
GPU-powered Shotgun Stochastic Search for Dirichlet process
mixtures of Gaussian Graphical Models

Chiranjit Mukherjee [Data Scientist] and
Netflix, Los Gatos, CA (chiranjitmukherjee@gmail.com)

Abel Rodriguez [Professor]
Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA
95064 (abel@ams.ucsc.edu)

Abstract

Gaussian graphical models are popular for modeling high-dimensional multivariate data with

sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to

the more realistic scenario where observations come from a heterogenous population composed of

a small number of homogeneous sub-groups. In this paper we present a novel stochastic search

algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of

decomposable Gaussian graphical models. Further, we investigate how to harness the massive

thread-parallelization capabilities of graphical processing units to accelerate computation. The

computational advantages of our algorithms are demonstrated with various simulated data

examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm

in moderate dimensional data examples. These experiments show that our stochastic search largely

outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of

the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in

which Markov chain Monte Carlo algorithms are too slow to be practically useful.

Keywords

Stochastic Search; Graphical Processing Unit; Dirichlet Process Mixture; Gaussian Graphical
Model

1 Introduction

Gaussian graphical models (GGMs) are widely used as a framework for sparse estimation of

precision matrices in high dimensional problems (e.g., see Wong et al., 2003; Jones et al.,

2005; Scott & Carvalho, 2008). GGMs assume that the joint distribution of a high-

dimensional random variable X = (X1, …, Xp)T follows a normal distribution whose

precision (inverse of the covariance) matrix has non-diagonal zero entries encoded by the

absent edges of a p-dimensional graph.

Code
We shared the source code used in this research through the GitHub repository https://github.com/mukherjeec/DPmixGGM/. This
directory also includes the dataset used in the synthetic data example.

HHS Public Access
Author manuscript
J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

Published in final edited form as:
J Comput Graph Stat. 2016 ; 25(3): 762–788. doi:10.1080/10618600.2015.1037883.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/mukherjeec/DPmixGGM/

One shortcoming of standard GGMs is that they assume that observations are independent

and identically distributed. However, real datasets often exhibit heterogeneity, which can be

accommodated through the use of mixtures of Gaussian graphical models that allow for

different conditional independence patterns on each cluster (Rodriguez et al., 2011). To

illustrate this idea, consider modelling gene expression data, where entry Xj is associated

with the expression level of gene j. GGMs have been widely used in this context to identify

pathways and define metagenes (e.g., see Dobra et al., 2004; Jones et al., 2005; Peña, 2008).

However, recent studies suggest that in applications such as cancer genetics, the population

can be more effectively described as a mixture of a small number of components, with each

component presenting differentially expressed genes as well as different expression

pathways (The Cancer Genome Atlas Network, 2012).

Existing Bayesian procedures for estimating mixtures of GGMs rely on Markov chain

Monte Carlo (MCMC) algorithms. However, these algorithms scale poorly as the number of

variables p grows. This issue is well known in the literature on Gaussian graphical models

(Jones et al., 2005; Scott & Carvalho, 2008), but it is further compounded in the case of

mixtures of GGMs because of the need to jointly explore the space of partitions and the

space of graphs associated with each element of the partition. The first contribution of this

paper is a novel algorithm for stochastic search in mixtures of GGMs. Unlike MCMC

methods, stochastic search methods dispense with the goal of converging to a stationary

distribution in favor of identifying the mode(s) of the posterior distribution. Stochastic

search algorithms for Gaussian graphical models have been discussed in Dobra & West,

2004; Jones et al., 2005; Scott & Carvalho, 2008; Moghaddam et al., 2009; Lenkoski &

Dobra, 2011, and have also been applied to other high-dimensional problems such as model

selection (Berger & Molina, 2005; Hans et al., 2007; Bottolo & Richardson, 2010; Heaton &

Scott, 2010; Kwon et al., 2011), sparse factor analysis models (Carvalho et al., 2008;

Yoshida &West, 2010), and dynamic graphical models (Wang et al., 2011). To explore the

space of graphs, our algorithm uses a shotgun stochastic search similar to the one discussed

in Jones et al., 2005 to quickly explore vast regions of graph spaces and aggressively move

towards high-probability models. In addition, in the spirit of Scott & Carvalho (2008), our

approach uses estimates of the edge-inclusion probabilities based on its earlier explorations

to guide global moves.

The second contribution of this work is a discussion of a massively parallel implementation

of the stochastic search algorithm using graphical processing units (GPUs). GPUs are

dedicated manycore numerical processors capable of performing massive parallel

computational tasks. Originally designed for fast three-dimensional computer graphics

rendering, GPUs caught the attention of the scientific community early on (e.g., Larsen &

McAllister, 2001; Krüger & Westermann, 2003; Bolz et al., 2003; Agarwal et al., 2003;

Charalambous et al., 2005). Owens et al., 2007 provides an excellent survey of early GPU

applications. As GPU architectures have evolved to include single program multiple data
(SPMD) capabilities, faster double-precision arithmetic capability and rich programming

environments, the number of scientific domains in which they have been used has increased

dramatically. Examples include applications in bioinformatics (Horn et al., 2005; Liu et al.,

2006; Manavski & Valle, 2008; Jiang et al., 2009; Sinnott-Armstrong et al., 2009), finance

(Tse, 2012; Oancea et al., 2012; Cai et al., 2013), systems biology (Dematté & Prandi,

Mukherjee and Rodriguez Page 2

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2010), data-mining (Takizawa & Kobayashi, 2006; Che et al., 2008; Pangborn, 2010;

Heinecke et al., 2012), numerical optimization (Zhou et al., 2010) and molecular dynamics

simulation (Yang et al., 2007; Anderson et al., 2008; van Meel et al., 2008).

Over the last few years, GPU computation has started to permeate the statistics literature.

Substantial gains have been reported in applications with easily parallelizable components,

such as sequential Monte Carlo (SMC) algorithms (Jacob et al., 2011; Fulop & Duan, 2011;

Murray et al., 2012; McAlinn et al., 2012; Lee et al., 2012; Murray et al., 2013),

approximate Bayesian computation (Liepe et al., 2010; Aune et al., 2013), and parallel-

tempering MCMC (Mingas & Bouganis, 2012). GPU parallelization has also been employed

for distributing large-scale likelihood computations in spatial modelling and statistical

phylogenetics (Eidsvik et al., 2013; Suchard & Rambaut, 2009; Ayres et al., 2012), to

accelerate specific calculations involved in fitting generalized linear models (Suchard et al.,

2012), and to speedup independent Metropolis-Hastings and multivariate slice-sampling

steps within larger MCMC algorithms (Jacob et al., 2011; Tibbits et al., 2011). Most relevant

to our work, Suchard et al. (2010) and Cron & West (2011) explored GPU implementations

of low-dimensional mixture models with large number of components in massive datasets.

However, we are not aware of any application of GPU parallelization in the contexts of

structure learning for Gaussian graphical models or mixture models for high-dimensional

data. Indeed, unlike previous attempts to parallelize mixtures using GPUs, the model and

applications we consider here involve a relatively small number of high-dimensional

observations. Implementation of these type of models involves unique challenges including

the need to deal with uneven memory requirements across individual tasks and with large

numbers of logical operations.

The rest of the paper is organized as follows: We begin by reviewing Bayesian inference for

Dirichlet process mixtures of Gaussian graphical models in section 2. Section 3 discusses

existing MCMC algorithms for Dirichlet process mixtures of Gaussian graphical models and

presents a novel stochastic search algorithm for finding the maximum a-posteriori estimate

of relevant model parameters. In section 4 we discuss strategies for the implementation of

these algorithms on GPU systems. Computational and inferential usefulness of our

algorithm is illustrated in section 5 with synthetic and real data examples. Finally, section 6

concludes with a discussion of future research directions.

2 Mixtures of Gaussian graphical models

2.1 Gaussian graphical models

Let G = (V, E) be an undirected graph with index set V = {1, …, p} and edge-set E. A

vector-valued random variable X = (X1, …, Xp)T ∈ ℝp is said to follow a Gaussian graphical

model with mean μ and precision matrix K with respect to the graph G, denoted X | μ, K, G
~ NG(X | μ, K−1), if X follows a joint p-variate normal distribution mean vector μ and

precision matrix K such that Kij = Kji = 0 for all (i, j) ∉ E. The random variable X is Markov

with respect to the graph G under this model, implying that Xi and Xj are conditionally

independent given all other variables in the model, i.e., Xi ⫫ Xj | XV\{i,j} for all (i, j) ∉ E.

Mukherjee and Rodriguez Page 3

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In this paper we focus our attention on the class of decomposable graphs on V
(Lauritzen, 1996). Decomposable graphs may be defined inductively though a

decomposition of V into nonempty subsets C1, C2 and S such that C1 ∪ C2 ∪ S = V, C1 ∩
C2 = S, S is completely connected (i.e., any two vertices in S are connected by an edge), and

every path connecting a vertex in C1 to a vertex in C2 goes through S. Applying this process

sequentially leads to a decomposition of V into a collection of k prime components (G) =

{C1, …, Ck} that cannot be further decomposed, and a collection of k − 1 separators (G) =

{S2, …, Sk}. A graph that admits such a decomposition where each prime component is

completely connected is called a decomposable graph.

If G is a decomposable graph, the probability density of a Gaussian graphical model

factorizes as (Dawid & Lauritzen, 1993)

(1)

where μP is the sub-vector of μ corresponding to the indices in P ⊂ V and is

the precision matrix associated with the marginal distribution of the vertices that belong to P.

