embryos of the desired genotype were pulled together in groups of five and

expression levels of both genes were analyzed by qRT-PCR. At least three independent pulls of

each genotype were analyzed in triplicates. Results are shown in Fig 4. As expected, CF2
expression levels in CF2 KD lines are strongly reduced. When the interference is driven by

Mef2-Gal4, CF2 RNA levels are reduced to approximately 25% of that present in wild type,

whereas in twi driven interference 40% of CF2 RNA remains (Fig 4). As expected, homozygous

Df2©27 embryos show no CF2 expression.

Interestingly, interfered embryos, as it happens in homozygous Df2©27, display a strong

reduction in Mef2 expression level, between 50% and 65% of the one observed in the control.

Accordingly, it is important to note that, although not statistically significant, there seem to

be a downward trend in which Mef2 expression reduction is higher in Df2©27 homozygous

embryos and lower when the interference is driven by twi-Gal4 (Fig 4). Moreover, CF2

yw

αCf2A

Df2γ27/Df2γ27

αCf2C

Mef2/Mef2>CF2i/CF2i

αCf2B

Mef2/+>CF2/CF2

αCf2D

Mef2/Mef2>CF2/CF2

αCf2E

Fig 2. Different CF2 protein levels in CF2 interfered and overexpressed embryos. Lateral views of stage 17 embryos stained with anti-CF2 antibody

are shown. (A). yw embryo. (B). Mef2>CF2i homozygous embryo. (C). Df2γ27 homozygous embryo. (D). Mef2>CF2 heterozygous embryo, carries only one

driver copy. (E). Mef2>CF2 homozygous embryo, carries two driver copies. Anterior to the left and posterior to the right. In panel D, + stands for TM3Ser

Act5C-GFP. Pictures were collected using the same settings and images were equally processed. They correspond to maximum projections collected with

maximum intensity.

https://doi.org/10.1371/journal.pone.0179194.g002
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yw

αMef2A

Df2γ27/Df2γ27

αMef2B

Mef2/Mef2>CF2i/CF2i

αMef2C

Mef2/+>CF2/CF2

αMef2D

Mef2/Mef2>CF2/CF2

αMef2E

A’

B’

C’

D’

Fig 3. Mef2 expression in CF2 interfered and overexpressed embryos. Lateral views of stage 17

embryos stained with anti-Mef2 antibody are shown. (A). yw embryo. (B). Df2γ27homozygous embryo. (C).
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overexpression induces Mef2 overexpression regardless of the driver used, Mef2-Gal4 or twi-
Gal4 (Fig 4). As it happens with CF2 interference, levels of CF2 OE and the concomitant ones

of Mef2 are higher in the Mef2>CF2 lines (Fig 4). These results undoubtedly show that CF2,

in a direct or indirect manner, regulates Mef2 expression. Moreover, they could support the

existence of a feedback loop between both factors, being the expression of each of them depen-

dent on the other. Since Mef2 and CF2 expression initiate at the myoblast fusion stage, the

cooperation of these two factors should affect the next steps of the myogenic program, as

indeed happens to gene expression regulation of sarcomeric genes [16,25,27,28].

CF2 is involved in skeletal muscle size and number of nuclei per fiber

regulation

In the adult fly, two separate functions have been proposed for CF2. On the one hand, fine-

tuning the expression of structural genes to ensure proper filament stoichiometry, and on the

other hand monitoring and/or controlling the final myofibril size [27]. Therefore, we won-

dered if that would be the case in embryo muscles too. To define CF2 contribution to the regu-

lation of the final fiber-size in the embryo we studied muscle shape and size in CF2 KD or OE

embryos using myosin heavy chain and TnT immunostaining to visualize muscles in stage 16–

17 embryos.

As compared to wild type, Mef2>CF2i embryos presented lower MHC expression, little

defects in the overall skeletal musculature and smaller muscles (compare Fig 5A and 5B and

Table 2). A closer inspection of those embryos revealed that not only muscles were smaller, but

also, in most cases, they had a smaller number of nuclei (compare outlined DA3 muscles in seg-

ments A2-A4 in Fig 5D and 5E and see below). Moreover, in some cases, fibers are absent

(green arrow pointing absent LT4 muscle in Fig 5). It is important to notice that despite being

smaller, muscle shape and anchoring points seems not to be altered (Fig 5H). This lower num-

ber of nuclei is also apparent when embryos are stained for Mef2 expression. As shown in Fig 3,

homozygous Df2©27 display a general decrease in the number of nuclei positive for Mef2 expres-

sion (compare Fig 3A’, 3B’ and 3C’) and smaller size (see Table 2). As opposed to CF2 KD, in

Mef2>CF2 embryos overexpressing CF2, fiber size is increased (Table 2), presenting a higher

nuclei number and, most important, even though the fiber shape and anchoring points are nor-

mal (see pink arrow in Fig 5F), we observed the appearance of new fibers (red arrow in Fig 5I).

