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Abstract

Gaussian graphical models are popular for modeling high-dimensional multivariate data with 

sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to 

the more realistic scenario where observations come from a heterogenous population composed of 

a small number of homogeneous sub-groups. In this paper we present a novel stochastic search 

algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of 

decomposable Gaussian graphical models. Further, we investigate how to harness the massive 

thread-parallelization capabilities of graphical processing units to accelerate computation. The 

computational advantages of our algorithms are demonstrated with various simulated data 

examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm 

in moderate dimensional data examples. These experiments show that our stochastic search largely 

outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of 

the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in 

which Markov chain Monte Carlo algorithms are too slow to be practically useful.

Keywords

Stochastic Search; Graphical Processing Unit; Dirichlet Process Mixture; Gaussian Graphical 
Model

1 Introduction

Gaussian graphical models (GGMs) are widely used as a framework for sparse estimation of 

precision matrices in high dimensional problems (e.g., see Wong et al., 2003; Jones et al., 

2005; Scott & Carvalho, 2008). GGMs assume that the joint distribution of a high-

dimensional random variable X = (X1, …, Xp)T follows a normal distribution whose 

precision (inverse of the covariance) matrix has non-diagonal zero entries encoded by the 

absent edges of a p-dimensional graph.

Code
We shared the source code used in this research through the GitHub repository https://github.com/mukherjeec/DPmixGGM/. This 
directory also includes the dataset used in the synthetic data example.
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One shortcoming of standard GGMs is that they assume that observations are independent 

and identically distributed. However, real datasets often exhibit heterogeneity, which can be 

accommodated through the use of mixtures of Gaussian graphical models that allow for 

different conditional independence patterns on each cluster (Rodriguez et al., 2011). To 

illustrate this idea, consider modelling gene expression data, where entry Xj is associated 

with the expression level of gene j. GGMs have been widely used in this context to identify 

pathways and define metagenes (e.g., see Dobra et al., 2004; Jones et al., 2005; Peña, 2008). 

However, recent studies suggest that in applications such as cancer genetics, the population 

can be more effectively described as a mixture of a small number of components, with each 

component presenting differentially expressed genes as well as different expression 

pathways (The Cancer Genome Atlas Network, 2012).

Existing Bayesian procedures for estimating mixtures of GGMs rely on Markov chain 

Monte Carlo (MCMC) algorithms. However, these algorithms scale poorly as the number of 

variables p grows. This issue is well known in the literature on Gaussian graphical models 

(Jones et al., 2005; Scott & Carvalho, 2008), but it is further compounded in the case of 

mixtures of GGMs because of the need to jointly explore the space of partitions and the 

space of graphs associated with each element of the partition. The first contribution of this 

paper is a novel algorithm for stochastic search in mixtures of GGMs. Unlike MCMC 

methods, stochastic search methods dispense with the goal of converging to a stationary 

distribution in favor of identifying the mode(s) of the posterior distribution. Stochastic 

search algorithms for Gaussian graphical models have been discussed in Dobra & West, 

2004; Jones et al., 2005; Scott & Carvalho, 2008; Moghaddam et al., 2009; Lenkoski & 

Dobra, 2011, and have also been applied to other high-dimensional problems such as model 

selection (Berger & Molina, 2005; Hans et al., 2007; Bottolo & Richardson, 2010; Heaton & 

Scott, 2010; Kwon et al., 2011), sparse factor analysis models (Carvalho et al., 2008; 

Yoshida &West, 2010), and dynamic graphical models (Wang et al., 2011). To explore the 

space of graphs, our algorithm uses a shotgun stochastic search similar to the one discussed 

in Jones et al., 2005 to quickly explore vast regions of graph spaces and aggressively move 

towards high-probability models. In addition, in the spirit of Scott & Carvalho (2008), our 

approach uses estimates of the edge-inclusion probabilities based on its earlier explorations 

to guide global moves.