Note that we have slightly abused notation by using NG(X | μ, K−1) to denote both the law of

the graphical Gaussian variable as well as the associated density (and similarly for N(X | μ,

K−1)).

2.2 Priors for Gaussian graphical models

Bayesian inference for GGMs requires the specification of priors for the unknown

parameters μ, K and G. Conditionally on G, we characterize uncertainties in (μ, K) using a

normal/G-Wishart prior of the form μ, K | G ~ N (μ | μ0, {n0K}−1) WG (K | δ0, D0). The G-

Wishart distribution with parameters δ0, D0 and G extends the well known Wishart

distribution to the cone of symmetric positive-definite matrices PG such that Kij = 0 for all (i,
j) ∉ E. Indeed, when G is complete the G-Wishart distribution WG(K | δ0, D0) is identical to

the Wishart distribution W(K | δ0, D0). The density of the G-Wishart distribution with

respect to the Lebesgue measure on PG has the form (Roverato, 2002; Atay-Kayis &

Massam, 2005; Letac & Massam, 2007)

(2)

where the normalizing constant IG(δ0, D0) is finite if δ0 > 2 and (Diaconis &

Ylvisaker, 1979). In particular, when G is decomposable, Dawid & Lauritzen (1993) show

that the G-Wishart distribution can be factorized into Wishart distributions for the cliques

and the separators of G as

Mukherjee and Rodriguez Page 4

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(3)

where (D0)P is the symmetric positive-definite diagonal sub-block of D0 with indices in P ⊂
V. Hence, for decomposable G, the normalizing constant IG(δ0, D0) in (2) factorizes as

(Roverato, 2002)

In the previous expression, IGP [δ0, (D0)P] is the normalizing constant of the corresponding

Wishart distribution, IGP [δ0, (D0)P] = 2(δ0+|P|−1)|P|/2 Γp{(δ0 + |P| − 1)/2} {det

(D0)P}−(δ0+|P|−1)/2, where |P| is the size of P ⊂ V, and for

x > (p − 1)/2 (Muirhead, 1982).

The model is completed by eliciting a prior for G. Most of the discussion that follows

assumes that G is uniformly distributed on a priori, , which slightly

simplifies the form of the scoring functions used to select graphs. However, one potential

drawback of this choice is that a uniform prior on the space of graphs tends to favor graphs

of medium size. Alternatively, the algorithms we discuss in this paper can be extended to

accommodate alternative priors that alleviate this issue. For example, the algorithm can be

extended to accommodate the size-biased prior proposed by Armstrong et al. (2009), in

which a uniform prior is assigned to the size (number of edges) of the graph and, conditional

on the size, all graphs of the same number of edges are assigned a uniform prior probability.

2.3 Scoring Gaussian graphical model

Let x(1:n) = (x(1), …, x(n)) be an independent and identically distributed sample with x(i) | μ,

K, G ~ NG (μ, K−1). One advantage of decomposable graphs is that computing the marginal

posterior distribution for G is relatively straight-forward. Firstly, since we employ a uniform

prior on the space of graphs we have

(4)

Secondly, because the normalizing constant of the G-Wishart distribution is available in

closed form for decomposable graphs, we have

(5)

Mukherjee and Rodriguez Page 5

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where , μ̄ = (nx̄ + n0μ0)/(n + n0), , and

 (see Rodriguez et al., 2011).

Although (5) is easy to compute for any graph G, the sheer size of the space of graphs

prevents us from directly sampling from (4). For that reason, most computational approaches

for Bayesian inference on GGMs usually explore (4) using random walk proposals that

attempt to change a small number of edges at a time (Giudici & Green, 1999; Wong et al.,

2003; Scott & Carvalho, 2008). Alternatively, stochastic search algorithms such as those

described in Jones et al. (2005) and Lenkoski & Dobra (2011) are used to greedily explore

the space of graphs When G is assumed to be decomposable, both types of algorithms often

rely on the notion of decomposable local neighborhood to devise a search strategy. The (first

order) decomposable local neighborhood of a graph G is composed of all decomposable

graphs that differ from G by at most one edge (note that there are at most p(p − 1)/2 + 1 such

graphs in this neighborhood, including the current G).

2.4 Dirichlet process mixtures of Gaussian graphical models

Consider now a new random sample x(1:n) = (x(1), …, x(n)) distributed according to a

mixture of Gaussian graphical models

where . A random observation x(i) from this distribution comes from one of

the L Gaussian graphical models that have potentially different means, precision matrices

and conditional dependence graphs. Consequently, the mixture model adds additional

flexibility over regular Gaussian graphical models by allowing a heterogeneous population

to be divided into homogeneous groups.

A fully Bayesian specification of the model requires that we elicit prior distributions for the

parameters , and . In this paper we work with the Dirichlet process
mixture (DPM) of Gaussian graphical models (Ferguson, 1973; Sethuraman, 1994; Escobar

& West, 1995; Rodriguez et al., 2011),

(6)

where δa(·) denotes the degenerate probability measure with all its mass on a,

 with u1, u2, … being an independent and identically distributed

sequence with ul ~ Beta(1, α), and being another independent

and identically distributed sequence such that

Mukherjee and Rodriguez Page 6

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

It is often useful to rewrite the Dirichlet process mixture model by introducing independent

mixture indicators ξ1, …, ξn such that ξi = l if and only if x(i) is generated from the l-th

component of the mixture. Conditional on these indicators, (6) can be written as

Integrating over the prior for the random probabilities we can obtain the joint

distribution of the vector of indicators ξ1:n = (ξ1, …, ξn) (Antoniak, 1974)

(7)

where L* ∈ {1, …, n} represents the number of distinct values among ξ1, …, ξn (the

number of active components) and ml is the sample-size of l-th component in a sample of

size n (note that, without lack of generality, we assume that components are labeled

continuously between 1 and L*).

There are strong connections between finite mixtures and Dirichlet Process mixture models.

For example, a finite mixture model in which the component weights are assigned a

symmetric Dirichlet distribution, provides an

approximation to a Dirichlet process mixture model, in the sense that the marginal

distribution for ξ1:n induced by the symmetric Dirichlet,

, converges to (7) as L → ∞
(Ishwaran & Zarepour, 2002). From a computational perspective, one advantage of working

with a Dirichlet process in this context is that only components that instantiate observations

need to be tracked. However, (7) tends to favor a priori partitions of the data with very

uneven sizes (for a more detailed discussion see for example Green & Richardson, 2001).

From (7) it is clear that the value of α plays a critical role in controlling the prior probability

over partitions of the data into clusters. More specifically, smaller values of α favor a small

number of active components L*, and vice versa. Because of this critical role on the prior

configurations we specify a (proper) marginal Jeffrey’s prior on α,

 for α > 0 (Rodriguez, 2013). Under this hyperprior, the

marginal prior distribution has the form , where

. Although the integral involved in the

definition of ψ(n, L*) cannot be solved in closed form, it can be easily computed using

numerical algorithms. In particular, we recommend using the Gauss-Kronrod 21-point

integration rule after mapping the integrand onto (0, 1] with the transformation α = (1 − t)/t.
Also, note that since the definition of ψ(n, L*) only involves n and L* (but not the actual

Mukherjee and Rodriguez Page 7

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

size of each component). Hence, only a maximum of n such integrals need to be computed,

either as a preprocessing step or on the fly, with results for values of L* that had not been

observed in the past being stored for possible later reuse.

2.5 Scoring mixtures of Gaussian graphical models

As with standard Gaussian graphical models, we can score a given mixture model for the

sample x(1), …, x(n) (which is defined through the number of clusters L*, cluster

memberships indicators ξ1, …, ξn, and cluster-specific graphs) using the

posterior distribution

(8)

where x̄l = ∑i∈Pl x
(i)/ml, μ̄l = (n0μ0 + mlx̄l)/(n0 + ml), Ul = ∑i:ξi=l(x(i) − x̄l)(x(i) − x̄l)T, and

. In our experience, this score function is

comparatively flatter on the graph space associated with than in the direction of the

clustering parameters (L*, ξ1:n). This fact will influence the design of the algorithm

described in the next section.

3 Computation for Dirichlet process mixtures of Gaussian Graphical

models

Even though in (8) the parameters of interest, lie in a finite set, enumerating

all possible models is practically impossible even for relatively small values of n and p.

Hence, practical implementation of these models requires the development of algorithms

that can efficiently explore the parameter space without enumerating all possible models. We

start by reviewing the use of Makov chain Monte Carlo algorithms and then move on to

describe a novel shotgun stochastic search algorithm.

3.1 Markov chain Monte Carlo

A Markov chain Monte Carlo algorithm for sampling from (8) that is based on ideas from

Neal (2000) was presented in Rodriguez et al. (2011). Their MCMC sampler alternates

between updating the configuration vector ξ1:n and updating the graphs G1, …, GL

associated with each mixture component. In our numerical evaluations we consider a slightly

modified version of the algorithm that uses the non-informative prior on the precision

parameter for the Dirichlet process described in Rodriguez (2013). The resulting full

conditional distributions for the membership indicators reduces to

Mukherjee and Rodriguez Page 8

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where L*,−j is the number of non-empty clusters in the sample after excluding x(j), is

the size of the l-th cluster in the sample excluding x(j), is the collection of

component specific graphs associated with non-empty clusters after excluding x(j), and

Note that these quantities can be precomputed before running the MCMC algorithm, and

that the denominator of A(n, m, k) cancels out when computing the full conditional

distributions, so that and . On the

other hand, we explore the space of component-specific graphs using a random-walk

Metropolis-Hastings sampler in which proposals for the graph are generated from among

its decomposable neighbors with probability proportional to their posterior probability.