To more precisely define these variations in nuclei number per fiber, consequence of the

changes in CF2 expression levels, we measured the number of nuclei present in one particular

fiber. Dorsal Acute 1 muscles (DA1) nuclei can be easily identified as the only skeletal muscle

nuclei expressing high levels of Eve and Mef2 transcription factors [39,40]. However, Eve is

expressed also in pericardial cells situated in the vicinity of DA1 muscles. Since pericardial

cells do no express Mef2, to distinguish DA1 and pericardial cells nuclei, we performed co-

staining with Eve and Mef2 antibodies.

Stage 16 embryos were double stained and the number of Eve/Mef2 positive nuclei in seg-

ments A3 and A4 counted. As shown in Fig 6, DA1 muscles from Df2©27 homozygous

embryos, and therefore deficient in CF2, present a smaller number of nuclei, an average of 8

per fiber (see Table 3), as compared to control DA1 muscles, which contain 13 nuclei in

Mef2>CF2i homozygous embryo. (D). Mef2>CF2 heterozygous embryo. (E). Mef2>CF2 homozygous

embryo carrying two driver copies (A’-D’) Amplification detail from de dotted region shown in A-D panels.

Anterior to the left and posterior to the right (A-E). In panel D, + stands for TM3Ser Act5C-GFP. Pictures were

collected using the same settings and images were equally processed. They correspond to maximum

projections collected with maximum intensity.

https://doi.org/10.1371/journal.pone.0179194.g003
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average. In order to confirm that the lower number of nuclei was specifically due to the lack of

CF2 and not to that of any of the other genes deleted by Df2©27 deficiency we analyzed the

number of nuclei present in DA1 muscles from CF2 KD embryos. Regardless of the driver

used, we observed a clear reduction in the number of Eve/Mef2 positive nuclei in CF2 KD

embryos (Fig 6 & Table 3). According to the level of interference (see Fig 3B), the reduction

observed in Mef>CF2i embryos was slightly stronger than that observed in twi>CF2i, with an

average number of 10 and 11 nuclei respectively. When the same analysis was carried out in

CF2 OE embryos, we observed the expected rise in the number of nuclei present in DA1 mus-

cles (dotted squares in Fig 6 & Table 3). Again, in agreement to the level of over-expression,

Mef2>CF2 embryos show a larger number of nuclei, an average of 19, than the twi>CF2

embryos (Table 3). Furthermore, a moderate Mef2 OE does not cause an increase in the
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Fig 4. CF2 and Mef2 RNAs correlated in the interfered and overexpressed CF2 embryos using real-

time quantitative PCR. mRNA relative levels of CF2 (green) and Mef2 (orange) in the deficiency (Df2γ27),

the interference (Mef2>CF2i and twi>CF2i) and the over-expression (Mef2>CF2 and twi>CF2) fly lines

relative to CF2 expression in the yw control line (magenta line, value = 1). Measurements were carried out in

triplicate. 18S was used for standardization. Mean results were plotted as 2-ΔΔCt (n = 4). Statistical

significance of expression variation as compared to yw control: *p<0.05; **p<0.005; ***p<0.001.

https://doi.org/10.1371/journal.pone.0179194.g004
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number of nuclei present in DA1 muscles (Fig 6 & Table 3). Taken together, these results

strongly suggest that CF2 is not only implied in muscle gene expression regulating the stoichi-

ometry of contractile proteins [28], but regulating the number of nuclei in each fiber.

Discussion

Precursor muscle cells must activate and inactivate the expression of large cohorts of genes in

a precise spatio-temporal manner to progress through muscle development. To achieve a

molecular understanding of the regulatory networks controlling cellular decision-making it is

essential to understand how inputs from different regulators are being integrated to define

very precise patterns of gene expression [3,4]. The exact nature of the CF2 relationship with

Mef2 and its effects on muscle building remain yet to be resolved. Here, we explored the

Fig 5. CF2 is involved in somatic muscle size. Anti-MHC (A—F) or anti-TnT (G—I) inmunostaining of stage 17 embryos. (A, D, G) yw embryos. (B, E, H)

Mef2>CF2i homozygous embryos. (C, F, I) Mef2>CF2 heterozygous embryos, carrying one driver copy. (A—C) Whole embryos, lateral views, anterior

to the left and posterior to the right. (D–F) Magnification presenting muscles from segments A2-A4 in the lateral region. DA3 muscle is outlined. (G—I)

Magnification showing LT1-4 and DT1 muscles from segments A2-A4 in the lateral region. Pink arrow in panel F indicates alteration in morphology. LT3, LT4

and DT1 are indicated with white discontinued lines in panel G. The LT4 absence is indicated with a green arrow in panel H and the presence of a new

muscle is indicated with red arrow and red discontinued lines in panel I. Pictures were collected using the same settings and images were equally processed.