The second contribution of this work is a discussion of a massively parallel implementation 

of the stochastic search algorithm using graphical processing units (GPUs). GPUs are 

dedicated manycore numerical processors capable of performing massive parallel 

computational tasks. Originally designed for fast three-dimensional computer graphics 

rendering, GPUs caught the attention of the scientific community early on (e.g., Larsen & 

McAllister, 2001; Krüger & Westermann, 2003; Bolz et al., 2003; Agarwal et al., 2003; 

Charalambous et al., 2005). Owens et al., 2007 provides an excellent survey of early GPU 

applications. As GPU architectures have evolved to include single program multiple data 
(SPMD) capabilities, faster double-precision arithmetic capability and rich programming 

environments, the number of scientific domains in which they have been used has increased 

dramatically. Examples include applications in bioinformatics (Horn et al., 2005; Liu et al., 

2006; Manavski & Valle, 2008; Jiang et al., 2009; Sinnott-Armstrong et al., 2009), finance 

(Tse, 2012; Oancea et al., 2012; Cai et al., 2013), systems biology (Dematté & Prandi, 
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2010), data-mining (Takizawa & Kobayashi, 2006; Che et al., 2008; Pangborn, 2010; 

Heinecke et al., 2012), numerical optimization (Zhou et al., 2010) and molecular dynamics 

simulation (Yang et al., 2007; Anderson et al., 2008; van Meel et al., 2008).

Over the last few years, GPU computation has started to permeate the statistics literature. 

Substantial gains have been reported in applications with easily parallelizable components, 

such as sequential Monte Carlo (SMC) algorithms (Jacob et al., 2011; Fulop & Duan, 2011; 

Murray et al., 2012; McAlinn et al., 2012; Lee et al., 2012; Murray et al., 2013), 

approximate Bayesian computation (Liepe et al., 2010; Aune et al., 2013), and parallel-

tempering MCMC (Mingas & Bouganis, 2012). GPU parallelization has also been employed 

for distributing large-scale likelihood computations in spatial modelling and statistical 

phylogenetics (Eidsvik et al., 2013; Suchard & Rambaut, 2009; Ayres et al., 2012), to 

accelerate specific calculations involved in fitting generalized linear models (Suchard et al., 

2012), and to speedup independent Metropolis-Hastings and multivariate slice-sampling 

steps within larger MCMC algorithms (Jacob et al., 2011; Tibbits et al., 2011). Most relevant 

to our work, Suchard et al. (2010) and Cron & West (2011) explored GPU implementations 

of low-dimensional mixture models with large number of components in massive datasets. 

However, we are not aware of any application of GPU parallelization in the contexts of 

structure learning for Gaussian graphical models or mixture models for high-dimensional 

data. Indeed, unlike previous attempts to parallelize mixtures using GPUs, the model and 

applications we consider here involve a relatively small number of high-dimensional 

observations. Implementation of these type of models involves unique challenges including 

the need to deal with uneven memory requirements across individual tasks and with large 

numbers of logical operations.

The rest of the paper is organized as follows: We begin by reviewing Bayesian inference for 

Dirichlet process mixtures of Gaussian graphical models in section 2. Section 3 discusses 

existing MCMC algorithms for Dirichlet process mixtures of Gaussian graphical models and 

presents a novel stochastic search algorithm for finding the maximum a-posteriori estimate 

of relevant model parameters. In section 4 we discuss strategies for the implementation of 

these algorithms on GPU systems. Computational and inferential usefulness of our 

algorithm is illustrated in section 5 with synthetic and real data examples. Finally, section 6 

concludes with a discussion of future research directions.