3.2 Shotgun stochastic search

Although the previous algorithm works well for relatively low dimensional responses (say, p
≤ 50 or so), it becomes prohibitively slow for a larger number of nodes. As an alternative, we

investigate a novel stochastic search algorithm for finding the posterior mode(s) of a

Dirichlet process mixture of Gaussian Graphical models. This stochastic search algorithm

explores the space of parameters in part using local moves that are similar to those discussed

in 3.1, but we now drop the need to maintain reversibility of the moves implied by Markov

chain Monte Carlo algorithm and focus instead on a greedy approach to model exploration.

Furthermore, we supplement the local moves with mid- and long-range moves that borrow

ideas from more sophisticated MCMC algorithms for Dirichlet process mixture models (e.g.,

Dahl, 2003; Jain & Neal, 2004), as well as shotgun stochastic search (SSS) (Jones et al.,

2005) and feature-inclusion selection algorithms (Scott & Carvalho, 2008) for Gaussian

graphical models. These mid- and long-range moves are meant to address multimodalities in

the posterior distribution. More specifically we consider the following moves:

1. Local shotgun move for : Recall that the decomposable local neighborhood

of is composed of all decomposable graphs that differ from by at most one

edge (note that there are at most p(p − 1)/2 + 1 such graphs in this neighborhood,

including the current). We move to a randomly selected neighbor of with

probability proportional to its score computed according to (4). This step is

repeated for each l = 1, …, L*. Note that this is similar to the approach used in

section 3.1 for exploring the space of graphs.

Mukherjee and Rodriguez Page 9

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. Local move for ξ1:n: For a given i, define the local i-neighborhood of ξ1:n as the

set configurations that arises by reallocating ξi to one of the clusters. As before,

we move to a randomly selected neighbor of ξ1:n with probability proportional to

its score. This step is repeated for every i = 1, …, n. Again, this step is in the

same spirit to our approach to exploring graphs from section 3.1.

3. Split move for ξ1:n: We generate a neighborhood of Q new configurations by

randomly selecting and splitting the non-singleton components. Subsequently we

move to one of the proposals or retain the current configuration according to

their scores. Each proposed configuration is generated by first splitting the

selected non-singleton component into two non-empty components uniformly at

random, both of which are assigned the same parent graph. Then, for t iterations

we perform f local shotgun updates on each of the two graphs and local updates

for each of the indexes associated with the component that was split.

4.
Merge move for ξ1:n: If L* = 1 we do nothing. Otherwise, we generate

proposed configurations by considering all pairwise component merges. We

initially assign each merged component the graph associated with the largest of

the two components being merged, and then we perform f local shotgun updating

for that graph.

5. Mode-break move for : We perform B local shotgun updating moves on ,

but we disregard the top D high-probability neighbors in each random selection

phase so that the search can climb down in the posterior probability surface away

from the local mode.

6. Global jump move for : Denote last M distinct graphs selected for the

component of observation i by , where . We

generate a random graph with the following marginal edge-inclusion

probabilities:

and set to the minimal decomposable supergraph of the sampled graph.

The different moves described above are organized hierarchically and executed at different

frequencies (see algorithm 1). Because the posterior distribution tends to be comparatively

flat on the space of graphs, local shotgun updates for the graphs are used most frequently.

Every g local shotgun updates we insert a local update on ξ1:n and a local merge update.

Finally, every g × h iterations we insert a local split move. If the previous scheme fails to

improve the model posterior for C consecutive iterations, we say that the search is trapped in

a local mode. At this point mode-break moves are performed on all components with B = 1

and another C iterations of local shotgun moves are performed. If the new model posterior

surpasses the modal posterior then the local-mode is broken. Otherwise, we repeat another

set of mode-break moves with B ← B + 1 so that the search climbs further down the

Mukherjee and Rodriguez Page 10

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

posterior surface before it climbs up again. This process is repeated at-most R times, after

which the local mode is forcefully broken by a global jump move on a randomly selected

component graph. We stop the overall search when no improvement is seen on the posterior

probability for S consecutive iterations, where typically S ≫ C. We suggest selecting the

threshold parameters C and S on the basis of the dimension of the problem to reflect that the

search naturally wanders for longer in higher-dimensional models. In our illustrations we

used C = (n + p) and S = 20(n + p). In our experience, a small number of local updates for

the component-specific graphs and membership indicators in the split and merge moves is

enough to improve the quality of the proposal configurations; in our illustrations we set Q =

1, f = 5 and t = 2 with good empirical results. We also suggest mixing the local shotgun

moves on with the local updating moves on ξ1:n in ratio of their respective parameter

dimensions. We accomplish this in our implementation by setting g = Lp(p − 1)/2n. Since

computation of the minimal triangulation supergraph in the global graph jump move is

prohibitively slow with time-complexity of (p3) (Berry et al., 2004), several mode-break

moves should be attempted before a global graph jump move is called. In our illustration we

set R = 10. Finally, we arbitrarily specify D = 10 and h = 10 for all of our mode-break

moves.

Total execution time can be greatly reduced if good initial values for the algorithm are

chosen. Indeed, in some of our tests the amount of time required to arrive at a meaningful

region of the parameter space when a random initial configuration was used was prohibitive.

We suggest using either known categorical covariates (as we do in section 5.3) or

hierarchical clustering to identify multiple reasonable initial clustering configurations, while

constructing component-specific graphs by thresholding the corresponding matrix of partial

correlations. In addition, we strongly suggest running multiple search-chains starting at

multiple reasonable starting points to more thoroughly explore the posterior distribution.

Given I user-specified initial configurations and N search-chains, our algorithm initiates the

first I search-chains respectively from the I specified configurations, and each of the

subsequent (N − I) chains from one of the initial configurations that is randomly selected

with probability proportional to their stopping-time score.

4 Parallel implementation using graphical processing units

4.1 Graphical processing units for parallel, high-performance computing

Graphical processing units (GPUs) are inexpensive manycore processors that can yield

tremendous computational power for data-parallel problems. We use NVIDIA GPUs with

CUDA 4.0 (NVIDIA CUDA C Programming Guide, Version 4.0, 2011) as our development

environment. The NVIDIA GPU architecture is built around a scalable array of multi-

threaded streaming multiprocessors (SMs), where each SM consists of a number of

computing units (the CUDA cores), and a fast-access memory pool of the order of few

kilobytes (the shared memory). Additionally, NVIDIA GPUs have a large, high-latency

memory pool of the order of few gigabytes (the global memory).

CUDA is an extension of C where parallel jobs are programmed with special functions

called kernels. Copies of a kernel running on the GPU are called threads. The CUDA

Mukherjee and Rodriguez Page 11

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

programming model organizes threads in equal-sized blocks of threads and executes every

thread in a thread-block on one SM during runtime. Each thread-block solves a coarse-

grained parallel task with individual threads cooperatively performing finer-grained parallel

operations. To use a GPU, data accessed by a kernel first need to be transferred to its global

memory. Subsequently, a kernel call is executed by parallel execution of multiple threads-

blocks on available SMs. After the kernel execution is finished all results need to be written

to the global memory and copied back to the CPU.

Compared to other architectures for high-performance computing, GPUs offer the promise

of fast computation at a very low cost. However, realizing the full potential of GPUs can be

difficult because of the constraints imposed by the architecture. One of such constraint

derives from the fact that SMs operate on the thread blocks in single instruction, multiple

threads (SIMT) paradigm. Under SIMT, threads are run simultaneously on different pieces

of data by different CUDA cores. When threads that are being run simultaneously diverge

via data-dependent conditional branching, each branch path is serially executed while other

threads are disabled. Parallel processing is restarted when all divergent paths have been

completed. Hence substantial performance improvements usually require that the number of

logical branching operations in each coarse-grained parallel task be minimized.

Algorithm 1

Stochastic search for MAP estimation of DPM-GGM parameters

Input: Initial parameter configurations .

Input: # chains N, # follow-up moves C, max # of iterations without score increment before stopping S.

Input: Max # consecutive mode-break moves R, # top modes disregarded in move-break moves D.

Input: Split and merge move parameters Q, f, t.

Input: Mixing ratios: local shotgun graph moves to local ξ-moves g, local ξ-moves to split moves h.