They correspond to maximum projections collected with maximum intensity.

https://doi.org/10.1371/journal.pone.0179194.g005

Table 2. LT1-4 muscle size in μm2 from control, homozygous Df2g27, CF2i and CF2 OE embryos. LT1 to LT4 muscle size is given as mean +/- stan-

dard deviation. Statistical significance:. * p < 0.05; ** p < 0.005.

Control Df2©27/Df2©27 Mef2>CF2i Mef2>CF2

LT1 410.85 +/- 62.4 347.54 +/- 60.6* 351. 21+/- 44.1* 467.13 +/- 51.1*

LT2 435.36 +/- 56.4 367.61 +/- 60.6** 373.95 +/- 64.4* 501.26 +/- 56.4*

LT3 414.00 +/- 67.2 332.78 +/- 74.9** 342.93 +/- 51.6* 531.88 +/- 49.4*

LT4 266.91 +/- 59.4 205.15 +/- 39.9* 228.64 +/- 65.2* 330.26 +/- 50.9**

https://doi.org/10.1371/journal.pone.0179194.t002
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Fig 6. CF2 is involved in determining the number of nuclei in Dorsal Acute 1 muscle (DA1) from segments A3 and A4. Anti-eve (magenta) and

Anti Mef2 (blue) staining of DA1 muscles from yw (A-A”), homozygous Df2γ27 (B-B”), homozygous Mef2>CF2i (C-C”), heterozygous Mef2>CF2 (D-D”)

CF2 controls muscle nuclei number and fiber size
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regulatory role of CF2 in the embryonic Drosophila muscles and the contribution of CF2 to

Mef2 mRNA level regulation and muscle formation. To address this question we exploited

tools of gain or loss of function. Our data point to CF2 as a factor involved in the regulation of

muscle size as well as in the final number of nuclei present in each muscle. These functions are

distinct of its role in the regulation of muscle-structural genes as Mef2 partner.

Mef2 expression starts in the ventral furrow during gastrulation, stage 6, where is activated

by twist [8,11,20]. Just after induction of Mef2 expression, around mid-stage 12 (8–9 AEL), the

onset of CF2 expression occurs. Mef2 and CF2 patterns of expression are fully equivalent, with

both proteins present in the nuclei of all three-muscle types [26]. By a cautious inspection of

the Mef2 protein expression in Mef2>CF2i, twi>CF2i and Df2©27 embryos, we have demon-

strated a clear decrease in Mef2 fluorescent signal, that is Mef2 protein abundance, in embryos

where CF2 was expressed at lower levels or was absent (see Fig 3B’and 3C’ and compared with

3A’). Moreover, the opposite is also true and a proportional increase in fluorescent intensity

was observed in embryos displaying higher levels of CF2 (Fig 3D’ and 3A’). Thus, the differ-

ences in CF2 amount are translated into comparative differences in Mef2 protein levels. Inter-

estingly, regardless of CF2 expression being down or up regulated, Mef2 was expressed in

every single myoblast just like in a wild type embryo (Fig 3, insert panels). Thus, Mef2 spatio-

temporal expression pattern remains unaltered in response to CF2 fluctuations but its expres-

sion levels change. Along with those fluctuations there are two possible interpretations: Mef2
transcriptional regulation is dependent on CF2 or Mef2 protein is stabilized by CF2. In fact,

our qRT-PCR data reinforce the former one. Transcript analysis of individually genotyped

CF2 KD and OE embryos confirmed that mRNA expression levels of both genes, Mef2 and

CF2, vary in parallel. These results contrast with previous data in Df2©27 homozygous embryos

that described no changes in Mef2 protein levels in absence of CF2 when comparing to those

in wild type embryos [26]. They were based only in embryos double stained with CF2 and

Mef2 polyclonal antibodies. Since the patterns of expression of Mef2 are exactly the same in

wild type and in homozygous Df2©27 animals, one might think that CF2 does not influence in

Mef2 expression levels. However, our embryo staining data together with qPCR analysis indi-

cate beyond doubt that there is a relationship between CF2 and Mef2 expression levels and

that CF2 is involved in Mef2 regulation. In fact, qPCR experiments on individually genotyped

Df©27 homozygous embryos, the same deficiency previously used [26], show a clear decrease

in Mef2 expression, ruling out any possible strain specific effects.

and homozygous Mef2>Mef2 stage 17 embryos. Left panels show eve stained nuclei, middle panels show Mef2 staining nuclei and right panels merge.