2 Mixtures of Gaussian graphical models

2.1 Gaussian graphical models

Let G = (V, E) be an undirected graph with index set V = {1, …, p} and edge-set E. A 

vector-valued random variable X = (X1, …, Xp)T ∈ ℝp is said to follow a Gaussian graphical 

model with mean μ and precision matrix K with respect to the graph G, denoted X | μ, K, G 
~ NG(X | μ, K−1), if X follows a joint p-variate normal distribution mean vector μ and 

precision matrix K such that Kij = Kji = 0 for all (i, j) ∉ E. The random variable X is Markov 

with respect to the graph G under this model, implying that Xi and Xj are conditionally 

independent given all other variables in the model, i.e., Xi ⫫ Xj | XV\{i,j} for all (i, j) ∉ E.
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In this paper we focus our attention on the class  of decomposable graphs on V 
(Lauritzen, 1996). Decomposable graphs may be defined inductively though a 

decomposition of V into nonempty subsets C1, C2 and S such that C1 ∪ C2 ∪ S = V, C1 ∩ 
C2 = S, S is completely connected (i.e., any two vertices in S are connected by an edge), and 

every path connecting a vertex in C1 to a vertex in C2 goes through S. Applying this process 

sequentially leads to a decomposition of V into a collection of k prime components (G) = 

{C1, …, Ck} that cannot be further decomposed, and a collection of k − 1 separators (G) = 

{S2, …, Sk}. A graph that admits such a decomposition where each prime component is 

completely connected is called a decomposable graph.

If G is a decomposable graph, the probability density of a Gaussian graphical model 

factorizes as (Dawid & Lauritzen, 1993)

(1)

where μP is the sub-vector of μ corresponding to the indices in P ⊂ V and  is 

the precision matrix associated with the marginal distribution of the vertices that belong to P. 

Note that we have slightly abused notation by using NG(X | μ, K−1) to denote both the law of 

the graphical Gaussian variable as well as the associated density (and similarly for N(X | μ, 

K−1)).

2.2 Priors for Gaussian graphical models

Bayesian inference for GGMs requires the specification of priors for the unknown 

parameters μ, K and G. Conditionally on G, we characterize uncertainties in (μ, K) using a 

normal/G-Wishart prior of the form μ, K | G ~ N (μ | μ0, {n0K}−1) WG (K | δ0, D0). The G-

Wishart distribution with parameters δ0, D0 and G extends the well known Wishart 

distribution to the cone of symmetric positive-definite matrices PG such that Kij = 0 for all (i, 
j) ∉ E. Indeed, when G is complete the G-Wishart distribution WG(K | δ0, D0) is identical to 

the Wishart distribution W(K | δ0, D0). The density of the G-Wishart distribution with 

respect to the Lebesgue measure on PG has the form (Roverato, 2002; Atay-Kayis & 

Massam, 2005; Letac & Massam, 2007)

(2)

where the normalizing constant IG(δ0, D0) is finite if δ0 > 2 and  (Diaconis & 

Ylvisaker, 1979). In particular, when G is decomposable, Dawid & Lauritzen (1993) show 

that the G-Wishart distribution can be factorized into Wishart distributions for the cliques 

and the separators of G as
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(3)

where (D0)P is the symmetric positive-definite diagonal sub-block of D0 with indices in P ⊂ 
V. Hence, for decomposable G, the normalizing constant IG(δ0, D0) in (2) factorizes as 

(Roverato, 2002)

In the previous expression, IGP [δ0, (D0)P] is the normalizing constant of the corresponding 

Wishart distribution, IGP [δ0, (D0)P] = 2(δ0+|P|−1)|P|/2 Γp{(δ0 + |P| − 1)/2} {det 

(D0)P}−(δ0+|P|−1)/2, where |P| is the size of P ⊂ V, and  for 

x > (p − 1)/2 (Muirhead, 1982).