1

2 for i ← 1 to N do

Mukherjee and Rodriguez Page 12

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3 % Select the initial configuration for the i-th search chain

4 if i ≤ I then

5

6 else

7 d ~ Multinomial(1, exp(last_best_score[1:I]))

8

9

10 % Start the i-th run of stochastic search

11 k ← 0, c ← 0, last_best_score[i] ← −∞

12 while c < S do

13 % Local moves

14 while c < C do

15 if g * k is an integer then

16 Perform local update moves on ξ1, …, ξn

17 Perform the merge move with tuning parameters (f, t)

18 if g * h * k is an integer then

19 Perform the split move with tuning parameters (f, t)

20 else

21
Perform local shotgun update moves on

22

23 if score > last_best_score then c ← 0

24 else c ← c + 1

25

26 % Move break moves

27 r ← 1, B ← 1

28 while c ≥ C and r ≤ R do

29 Perform a mode break move with tuning parameters (B, D)

30 for j ← 1 to C do

31
Perform local shotgun update moves on

32

33 if score > last_best_score then c ← 0

34 else c ← c + C, r ← r + 1, B ← B + 1

35

36 % Global graph jump move

37 if r > R then

38 l ~ uniform{1, …, L}

39
Perform a global jump move on

40 c ← 0

Mukherjee and Rodriguez Page 13

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

41

42 k ← k + 1

43
if score > last_best_score[i] then last_best_score[i] = score,

44

45

return

Another issue with GPUs is memory organization. A kernel can allocate memory for a

coarse-grained task either on the shared memory or on the global memory. The number of

active thread-blocks on an SM during runtime is determined by the shared-memory

requirement of the kernel. Trading fast-access shared memory allocations with slower global

memory ones allows for more thread-blocks to be run simultaneously, but will slow down

execution of each individual thread-block. Hence, the memory allocation is an important

design choice that needs be optimized for overall GPU performance. Furthermore, when

performing global memory read/writes, consecutive positions should be accessed in parallel

threads for best performance.

Scaling up the number of GPUs can bring further computational speedups for massive-scale

parallel problems (e.g., see section 5.1). Multi-GPU systems are particularly useful for

kernels with total global memory requirement exceeding any single GPU’s memory pool.

Indeed, kernels that allocate large global memory buffer for the thread-blocks may exhaust

the global memory pool on a single GPU quite quickly. In this situations, it may take more

than one kernel call to get the whole parallel job done. If one has multiple GPUs at its

disposal, the total task may often be split into parts that can be fit into separate GPU global

memory pools and executed simultaneously. In this situation, a thorough understanding of

the system architecture (hardware configuration) and its impact on CPU-GPU and GPU-

GPU memory throughputs is essential to achieve optimal computational performance (see

Micikevicius, 2011 for additional details).

4.2 Speeding up model search using graphical processing units

Since shotgun updates for the component-specific graphs are by far the most frequent moves

in our algorithm, we focus most of our attention on them. Shotgun updates involve two

computationally demanding tasks, namely, testing decomposability of the p(p − 1)/2

neighbors of a given component-specific graph, and computing the score associated with

each of those neighbors. GPU parallelization of these tasks is not trivial, as they involve

numerous conditional statements which would normally be treated as conditional

divergences in GPU thread-parallelization. To deal with this issue, we define 32-thread

thread-blocks and treat each graph-decomposition test or score computation as a coarse-level

problem solved by a thread-block. This strategy avoids most serial executions of conditional

divergences and allows us to properly accommodate the shared memory requirement of each

task.

Mukherjee and Rodriguez Page 14

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Consider first the parallel implementation of the decomposability tests. Generally speaking,

testing the decomposability of a p-vertex graph via maximal cardinality search has a time-

complexity of (p3) (Rose et al., 1976). However, since adding/deleting one edge to/from a

decomposable graph affects at most two cliques and one separator, the decomposability test

and marginal probability computations can be performed much more efficiently for local

shotgun neighbors following the algorithm of Giudici & Green (1999). The condition for

decomposability after an edge-deletion to a graph G = (V, E) verifies whether the edge is

contained in exactly one clique of G. The condition for decomposability after adding an

edge between vertices a and b examines (i) if a and b belong to different connected

components in the parent graph, or (ii) if there exists R, T ⊂ V such that a ∪ R and b ∪ T are

cliques of G, and S = R ∩ T is a separator on the path between a ∪ R and b ∪ T in the

junction-tree of G.

We set up two kernels, CanDeleteEdge() and CanAddEdge(), to distribute the p(p − 1)/2

decomposability tests associated with the different neighbors to multiple GPUs

simultaneously. In addition to implementing these kernels using a thread-block of 32 parallel

threads, we reduce the memory requirements and data-transfer times by using a 2-byte short

integer type throughout our implementation. Since the decomposability test implemented in

CanDeleteEdge() requires single access to each clique, we store them on the global memory

rather than the shared memory, and use only 8 bytes of shared memory for inter-thread

communications. On the other hand, the test for edge-added neighbors requires multiple

accesses to the cliques, separators and the junction tree. The kernel for this test loads the set

S, the whole junction tree T, and one clique/separator of G at a time onto the shared

memory. The shared memory requirement is (86+2p+4|T|) bytes, where p is the number of

vertices in G and |T| is the number of edges in the junction tree. Both kernel-

implementations reduce memory-latency by reading from/writing to the global memory pool

in parallel threads. Initial data transfers to some GPUs are overlapped with the first kernel

call in other GPUs to improve efficiency. Furthermore, transfer of results from the first

kernel call is also overlapped with the second kernel execution. Finally, results from the

second kernel call are copied back to the CPU, asynchronously, overlapping with the

subsequent computations on the CPU.

In terms of parallelizing the computation of the score function, we note that because we are

adding or removing a single edge at a time, this step again involves evaluating inverse-

Wishart normalizing constants only for two cliques and one separator for each

decomposable neighbor. As before, we implement a CUDA kernel GGScore() to evaluate

the score of a given neighboring graph with a thread-block of 32 parallel threads. The

program starts by copying D0 and D0 + U + A to the GPU global memory. Subsequently, the

kernel extracts (D0)P and (D0 + U + A)P for each relevant clique and separator P, then

computes det((D0)P) and det((D0 + U + A)P) by computing their Cholesky factorizations in

parallel threads. We reduce memory latency by storing P, (D0)P and (D0 + U + A)P in

 bytes of the shared memory buffer, where pm is the size of the largest clique

for which we need to compute the inverse-Wisart normalizing constant. This rather large

shared memory requirement constrains the size of cliques and separators that can be

accommodated on the GPU. Furthermore, since CUDA allows only a single size dynamic

Mukherjee and Rodriguez Page 15

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

shared memory allocation for a given kernel call, it is too wasteful to evaluate all

neighboring graphs in a single kernel call as the shared memory requirement varies widely

for different graphs. Hence, to improve GPU performance in this step we divide the

decomposable neighbors into bins of comparable shared memory requirement, and evaluate

large bins on the GPUs in separate kernel calls, while smaller bins are evaluated on the CPU

simultaneously. Results from all GPU kernel calls are copied back to the CPU

asynchronously, overlapping with other CPU computations.

4.3 Speeding up MCMC algorithms using graphical processing units

The GPU kernels discussed in Section 4.2 can also be used to accelerate computation for

MCMC algorithms. In particular, the decomposability tests associated with the component-

specific graph proposals discussed in section 3.1 can be parallelized using the

CanDeleteEdge() and CanAddEdge() kernels introduced in section 4.2. Similarly, the

GGScore() kernel can potentially be used to accelerate the calculation of the posterior

distributions required for the different steps of the algorithm. However, although the use of

GPU-enabled versions of the MCMC algorithm do tend to provide speedups when compared

with their CPU-based counterparts, the execution times are still much longer than those of

our novel stochastic search algorithms (see Section 5).

5 Illustrations and evaluation

We evaluate the performance of our proposed stochastic search algorithm using simulated

datasets (sections 5.1 and 5.2) and real gene expressions (section 5.3). All computations

were carried out on a system consisting of a AVA Direct Custom CrossFireX workstation

with Intel Core i7-975 Extreme Quad-Core processor (clock speed: 3.33 Ghz) and three

graphics cards: one Tesla C1060 (30 SMs with clock speed 1.30 Ghz) and two GeForce

GTX 285 (30 SMs with clock speed 1.48 Ghz). All graphics cards are architecturally

similar, consisting of SMs with 8 CUDA cores and 16 KB shared memory. Although the

system has multiple CPU cores available, all of our implementations and tests (both CPU

and hybrid CPU/GPU) involve a single core. Furthermore, the same initial random seed is

used for both executions so that all implementations yield identical output.

5.1 Performance analyses of GPU kernels

We start by investigating the performance of our GPU kernels with synthetic data

experiments that involve both small and large graphs. The performance of our GPU kernels

CanDeleteEdge(), CanAddEdge() and GGScore() is compared against that of single-thread,

CPU-versions of themselves. We use the insights gained from these performance evaluations

to tune the stochastic search algorithm for our other illustrations.

Consider first the evaluation of the CanDeleteEdge() and CanAddEdge(). Our synthetic

experiments involve graphs with p = 50, 100, 200, 300, 400 vertices. For each selected

graph-dimension, graphs are simulated with edge-inclusion probabilities 0.01, 0.02, …,

0.25. For each of these edge-inclusion probabilities we simulate 5 random graphs and

compute a minimal triangulation supergraph of the sampled graph. The resulting graphs are

decomposable and range from very sparse to quite dense graphs of that relevant dimension.

Mukherjee and Rodriguez Page 16

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For each of the graphs we test the decomposability of all neighboring graphs with kernel

calls to CanDeleteEdge() and CanAddEdge(), and measure the total execution time for both

kernels. Speedups are reported in figures 1 and 2, which present the one-GPU and three-

GPU performances in separate panels, where the average speedup for each graph dimension

is plotted as different curves. The vertical bars show the range of fluctuation in speedup for

the given edge-inclusion probability.

Figure 1 shows the results for CanDeleteEdge(), where we observe substantial speedups

with increasing graph dimension. This is possible since the Giudici & Green (1999) test for

decomposability for edge-deleted neighbors does not require many logical branching

operations for implementation. This GPU-kernel is also implemented with a small shared

memory requirement. The relatively small ranges of fluctuation come from the fact that the

algorithm has very similar computational load for graphs with same dimension and density.