Note that pericardial cells (*) do not express Mef2. It can be observed that eve expressing muscular nuclei number increase or decrease its number

according to CF2 expression levels. In panels D, + stands for TM3Ser Act5C-GFP. Segments A3 and A4 are delimited by dotted lines. Pictures were

collected using the same settings and images were equally processed. They correspond to maximum projections collected with maximum intensity.

https://doi.org/10.1371/journal.pone.0179194.g006

Table 3. Nuclei number in Dorsal Acute 1 muscle in interfered and overexpressed stage 17 embryos.

Statistical significance: **p<0.005; ***p<0.001. ns–no significant.

Genotype Number of nuclei (Mef2+ Eve+)

yw 13± 1.6 (n = 20)

Df2©27 08 ± 1.8 (n = 16) ***

Mef>CF2i 10 ± 1.8 (n = 21) ***

twi>CF2i 11 ± 2.0 (n = 18) **

Mef>CF2 19 ± 1.2 (n = 25) ***

twi>CF2 16 ± 2.1 (n = 20) **

Mef>Mef2 13 ± 2.0 (n = 15) ns

https://doi.org/10.1371/journal.pone.0179194.t003
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Cripps and collaborators proved the presence of a Mef2 dependent enhancer in the Mef2
gene that directly and positively auto-regulates Mef2 transcription in muscle and allows sus-

tained Mef2 expression [30]. In fact, this enhancer is required for muscle maintenance and

growth so Mef2 auto-regulation and sarcomeric gene activations might be, through direct or

indirect mechanisms, interconnected processes. Since our data revealed that CF2 was also

required in these processes, we decided to search for potential binding CF2 sites in this enhancer.

The presence of a putative CF2 binding site (GATATATAC) located 707 bp upstream of the

Mef2 binding site described by Cripps was identified. According with Cripps data, when the

CF2 binding-site containing region is deleted, enhancer´s activity falls significantly. Moreover,

the -8543/-8079 deletion analysis made by Cripps and collaborators indicated complete absence

of activity. The analyzed fragment contains the Mef2 binding site but not the CF2 binding site,

which was deleted [30]. These results strongly support our hypothesis. Thus, Mef2 is essential,

together with CF2, for muscle differentiation in Drosophila via direct activation of genes that

have enhancers containing Mef2 binding sites as it is the case for muscle structural genes [13,14,

17,18]. At that moment, Cripps and collaborators suggested that, in addition to Mef2, other

unknown transcriptional factors were required for the autoregulatory mechanism. Later on, the

synergistic effect of Mef2 and CF2 on 57B actin, Tn I, and mhc genes in embryonic muscles

together with the presence of clusters of conserved Mef2 and CF2 binding sites upstream of tro-
ponin T, troponin I, tropomyosin 1 and 2, MyHC, paramyosin and others were reported, hence

validating the prominence of CF2 alongside Mef2 as a regulator of many structural muscle genes

as well as in muscle sustainability [16,25,27,28].

Under the light of the available data from us and others, we propose a mechanism of regula-

tion model in that CF2 regulates Mef2 expression through a Feedforward Loop (FFL) circuit

(Fig 7) [41]. This model should be completely demonstrated in the future but fits well with our

presented results. Thus, at stage 11, twi activates Mef2 transcription, which in turn activates its

own transcription in a twi independent manner. At mid stage 12, Mef2 induces activation of

CF2 transcription. Both transcription factors, Mef2 and CF2, cooperate to maintain high levels

of Mef2 transcription (Fig 7A). So, according to the proposed model, we speculate that in the

absence of CF2 there is no FFL and therefore no stabilization of high Mef2 transcription levels

whose transcription is kept at low levels through self-activation (Fig 7B). Moreover, modula-

tion of Mef2 transcription levels would be CF2 concentration dependent. Hence, a fall in CF2

concentration would result in a concomitant decrease in Mef2 mRNA levels while a rise in

CF2 concentration would have the opposite effect. Thus, according to the proposed mecha-

nism, during the embryonic stages of muscle development, acting through enhancers contain-

ing clusters of Mef2 and CF2 binding sites, both factors should directly and positively regulate

transcription of sarcomeric genes (Fig 7).