The model is completed by eliciting a prior for G. Most of the discussion that follows 

assumes that G is uniformly distributed on  a priori, , which slightly 

simplifies the form of the scoring functions used to select graphs. However, one potential 

drawback of this choice is that a uniform prior on the space of graphs tends to favor graphs 

of medium size. Alternatively, the algorithms we discuss in this paper can be extended to 

accommodate alternative priors that alleviate this issue. For example, the algorithm can be 

extended to accommodate the size-biased prior proposed by Armstrong et al. (2009), in 

which a uniform prior is assigned to the size (number of edges) of the graph and, conditional 

on the size, all graphs of the same number of edges are assigned a uniform prior probability.

2.3 Scoring Gaussian graphical model

Let x(1:n) = (x(1), …, x(n)) be an independent and identically distributed sample with x(i) | μ, 

K, G ~ NG (μ, K−1). One advantage of decomposable graphs is that computing the marginal 

posterior distribution for G is relatively straight-forward. Firstly, since we employ a uniform 

prior on the space of graphs we have

(4)

Secondly, because the normalizing constant of the G-Wishart distribution is available in 

closed form for decomposable graphs, we have

(5)
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where , μ̄ = (nx̄ + n0μ0)/(n + n0), , and 

 (see Rodriguez et al., 2011).

Although (5) is easy to compute for any graph G, the sheer size of the space of graphs 

prevents us from directly sampling from (4). For that reason, most computational approaches 

for Bayesian inference on GGMs usually explore (4) using random walk proposals that 

attempt to change a small number of edges at a time (Giudici & Green, 1999; Wong et al., 

2003; Scott & Carvalho, 2008). Alternatively, stochastic search algorithms such as those 

described in Jones et al. (2005) and Lenkoski & Dobra (2011) are used to greedily explore 

the space of graphs When G is assumed to be decomposable, both types of algorithms often 

rely on the notion of decomposable local neighborhood to devise a search strategy. The (first 

order) decomposable local neighborhood of a graph G is composed of all decomposable 

graphs that differ from G by at most one edge (note that there are at most p(p − 1)/2 + 1 such 

graphs in this neighborhood, including the current G).

2.4 Dirichlet process mixtures of Gaussian graphical models

Consider now a new random sample x(1:n) = (x(1), …, x(n)) distributed according to a 

mixture of Gaussian graphical models

where . A random observation x(i) from this distribution comes from one of 

the L Gaussian graphical models that have potentially different means, precision matrices 

and conditional dependence graphs. Consequently, the mixture model adds additional 

flexibility over regular Gaussian graphical models by allowing a heterogeneous population 

to be divided into homogeneous groups.

A fully Bayesian specification of the model requires that we elicit prior distributions for the 

parameters , and . In this paper we work with the Dirichlet process 
mixture (DPM) of Gaussian graphical models (Ferguson, 1973; Sethuraman, 1994; Escobar 

& West, 1995; Rodriguez et al., 2011),

(6)

where δa(·) denotes the degenerate probability measure with all its mass on a, 

 with u1, u2, … being an independent and identically distributed 

sequence with ul ~ Beta(1, α), and  being another independent 

and identically distributed sequence such that
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It is often useful to rewrite the Dirichlet process mixture model by introducing independent 

mixture indicators ξ1, …, ξn such that ξi = l if and only if x(i) is generated from the l-th 

component of the mixture. Conditional on these indicators, (6) can be written as

Integrating over the prior for the random probabilities  we can obtain the joint 

distribution of the vector of indicators ξ1:n = (ξ1, …, ξn) (Antoniak, 1974)

(7)

where L* ∈ {1, …, n} represents the number of distinct values among ξ1, …, ξn (the 

number of active components) and ml is the sample-size of l-th component in a sample of 

size n (note that, without lack of generality, we assume that components are labeled 

continuously between 1 and L*).

There are strong connections between finite mixtures and Dirichlet Process mixture models. 