Although we observe poor GPU performance for sparse graphs in small dimensions (which

can be attributed to not having enough number of tasks to parallelize), as graphs become

larger and denser, the one-GPU and three-GPU performances improve dramatically. In

particular, we observe up to 25-fold speedup on 3 GPUs for some graphs with 400 vertices.

This motivates us to use the 3 GPU implementation in the stochastic search for our real data

application.

The GPU-kernel CanAddEdge() requires complex operations involving multiple passes

through the cliques and separators of the graph, numerous logical branching, and a large

amount of shared memory allocation. Even then, the computational speedups are significant,

especially using 3 GPUs, as shown in figure 2. Interestingly, we do not observe an

increasing relationship between average speedups and graph density. Also, large ranges of

fluctuations in the speedup are seen across all graph dimensions and graph densities. This

arises from the fact that the computational load of this kernel is largely dependent on the size

of the junction tree, and the cliques and separators of the graph. Peak performance is

achieved when the GPU core occupancies are optimal. However, the average speedup is

satisfactory in general, with the possible exception of small, sparse graphs.

To evaluate the GGScore() kernel we follow a similar procedure, but for each one of the

graphs we first simulate a covariance matrix according to a G-Wishart prior with p + 1

degrees of freedom and identity scale matrix, and then generate a sample of 148

observations from a Gaussian distribution with mean zero and the covariance matrix just

sampled. Figure 3 plots the GPU performance for the score computation kernel GGScore().
The speedups are often less than 1, and when the GPU-kernel performs better than the CPU-

kernel, speedups are not as impressive as for the other two kernels. Interestingly, GGScore()
tends to perform better for graphs with 50 and 100 vertices on the GPU. This is because for

smaller graphs we can GPU-parallelize score computations of most shotgun neighbors using

the shared memory of our GPUs. For large graphs most of the shotgun neighbors are

computed using the CPU, where the cost of large CPU-GPU data transfers increase runtime.

As a consequence of these results we do not use this GPU-kernel in our current search

algorithm. However, we note that current releases of NVIDIA GPUs have much higher

amounts of shared memory on each SMs that will allow GPU-parallelization of more

shotgun neighbors on the GPUs. Additionally, newer GPU architectures allow for concurrent

Mukherjee and Rodriguez Page 17

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

kernel execution, which facilitate simultaneous score computation of all bins of

decomposable neighbors under the shared memory cap. These hold promise for potential

usage of our GPU-kernel in score computations of large dimensional graph search as the

hardware improves.

5.2 Synthetic data

In this section we analyze a synthetic dataset to demonstrate effectiveness of our stochastic

search as a Bayesian learning tool for Dirichlet process mixtures of Gaussian graphical

models vis-à-vis Markov chain Monte Carlo algorithms. Our synthetic example deals with a

dataset with a relatively small-dimension, n = 150 and p = 50. The data is generated from a

three-component mixture with equal weights, where the distribution for the l-th component

follows a . To generate the precision matrix K1, K2 and K3 we first simulate three

random decomposable graphs G1, G2 and G3 with respective edge-inclusion proportions of

2.53%, 10.12% and 14.94%. Subsequently, the precision matrices are sampled from G-

Wishart distributions, Ki ~ WGi (d, (d − 2)S) for i = 1, 2, 3, where d = 5000 and S = 0.1Ip

+ 0.9Jp. Here Ip denotes the p × p identity matrix and Jp denotes the p × p matrix of ones.

The parameters of the baseline measure are specified as n0 = 0.01, δ0 = 3, D0 = Ip.

First, we used the stochastic search using the Algorithm 1 to obtain an estimate of the

posterior mode of the model. In this example we use three random initial configurations (N
= I = 3 in Algorithm 1). In addition, we used a version of the MCMC algorithm discussed in

section 3.1 that incorporates single-core CPU versions of the kernels CanDeleteEdge() and

CanAddEdge(). For this MCMC algorithm we run a total of three chains (one starting from

one of the three initial random configurations used for the stochastic search-chains described

below), with each chain generating 100, 000 samples after a burn-in period of 20, 000

iterations. Both the stochastic search and the MCMC algorithm were run first using only the

CPU of the AVA Direct Custom CrossFireX desktop computer, and then again using the

GPU accelerated versions of the algorithm that simultaneously use all three available GPUs.

The seed for the random seed generator is set to the same values for each pair of GPU/CPU

runs so that differences in execution times reflect only differences in the implementation.

Table 1 presents a comparison of the performance of the MCMC algorithm with the

performance of the stochastic search. We report results for the model with the highest

posterior probability under our algorithm (denoted by MAP-SS) and for the model with the

highest posterior probability visited by the Markov chain (denoted by MAP-MCMC), as

well as the score associated with the true model used to generate the data. Note that the

stochastic search algorithm is significantly faster than the MCMC algorithm, and that the

computing times of the MCMC chains are prohibitively large even in this relatively low-

dimensional dataset. This is true even if the MCMC algorithm is accelerated using massive

GPU parallelization. Furthermore, Table 1 suggests that the stochastic search algorithm is

able to identify higher probability models than the more standard MCMC algorithm.

Another interesting observation is that the score associated with the MAP model is better

than the score associated with the true model.

Mukherjee and Rodriguez Page 18

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Some additional insight on the behavior of the algorithms can be gained by exploring the

structure of both modes. Both MAP-SS and MAP-MCMC imply the same grouping of

observations (both correctly identify the presence of three clusters and misclassify one

observation), so the modes differ essentially in terms of the quality of the component-

specific graphs they identify. Table 2 shows the error rates (total density, false positive and

false negative rates) for each component graph for each of the two algorithms. Note that,

although both modes overestimate the total number of edges in all three graphs, MAP-SS is

consistently better than MAP-MCMC in all error categories for all component graphs.

5.3 Analysis of a gene-expression dataset

As a final illustration, we demonstrate the performance of the GPU-powered stochastic

search by analyzing gene expression data of human breast cancers. The original dataset

contains gene-expressions of 4512 genes from an Affymatrix HU95aV2 oligonucleotide

microarray for 148 breast tumor samples. Each tumor in the dataset has additional

classification tags according to its estrogen receptivity (ER+/ER−) and presence of cancer

metastasis in neighboring auxiliary lymph-nodes (LN+/LN−). Parts of this dataset have been

previously analyzed in West et al. (2001), Huang et al. (2003a), Huang et al. (2003b), Nevins

et al. (2003), Pittman et al. (2004) and Hans et al. (2007) using models that assume

homogeneity in the underlying population. In contrast, we employ the Dirichlet process

mixtures of GGMs to assess whether different genetic-pathways are present in the data.

We created five datasets by first reordering the genes in descending order of their correlation

with the binary encoded ER status, and then selecting the first 50, 100, 200, 300 and 400

genes from the reordered list. Within each dataset, gene expression values were standardized

by subtracting their mean and then dividing by their marginal standard deviations. In all

cases the baseline measure was specified so that n0 = 0.01, δ0 = 3 and D0 = Ip, where Ip is

the p × p identity matrix. Three initial configurations for the search were used (i.e., I = 3 in

Algorithm 1) in each dataset. These initial configurations correspond to: (i) a single

component model, (ii) a two-component model where the sample is split according ER

status, and (iii) a four-component model where the sample is split according to all

combinations of ER and LN status. Initial graphs for each component are obtained by

putting edges between variables that have corresponding within-cluster partial correlation

greater than 0.5. We run 9 search-chains (i.e. N = 9 in Algorithm 1) for each dataset. The

stochastic search was run twice for each dataset, once using all 3 GPUs, and once using the

single-core CPU implementation. Table 3 reports computing times for the CPU- and the

three-GPU implementations for all five gene-sets, as well as the relative speedups attained.

Observe the increasing speedup as the number of genes increase. In particular, the near 10-

times speedup for dimension 400 is encouraging for DPM-GGM applications in high-

dimensional problems.

We consider now in more detail the MAP estimate for the dataset containing 400 genes. This

estimate involves two clusters, which roughly match ER status (see Table. 4). This partition

is also somewhat similar to the one obtained by first reducing the dimensionality of the

responses by computing the first 30 principal components of the data and then using a

mixture of Gaussians with equal variance and the Bayesian Information Criteria as

Mukherjee and Rodriguez Page 19

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

implemented in the R package mclust (Fraley & Raftery, 2003) to identify the clusters.

(However, we note that the partitions generated by this simple two-stage approach are not

robust to changes in the number of principal components used to reduce the dimensionality

of the problem, that the structure of the principal components themselves is very sensitive to

removal/addition of even a very small number of observations, and that the amount of

variability captured by the principal components decreases very slowly). These graphs have

very different densities (1.62% of the possible edges are included in the first cluster, while

7.72% are included in the second), with only 24% of the edges present in the first cluster

being also present in the second one. This suggests that gene pathways associated with the

two groups are significantly different.

We also compared the results from our stochastic search algorithm for the dataset containing

50 genes with those generated by the MCMC described in section 5.2. The comparison is

based on three MCMC chains consisting of 100, 000 samples obtained after a burn-in period

of 20, 000 iterations each. Each one of these chains was started from one of the three initial

configurations for the stochastic search described before. Table 6 presents the scores

associated with the MAP estimate, along with total execution times and the time required by

the algorithms to reach the MAP estimate. As with the simulated data, the stochastic search

is significantly faster than the MCMC algorithm. Indeed, the computing times of the MCMC

chains are prohibitively large, and the quality of the response (as measured by the score of

the best model visited in each case) is much lower.