In Drosophila, developing myofibers are multinucleated syncytia that engage similar cellular

mechanisms to become functional muscles [3–6]. Each muscle is constituted by a single myofi-

ber and expresses a unique gene combination that provides them with specific features as size,

shape, and function. Once the precursor muscle cells have been specified (by embryonic stages

11–12), cell–cell fusion occurs between myoblasts to increase muscle mass. The additional

nuclei acquired during fusion move apart from one another, positioning themselves with regu-

lar spacing throughout the length of the developing myotube. Finally, innervation and forma-

tion of the individual contractile muscle units are needed to allow transmission of neural

inputs and movement. Collectively, these cellular processes lead to the formation of mature

myofibers that support muscle function. Here, we add powerful support to a contribution of

CF2 in the final myofibril size control. When CF2 was down or up regulated in the embryos,

there were important changes in muscle size (Fig 5D–5F). Furthermore, we have observed

absence of fibers in CF2 KD embryos (green arrows in Fig 5) while in CF2 OE embryos some
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fibers are duplicated (red arrow in Fig 5). In this context, we also noticed that, despite being

smaller or larger fibers, their shape and anchoring points were not altered. Still more signifi-

cant, in parallel to the size changes, we observed variations, reduction or increase in fiber

nuclei number. A careful count of the nuclei present in the DA1 muscles of CF2 KD or OE

embryos has allowed us to confirm and quantify those variations (Table 3 and Fig 6). Along

Mef2

CF2

Terminal differentiation
&

Sarcomeric Genes

Fusion Onset

Twi

Mef2

CF2

Terminal differentiation
&

Sarcomeric Genes

Fusion Onset

Twi

Fig 7. Proposed model for a mechanism of regulation in that CF2 regulates Mef2 expression through a Feedforward Loop (FFL) circuit.

At stage 11, twi activates Mef2 transcription which in turn activates its own transcription in a twi independent manner. At mid stage 12, Mef2

inducts CF2 transcription, which in turn increases Mef2 expression. Both transcription factors, Mef2 and CF2, cooperate to maintain high levels of

Mef2 transcription and influence the fusion process. In the differentiated fiber, both factors collaborate in the regulation of sarcomeric genes

expression (panel B). In the absence of CF2 (panel A), the feedback loop is lost and Mef2 expression is not increased by the action of CF2.

Therefore, Mef2 expression relays only in the self-activation circuit, which renders low Mef2 expression levels with the concomitant impact on

muscle fiber terminal differentiation, and in the regulation of sarcomeric genes expression.

https://doi.org/10.1371/journal.pone.0179194.g007
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with our conclusions, previous reported data obtained in adult flight muscles also suggested a

contribution of CF2 in the control of the final size of indirect flight muscles [27].

In the context of previous data, it might be possible to discuss that variations in Mef2

expression, rather than in CF2, were the responsible for the described changes in nuclei num-

ber. However, data from others and us argue against this conclusion. Thus, while Mef2 loss of

function completely blocks myoblast fusion and the expression of muscle differentiation pro-

gram [10–13], a moderate over-expression does not cause an increase in nuclei number, but

just some weak defects in muscle patterning together with the appearance of myosin express-

ing un-fussed myoblasts [42,43]. Interestingly, this last phenotype is somehow strikingly remi-

niscent of the very large accumulation of myosin expressing un-fussed myoblasts observed in

embryos strongly overexpressing CF2 (Fig 3). To better support CF2 involvement in control-

ling muscle nuclei number we have used just one copy of Mef2>Gal4 driver to achieve a mod-

erate Mef2 overexpression. DA1 muscles from stage 16 Mef2 OE embryos show the very same

number of nuclei as control animals (Fig 6I/6J & Table 3), confirming the involvement of CF2

in the regulation of the number of nuclei present in each muscle fiber.

Conclusions

Our demonstrations reveal two additional functions for CF2 not yet reported. First, CF2, is

involved in the Mef2 transcriptional regulation. Second, CF2 acts at two closely related levels:

contributing to the control of fiber size and to the number of nuclei that every fiber will have

during embryo muscle differentiation.

Supporting information

S1 Fig. twi-Gal4 driven CF2 KD and OE phenocopies Mef2-Gal4 driven phenotypes. Lat-

eral views of stage 17 embryos stained with anti-CF2 antibody are shown. A. yw embryo. B.

twi/+>CF2i embryo. C. twi/twi>CF2i embryo. D. twi/+>CF2 embryo. E. twi/twi>CF2

embryo. Anterior to the left and posterior to the right. In panel B and D, + stands for TM3Ser
Act5C-GFP. Pictures were collected using the same settings and images were equally processed.

They correspond to maximum projections collected with maximum intensity.
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