For example, a finite mixture model in which the component weights are assigned a 

symmetric Dirichlet distribution,  provides an 

approximation to a Dirichlet process mixture model, in the sense that the marginal 

distribution for ξ1:n induced by the symmetric Dirichlet, 

, converges to (7) as L → ∞ 
(Ishwaran & Zarepour, 2002). From a computational perspective, one advantage of working 

with a Dirichlet process in this context is that only components that instantiate observations 

need to be tracked. However, (7) tends to favor a priori partitions of the data with very 

uneven sizes (for a more detailed discussion see for example Green & Richardson, 2001).

From (7) it is clear that the value of α plays a critical role in controlling the prior probability 

over partitions of the data into clusters. More specifically, smaller values of α favor a small 

number of active components L*, and vice versa. Because of this critical role on the prior 

configurations we specify a (proper) marginal Jeffrey’s prior on α, 

 for α > 0 (Rodriguez, 2013). Under this hyperprior, the 

marginal prior distribution has the form , where 

. Although the integral involved in the 

definition of ψ(n, L*) cannot be solved in closed form, it can be easily computed using 

numerical algorithms. In particular, we recommend using the Gauss-Kronrod 21-point 

integration rule after mapping the integrand onto (0, 1] with the transformation α = (1 − t)/t. 
Also, note that since the definition of ψ(n, L*) only involves n and L* (but not the actual 
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size of each component). Hence, only a maximum of n such integrals need to be computed, 

either as a preprocessing step or on the fly, with results for values of L* that had not been 

observed in the past being stored for possible later reuse.

2.5 Scoring mixtures of Gaussian graphical models

As with standard Gaussian graphical models, we can score a given mixture model for the 

sample x(1), …, x(n) (which is defined through the number of clusters L*, cluster 

memberships indicators ξ1, …, ξn, and cluster-specific graphs ) using the 

posterior distribution

(8)

where x̄l = ∑i∈Pl x
(i)/ml, μ̄l = (n0μ0 + mlx̄l)/(n0 + ml), Ul = ∑i:ξi=l(x(i) − x̄l)(x(i) − x̄l)T, and 

. In our experience, this score function is 

comparatively flatter on the graph space associated with  than in the direction of the 

clustering parameters (L*, ξ1:n). This fact will influence the design of the algorithm 

described in the next section.

3 Computation for Dirichlet process mixtures of Gaussian Graphical 

models

Even though in (8) the parameters of interest,  lie in a finite set, enumerating 

all possible models is practically impossible even for relatively small values of n and p. 

Hence, practical implementation of these models requires the development of algorithms 

that can efficiently explore the parameter space without enumerating all possible models. We 

start by reviewing the use of Makov chain Monte Carlo algorithms and then move on to 

describe a novel shotgun stochastic search algorithm.

3.1 Markov chain Monte Carlo

A Markov chain Monte Carlo algorithm for sampling from (8) that is based on ideas from 

Neal (2000) was presented in Rodriguez et al. (2011). Their MCMC sampler alternates 

between updating the configuration vector ξ1:n and updating the graphs G1, …, GL 

associated with each mixture component. In our numerical evaluations we consider a slightly 

modified version of the algorithm that uses the non-informative prior on the precision 

parameter for the Dirichlet process described in Rodriguez (2013). The resulting full 

conditional distributions for the membership indicators reduces to
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where L*,−j is the number of non-empty clusters in the sample after excluding x(j),  is 

the size of the l-th cluster in the sample excluding x(j),  is the collection of 

component specific graphs associated with non-empty clusters after excluding x(j), and

Note that these quantities can be precomputed before running the MCMC algorithm, and 

that the denominator of A(n, m, k) cancels out when computing the full conditional 

distributions, so that  and . On the 

other hand, we explore the space of component-specific graphs using a random-walk 

Metropolis-Hastings sampler in which proposals for the graph  are generated from among 

its decomposable neighbors with probability proportional to their posterior probability.