6 Discussion

Our stochastic search algorithm relies on a mixture of local and global moves to explore the

space of possible models. However, the relative efficiency of these moves varies. In

particular, the posterior distribution appears to be much flatter in the direction of the

component-specific graphs than in the direction of the partitions. As a consequence, the

space of partitions is explored relatively quickly using local moves. The split-merge moves

for the partitions, although helpful in terms of allowing the algorithm to quickly move away

from local modes, appears to contribute comparatively less to improving the solution. In that

regard, it is also worth noting that when we started this work we also considered mid-range

moves in which a small number of observations (between two and five) where

simultaneously reallocated using their joint full conditional distribution, but these moves

proved to be computationally expensive while providing little improvement over reallocating

a single observation at time. On the other hand, in the case of of the component specific

graphs the mode-break move and the global jump moves appear to play a key role that is as

important as that of the local moves.

The use of GPU computation in the context of mixtures of Gaussian graphical models was

particularly challenging because of the “large p, small n” nature of the problem at hand.

Although we successfully thread-parallelized the graph decomposability tests for moderate

numbers of variables (a notable achievement, given the fact that they lack desirable

arithmetic intensity due to numerous conditional branching in the tests), we were less

successful in achieving speedups in the computation of score functions or the

decomposability tests for large graphs involving thousands or tens of thousands of nodes.

Mukherjee and Rodriguez Page 20

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The main reason for this is the scarcity of shared memory on the GPUs cards and the need to

sequentially launch kernel calls. One way to deal with this limitation that we did not pursue

in this paper is to use multiple GPU accelerators and load partial tasks on each unit.

Furthermore, as new generations of graphical cards become available, these constraints will

become less important. Indeed, current releases of NVIDIA GPU cards feature faster clock

speeds, lower memory latency at all levels, larger amounts of shared memory on each

streaming multiprocessor, and allow for concurrent kernel execution capabilities. In the

context of the GGScore kernel, these features would allow us to move away from a fixed

specification of the shared memory resource for cliques and separators of various sizes,

while in the case of CanAddEdge()and CanDeleteEdge() the additional memory would

allow for larger graphs to be considered.

An important limitation of our approach is the restriction to component-specific graphs that

are decomposable. Generally speaking, designing an algorithms for mixtures of Gaussian

graphical models with non-decomposable graphs has been historically challenging because a

formula for the score function is not available in closed form, requiring the use of Laplace

approximations or Monte Carlo integration. If Monte Carlo integration is used to

approximate the value of the score, GPUs could potentially be used to dramatically speed-up

this computation. Alternatively, Uhler et al. (2014) have recently proposed closed-form

formulas.

Acknowledgments

The authors would like to thank the Associate Editor two anonymous referees for helpful comments that improved
the quality of the manuscript. This work was partially funded by awards NIH/NIGMS R01GM090201-01 and
NSF/DMS 1441433.

References

Agarwal, P., Krishnan, S., Mustafa, N., Venkatasubramanian, S. Streaming geometric optimization
using graphics hardware. In: Battista, G., Zwick, U., editors. Algorithms - ESA 2003. Berlin
Heidelberg: Springer; 2003. p. 544-555.volume 2832 of Lecture Notes in Computer Science

Anderson JA, Lorenz CD, Travesset A. General purpose molecular dynamics simulations fully
implemented on graphics processing units. Journal of Computational Physics. 2008; 227:5342–
5359.

Antoniak CE. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems.
The Annals of Statistics. 1974; 2:1152–1174.

Armstrong H, Carter CK, Wong KF, Kohn R. Bayesian covariance matrix estimation using a mixture
of decomposable graphical models. Statistics and Computing. 2009; 19:303–316.

Atay-Kayis A, Massam H. A Monte Carlo method for computing the marginal likelihood in
nondecomposable Gaussian graphical models. Biometrika. 2005; 92:317–335.

Aune E, Eidsvik J, Pokern Y. Iterative numerical methods for sampling from high dimensional
Gaussian distributions. Statistics and Computing. 2013:1–21.

Ayres DL, Darling A, Zwickl DJ, Beerli P, Holder MT, Lewis PO, Huelsenbeck JP, Ronquist F,
Swofford DL, Cummings MP, Rambaut A, Suchard MA. Beagle: an application programming
interface and high-performance computing library for statistical phylogenetics. Systematic biology.
2012; 61:170–173. [PubMed: 21963610]

Berger JO, Molina G. Posterior model probabilities via path-based pairwise priors. Statistica
Neerlandica. 2005; 59:3–15.

Mukherjee and Rodriguez Page 21

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Berry A, Blair J, Heggernes P, Peyton B. Maximum cardinality search for computing minimal
triangulations of graphs. Algorithmica. 2004; 39:287–298.

Bolz, J., Farmer, I., Grinspun, E., Schröoder, P. ACM Transactions on Graphics (TOG). Vol. 22. ACM;
2003. Sparse matrix solvers on the GPU: Conjugate gradients and multigrid; p. 917-924.

Bottolo L, Richardson S. Evolutionary stochastic search for Bayesian model exploration. Bayesian
Analysis. 2010; 5:583–618.

Cai X, Lai G, Lin X. Forecasting large scale conditional volatility and covariance using neural network
on GPU. The Journal of Supercomputing. 2013; 63:490–507.

Carvalho CM, Chang J, Lucas JE, Nevins JR, Wang Q, West M. High-dimensional sparse factor
modeling: applications in gene expression genomics. Journal of the American Statistical
Association. 2008; 103:1438–1456. [PubMed: 21218139]

Charalambous, M., Trancoso, P., Stamatakis, A. Initial experiences porting a bioinformatics
application to a graphics processor. In: Bozanis, P., Houstis, E., editors. Advances in Informatics.
Berlin Heidelberg: Springer; 2005. p. 415-425.volume 3746 of Lecture Notes in Computer Science

Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Skadron K. A performance study of general-purpose
applications on graphics processors using CUDA. Journal of Parallel and Distributed Computing.
2008; 68:1370–1380.

Cron A, West M. Efficient classification-based relabeling in mixture models. The American
Statistician. 2011; 65:16–20. [PubMed: 21660126]

Dahl, D. Technical report. University of Winsconsin: Department of Statistics; 2003. An improved
merge-split sampler for conjugate Dirichlet process mixture models.

Dawid AP, Lauritzen SL. Hyper Markov laws in the statistical analysis of decomposable graphical
models. The Annals of Statistics. 1993; 21:1272–1317.

Dematté L, Prandi D. GPU computing for systems biology. Briefings in Bioinformatics. 2010; 11:323–
333. [PubMed: 20211843]

Diaconis P, Ylvisaker D. Conjugate priors for exponential families. The Annals of Statistics. 1979;
7:269–281.

Dobra A, Hans C, Jones B, Nevins JR, Yao G, West M. Sparse graphical models for exploring gene
expression data. Journal of Multivariate Analysis. 2004; 90:196–212.

Dobra A, West M. Bayesian covariance selection. Duke Statistics Discussion Papers. 2004

Eidsvik J, Shaby BA, Reich BJ, Wheeler M, Niemi J. Estimation and prediction in spatial models with
block composite likelihoods. Journal of Computational and Graphical Statistics. 2013 To appear.

Escobar MD, West M. Bayesian density estimation and inference using mixtures. Journal of American
Statistical Association. 1995; 90:577–588.

Ferguson T. A Bayesian analysis of some nonparametric problems. The Annals of Statistics. 1973;
1:209–230.

Fraley C, Raftery AE. Enhanced model-based clustering, density estimation, and discriminant analysis
software: Mclust. Journal of Classification. 2003; 20:263–286.

Fulop A, Duan J. Marginalized sequential Monte Carlo samplers. 2011 Available at SSRN 1837772.

Giudici P, Green P. Decomposable graphical Gaussian model determination. Biometrika. 1999;
86:785–801.

Green P, Richardson S. Modelling heterogeneity with and without the Dirichlet process. Scandinavian
Journal of Statistics. 2001; 28:355–375.

Hans C, Dobra A, West M. Journal of the American Statistical Association. 2007; 102:507–516.

Heaton, M., Scott, J. Bayesian computation and the linear model. In: Chen, PMDSM-H.Dey, DK., Ye,
K., editors. Frontiers of Statistical Decision Making and Bayesian Analysis: In Honor of James O.
Berger. Berlin Heidelberg: Springer; 2010. p. 527-552.

Heinecke, A., Klemm, M., Pflüger, D., Bode, A., Bungartz, H-J. Euro-Par 2011: Parallel Processing
Workshops. Springer; 2012. Extending a highly parallel data mining algorithm to the Intel® many
integrated core architecture; p. 375-384.

Horn, DR., Houston, M., Hanrahan, P. Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing. IEEE Computer Society; 2005. Clawhmmer: A streaming HMMer-search
implementation; p. 11

Mukherjee and Rodriguez Page 22

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Huang E, Cheng S, Dressman H, Pittman J, Tsou M, Horng C, Bild A, Iversen E, Liao M, Chen C, et
al. Gene expression predictors of breast cancer outcomes. The Lancet. 2003a; 361:1590–1596.

Huang E, West M, Nevins J. Gene expression profiling for prediction of clinical characteristics of
breast cancer. Recent Progress in Hormone Research. 2003b; 58:55–73. [PubMed: 12795414]

Ishwaran H, Zarepour M. Dirichlet prior sieves in finite normal mixtures. Statistica Sinica. 2002;
12:941–963.

Jacob P, Robert CP, Smith MH. Using parallel computation to improve independent metropolis–
hastings based estimation. Journal of Computational and Graphical Statistics. 2011; 20:616–635.

Jain S, Neal RM. A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture
model. Journal of Graphical and Computational Statistics. 2004; 13:158–182.

Jiang, R., Zeng, F., Zhang, W., Wu, X., Yu, Z. Bioinformatics, Systems Biology and Intelligent
Computing, 2009. IJCBS’09. International Joint Conference on. IEEE; 2009. Accelerating
genome-wide association studies using CUDA compatible graphics processing units; p. 70-76.

Jones B, Carvalho C, Dobra A, Hans C, Carter C, West M. Experiments in stochastic computation for
high-dimensional graphical models. Statistical Science. 2005; 20:388–400.

Krüger, J., Westermann, R. ACM Transactions on Graphics (TOG). Vol. 22. ACM; 2003. Linear
algebra operators for GPU implementation of numerical algorithms; p. 908-916.

Kwon D, Landi MT, Vannucci M, Issaq HJ, Prieto D, Pfeiffer RM. An efficient stochastic search for
Bayesian variable selection with high-dimensional correlated predictors. Computational Statistics
& Data Analysis. 2011; 55:2807–2818. [PubMed: 21686315]

Larsen, ES., McAllister, D. Proceedings of the 2001 ACM/IEEE Conference on Supercomputing
(CDROM). ACM; 2001. Fast matrix multiplies using graphics hardware; p. 55-55.

Lauritzen, SL. Graphical Models. Oxford: Clarendon Press; 1996.

Lee A, Caron F, Doucet A, Holmes C, et al. Bayesian sparsity-path-analysis of genetic association
signal using generalized t priors. Statistical Applications in Genetics and Molecular Biology. 2012;
11:1–29.

Lenkoski A, Dobra A. Computational aspects related to inference in Gaussian graphical models with
the G-Wishart prior. Journal of Computational and Graphical Statistics. 2011; 20:140–157.

Letac G, Massam H. Wishart distributions for decomposable graphs. The Annals of Statistics. 2007;
35:1278–1323.

Liepe J, Barnes C, Cule E, Erguler K, Kirk P, Toni T, Stumpf M. Bioinformatics. 2010; 26:1797–1799.
[PubMed: 20591907]

Liu, W., Schmidt, B., Voss, G., Schroder, A., Muller-Wittig, W. Parallel and Distributed Processing
Symposium,2006. IPDPS 2006. 20th International. IEEE; 2006. Bio-sequence database scanning
on a GPU; p. 8

Manavski S, Valle G. CUDA compatible GPU cards as efficient hardware accelerators for Smith-
Waterman sequence alignment. BMC Bioinformatics. 2008; 9:S10.

McAlinn K, Katsura H, Nakatsuma T. Fully parallel particle learning for GPGPUs and other parallel
devices. preprint arXiv:1212.1639. 2012

van Meel JA, Arnold A, Frenkel D, Zwart SP, Belleman RG. Harvesting graphics power for MD
simulations. Molecular Simulation. 2008; 34:259–266.

Micikevicius, P. Technical report. NVIDIA; 2011. Multi-GPU programming. http://www.nvidia.com/
docs/IO/116711/sc11-multi-gpu.pdf

Mingas, G., Bouganis, C-S. Parallel tempering MCMC acceleration using reconfigurable hardware. In:
Choy, O.Cheung, R.Athanas, P., Sano, K., editors. Reconfigurable Computing: Architectures,
Tools and Applications. Berlin Heidelberg: Springer; 2012. p. 227-238.volume 7199 of Lecture
Notes in Computer Science

Moghaddam, B., Marlin, B., Khan, E., Murphy, K. Accelerating Bayesian structural inference for non-
decomposable Gaussian graphical models. In: Bengio, Y.Schuurmans, D.Lafferty, J.Williams,
CKI., Culotta, A., editors. Advances in Neural Information Processing Systems. Vol. 22. 2009. p.
1285-1293.

Muirhead, R. Aspects of multivariate statistical theory. Vol. 42. Wiley Online Library; 1982.

Mukherjee and Rodriguez Page 23

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nvidia.com/docs/IO/116711/sc11-multi-gpu.pdf
http://www.nvidia.com/docs/IO/116711/sc11-multi-gpu.pdf

Murray LM, Jones EM, Parslow J. On collapsed state-space models and the particle marginal
Metropolis-Hastings sampler. preprint arXiv:1202.6159. 2012

Murray LM, Lee A, Jacob PE. Rethinking resampling in the particle filter on graphics processing
units. arXiv preprint arXiv:1301.4019. 2013

Neal RM. Markov chain sampling methods for Dirichlet process mixture models. Journal of
Computational and Graphical Statistics. 2000; 9:249–265.

Nevins J, Huang E, Dressman H, Pittman J, Huang A, West M. Towards integrated clinico-genomic
models for personalized medicine: Combining gene expression signatures and clinical factors in
breast cancer outcomes prediction. Human Molecular Genetics. 2003; 12:R153–R157. [PubMed:
12928487]

NVIDIA CUDA C Programming Guide, Version 4.0. 2011

Oancea, CE., Andreetta, C., Berthold, J., Frisch, A., Henglein, F. Proceedings of the 1st ACM
SIGPLAN workshop on Functional high-performance computing. ACM: 2012. Financial software
on GPUs: Between Haskell and Fortran; p. 61-72.

Owens, J., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A., Purcell, T. Computer
Graphics Forum. Vol. 26. Wiley Online Library; 2007. A survey of general-purpose computation
on graphics hardware; p. 80-113.

Pangborn, A. Master’s thesis. Rochester Institute of Technology: Department of Computer
Engineering; 2010. Scalable Data Clustering using GPU Clusters.

Peña, J. Learning gaussian graphical models of gene networks with false discovery rate control. In:
Marchiori, E., Moore, J., editors. Evolutionary Computation, Machine Learning and Data Mining
in Bioinformatics. Berlin Heidelberg: Springer; 2008. p. 165-176.volume 4973 of Lecture Notes in
Computer Science

Pittman J, Huang E, Dressman H, Horng C, Cheng S, Tsou M, Chen C, Bild A, Iversen E, Huang A, et
al. Integrated modeling of clinical and gene expression information for personalized prediction of
disease outcomes. Proceedings of the National Academy of Sciences of the United States of
America. 2004; 101:8431–8436. [PubMed: 15152076]

Rodriguez A. Default Bayesian analysis for the multivariate Ewens distribution. Statistics and
Probability Letters. 2013 To appear.

Rodriguez A, Lenkoski A, Dobra A. Sparse covariance estimation in heterogeneous samples.
Electronic Journal of Statistics. 2011; 5:981–1014. [PubMed: 26925189]

Rose D, Tarjan R, Lueker G. Algorithmic aspects of vertex elimination on graphs. SIAM Journal on
Computing. 1976; 5:266–283.

Roverato A. Hyper inverse Wishart distribution for non-decomposable graphs and its application to
Bayesian inference for Gaussian graphical models. Scandinavian Journal of Statistics. 2002;
29:391–411.

Scott J, Carvalho C. Feature-inclusion stochastic search for Gaussian graphical models. Journal of
Computational and Graphical Statistics. 2008; 17:790–808.

Sethuraman J. A constructive definition of dirichlet priors. Statistica Sinica. 1994; 4:639–650.

Sinnott-Armstrong N, Greene C, Cancare F, Moore J. Accelerating epistasis analysis in human
genetics with consumer graphics hardware. BMC Research Notes. 2009; 2:149. [PubMed:
19630950]

Suchard M, Rambaut A. Many-core algorithms for statistical phylogenetics. Bioinformatics. 2009;
25:1370–1376. [PubMed: 19369496]

Suchard M, Wang Q, Chan C, Frelinger J, Cron A, West M. Understanding GPU programming for
statistical computation: Studies in massively parallel massive mixtures. Journal of Computational
and Graphical Statistics. 2010; 19:419–438. [PubMed: 20877443]

Suchard MA, Simpson SE, Zorych I, Ryan P, Madigan D. Massive parallelization of serial inference
algorithms for a complex generalized linear model. preprint arXiv:1208.0945. 2012

Takizawa H, Kobayashi H. Hierarchical parallel processing of large scale data clustering on a PC
cluster with GPU co-processing. The Journal of Supercomputing. 2006; 36:219–234.

The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours.
Nature. 2012; 490:61–70. [PubMed: 23000897]

Mukherjee and Rodriguez Page 24

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tibbits M, Haran M, Liechty J. Parallel multivariate slice sampling. Statistics and Computing. 2011;
21:415–430.

Tse, HT. Ph.D. thesis. Imperial College London: Department of Computing; 2012. Accelerating
Reconfigurable Financial Computing.

Uhler C, Lenkoski A, Richards D. Exact formulas for the normalizing constants of wishart
distributions for graphical models. arXiv preprint arXiv:1406.4901. 2014

Wang H, Reeson C, Carvalho CM. Dynamic financial index models: Modeling conditional
dependencies via graphs. Bayesian Analysis. 2011; 6:639–664.

West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, Zuzan H, Olson J, Marks J, Nevins
J. Predicting the clinical status of human breast cancer by using gene expression profiles.
Proceedings of the National Academy of Sciences. 2001; 98:11462–11467.

Wong F, Carter CK, Kohn R. Efficient estimation of covariance selection models. Biometrika. 2003;
90:809–830.

Yang J, Wang Y, Chen Y. GPU accelerated molecular dynamics simulation of thermal conductivities.
Journal of Computational Physics. 2007; 221:799–804.

Yoshida R, West M. Bayesian learning in sparse graphical factor models via variational mean-field
annealing. The Journal of Machine Learning Research. 2010; 11:1771–1798. [PubMed: 20890391]

Zhou H, Lange K, Suchard M. Graphics processing units and high-dimensional optimization.
Statistical Science: a review journal of the Institute of Mathematical Statistics. 2010; 25:311.
[PubMed: 21847315]

Mukherjee and Rodriguez Page 25

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Relative speedups (runtime on CPU/runtime on GPUs) attained by CanDeleteEdge() for

random graphs sampled with various edge-inclusion probabilities. The top panel shows

results from using one GeForce GTX 285 GPU, where the bottom panel shows results from

using all three GPUs described in sec. 5.1. The five curves in each panel respectively

correspond to graphs with 50, 100, 200, 300 and 400 nodes. Each curve shows average

speedup for a given dimension, where the associated vertical bars represent the range of

speedup (min to max) observed for the given edge-inclusion probability.

Mukherjee and Rodriguez Page 26

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Relative speedups (runtime on CPU/runtime on GPUs) attained by CanAddEdge() for

random graphs sampled with various edge-inclusion probabilities. The top panel shows

results from using one GeForce GTX 285 GPU, where the bottom panel shows results from

using all three GPUs described in sec. 5.1. The five curves in each panel respectively

correspond to graphs with 50, 100, 200, 300 and 400 nodes. Each curve shows average

speedup for a given dimension, where the associated vertical bars represent the range of

speedup (min to max) observed for the given edge-inclusion probability.

Mukherjee and Rodriguez Page 27

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Relative speedups (runtime on CPU/runtime on GPUs) attained by GGScore() for random

graphs sampled with various edge-inclusion probabilities. The top panel shows results from

using one GeForce GTX 285 GPU, where the bottom panel shows results from using all

three GPUs described in sec. 5.1. The five curves in each panel respectively correspond to

graphs with 50, 100, 200, 300 and 400 nodes. Each curve shows average speedup for a given

Mukherjee and Rodriguez Page 28

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

dimension, where the associated vertical bars represent the range of speedup (min to max)

observed for the given edge-inclusion probability.

Mukherjee and Rodriguez Page 29

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mukherjee and Rodriguez Page 30

Ta
b

le
 1

C
om

pa
ri

so
n

of
 th

e
st

oc
ha

st
ic

 s
ea

rc
h

w
ith

 M
C

M
C

 f
or

 th
e

sy
nt

he
tic

 d
at

as
et

 w
ith

 n
 =

 1
50

 a
nd

 p
 =

 5
0.

L
og

sc
or

e

M
is

cl
as

si
fi

ed
ob

se
rv

at
io

ns
T

im
e

to
 M

A
P

(s
ec

)
C

P
U

To
ta

l r
un

ti
m

e
(s

ec
)

C
P

U
T

im
e

to
 M

A
P

(s
ec

)
3

G
P

U
To

ta
l r

un
ti

m
e

(s
ec

)
3

G
P

U

T
ru

th
−

57
21

.3
4

–
–

–
–

–

M
A

P-
SS

−
56

62
.9

9
1

20
6.

60
26

4.
37

13
4.

16
17

1.
67

M
A

P-
M

C
M

C
−

58
65

.0
8

1
27

03
89

.6
9

37
42

53
.6

4
17

7,
 8

87
.9

5
24

6,
 2

19
.5

0

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mukherjee and Rodriguez Page 31

Ta
b

le
 2

C
om

pa
ri

so
n

of
 th

e
st

oc
ha

st
ic

 s
ea

rc
h

w
ith

 M
C

M
C

 in
 g

ra
ph

 le
ar

ni
ng

 f
or

 th
e

sy
nt

he
tic

 d
at

as
et

 w
ith

 n
 =

 1
50

 a
nd

 p
 =

 5
0.

 T
he

 tr
ue

 a
nd

 f
al

se
 p

os
iti

ve
 d

is
co

ve
ry

ra
te

s
ar

e
th

e
fr

ac
tio

ns
 o

f
ed

ge
s

of
 a

 c
om

po
ne

nt
 g

ra
ph

 th
at

 a
re

 r
es

pe
ct

iv
el

y
pr

es
en

t o
r

ab
se

nt
 in

 th
e

‘t
ru

e’
 c

om
po

ne
nt

 g
ra

ph
. S

im
ila

rl
y,

 th
e

tr
ue

 a
nd

 f
al

se

ne
ga

tiv
e

di
sc

ov
er

y
ra

te
s

ar
e

th
e

fr
ac

tio
ns

 o
f

ab
se

nt
 e

dg
es

 in
 a

 c
om

po
ne

nt
 g

ra
ph

 th
at

 a
re

 r
es

pe
ct

iv
el

y
ab

se
nt

 o
r

pr
es

en
t i

n
th

e
‘t

ru
e’

 c
om

po
ne

nt
 g

ra
ph

.

L
ea

rn
in

g
M

et
ho

d
G

ra
ph

%
 e

dg
es

(%
 t

ot
al

+v
es

)

T
ru

e
+v

e
di

sc
ov

er
y

ra
te

 (
%

)

F
al

se
 +

ve
di

sc
ov

er
y

ra
te

 (
%

)

T
ru

e
−v

e
di

sc
ov

er
y

ra
te

 (
%

)

F
al

se
 −

ve
di

sc
ov

er
y

ra
te

 (
%

)

G
1

5.
88

22
.2

2
77

.7
8

99
.2

2
0.

78

M
A

P-
SS

G
2

15
.8

4
50

.0
0

50
.0

0
99

.0
3

0.
97

G
3

19
.6

7
64

.3
2

35
.6

8
98

.8
8

1.
12

G
1

7.
10

12
.6

4
87

.3
6

98
.7

6
1.

24

M
A

P-
M

C
M

C
G

2
25

.1
4

22
.4

0
77

.6
0

95
.8

6
4.

14

G
3

32
.1

6
31

.4
7

68
.5

3
94

.9
5

5.
05

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mukherjee and Rodriguez Page 32

Ta
b

le
 3

A
gg

re
ga

te
 r

un
tim

e
(i

n
se

co
nd

s)
 o

f
9

se
ar

ch
-c

ha
in

s
on

 C
PU

 a
nd

 o
n

3
G

PU
s

fo
r

al
l f

iv
e

ge
ne

-s
et

s.
 R

el
at

iv
e

sp
ee

du
p

fo
r

th
e

m
ul

ti-
G

PU
 im

pl
em

en
ta

tio
n

is

pr
es

en
te

d
al

on
gs

id
e.

G
en

e-
se

t
si

ze
50

10
0

20
0

30
0

40
0

C
PU

 ti
m

e
(s

ec
)

23
0.

79
17

72
.6

4
18

22
2.

92
15

69
40

.5
4

81
27

91
.1

5

3
G

PU
 ti

m
e

(s
ec

)
15

2.
84

75
7.

54
40

31
.6

2
21

12
2.

55
84

75
4.

03

G
PU

 S
pe

ed
up

1.
51

2.
34

4.
52

7.
43

9.
59

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mukherjee and Rodriguez Page 33

Table 4

Number of matches and mismatches of the DPM-GGM based classification of tumor samples with the ER-

status in the 400 gene-expressions dataset.

ER+ ER− Total

Cluster 1 96 17 113

Cluster 2 1 34 35

Total 97 51 148

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mukherjee and Rodriguez Page 34

Table 5

Percentage of exclusive edges and percentage of common edges in component graphs of the maximum a-
posteriori DPM-GGM model for the gene-expressions dataset with 400 genes.

% edges in G1 \ G2 % edges in G1 ∩ G2 % edges in G2 \ G1

1.23 0.39 7.33

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mukherjee and Rodriguez Page 35

Table 6

Comparison of the stochastic search with MCMC for the dataset with 50 genes.

Max log-posterior
probability

Time to reach the
MAP estimate (sec)

Total runtime (sec)

SS on 3 GPUs −7052.69 137.57 152.84

SS on CPU −7052.69 208.13 230.79

MCMC chain 1 on CPU −7191.95 318314.06 368082.13

MCMC chain 2 on CPU −7175.45 256305.86 402676.77

MCMC chain 3 on CPU −7294.68 25418.33 424634.15

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

	Abstract
	1 Introduction
	2 Mixtures of Gaussian graphical models
	2.1 Gaussian graphical models
	2.2 Priors for Gaussian graphical models
	2.3 Scoring Gaussian graphical model
	2.4 Dirichlet process mixtures of Gaussian graphical models
	2.5 Scoring mixtures of Gaussian graphical models

	3 Computation for Dirichlet process mixtures of Gaussian Graphical models
	3.1 Markov chain Monte Carlo
	3.2 Shotgun stochastic search

	4 Parallel implementation using graphical processing units
	4.1 Graphical processing units for parallel, high-performance computing

	Algorithm 1
	4.2 Speeding up model search using graphical processing units
	4.3 Speeding up MCMC algorithms using graphical processing units

	5 Illustrations and evaluation
	5.1 Performance analyses of GPU kernels
	5.2 Synthetic data
	5.3 Analysis of a gene-expression dataset

	6 Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6