3.2 Shotgun stochastic search

Although the previous algorithm works well for relatively low dimensional responses (say, p 
≤ 50 or so), it becomes prohibitively slow for a larger number of nodes. As an alternative, we 

investigate a novel stochastic search algorithm for finding the posterior mode(s) of a 

Dirichlet process mixture of Gaussian Graphical models. This stochastic search algorithm 

explores the space of parameters in part using local moves that are similar to those discussed 

in 3.1, but we now drop the need to maintain reversibility of the moves implied by Markov 

chain Monte Carlo algorithm and focus instead on a greedy approach to model exploration. 

Furthermore, we supplement the local moves with mid- and long-range moves that borrow 

ideas from more sophisticated MCMC algorithms for Dirichlet process mixture models (e.g., 

Dahl, 2003; Jain & Neal, 2004), as well as shotgun stochastic search (SSS) (Jones et al., 

2005) and feature-inclusion selection algorithms (Scott & Carvalho, 2008) for Gaussian 

graphical models. These mid- and long-range moves are meant to address multimodalities in 

the posterior distribution. More specifically we consider the following moves:

1. Local shotgun move for : Recall that the decomposable local neighborhood 

of  is composed of all decomposable graphs that differ from  by at most one 

edge (note that there are at most p(p − 1)/2 + 1 such graphs in this neighborhood, 

including the current ). We move to a randomly selected neighbor of  with 

probability proportional to its score computed according to (4). This step is 

repeated for each l = 1, …, L*. Note that this is similar to the approach used in 

section 3.1 for exploring the space of graphs.
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2. Local move for ξ1:n: For a given i, define the local i-neighborhood of ξ1:n as the 

set configurations that arises by reallocating ξi to one of the clusters. As before, 

we move to a randomly selected neighbor of ξ1:n with probability proportional to 

its score. This step is repeated for every i = 1, …, n. Again, this step is in the 

same spirit to our approach to exploring graphs from section 3.1.

3. Split move for ξ1:n: We generate a neighborhood of Q new configurations by 

randomly selecting and splitting the non-singleton components. Subsequently we 

move to one of the proposals or retain the current configuration according to 

their scores. Each proposed configuration is generated by first splitting the 

selected non-singleton component into two non-empty components uniformly at 

random, both of which are assigned the same parent graph. Then, for t iterations 

we perform f local shotgun updates on each of the two graphs and local updates 

for each of the indexes associated with the component that was split.

4.
Merge move for ξ1:n: If L* = 1 we do nothing. Otherwise, we generate 

proposed configurations by considering all pairwise component merges. We 

initially assign each merged component the graph associated with the largest of 

the two components being merged, and then we perform f local shotgun updating 

for that graph.

5. Mode-break move for : We perform B local shotgun updating moves on , 

but we disregard the top D high-probability neighbors in each random selection 

phase so that the search can climb down in the posterior probability surface away 

from the local mode.

6. Global jump move for : Denote last M distinct graphs selected for the 

component of observation i by , where . We 

generate a random graph with the following marginal edge-inclusion 

probabilities:

and set  to the minimal decomposable supergraph of the sampled graph.

The different moves described above are organized hierarchically and executed at different 

frequencies (see algorithm 1). Because the posterior distribution tends to be comparatively 

flat on the space of graphs, local shotgun updates for the graphs are used most frequently. 

Every g local shotgun updates we insert a local update on ξ1:n and a local merge update. 

Finally, every g × h iterations we insert a local split move. If the previous scheme fails to 

improve the model posterior for C consecutive iterations, we say that the search is trapped in 

a local mode. At this point mode-break moves are performed on all components with B = 1 

and another C iterations of local shotgun moves are performed. If the new model posterior 

surpasses the modal posterior then the local-mode is broken. Otherwise, we repeat another 

set of mode-break moves with B ← B + 1 so that the search climbs further down the 

Mukherjee and Rodriguez Page 10

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



posterior surface before it climbs up again. This process is repeated at-most R times, after 

which the local mode is forcefully broken by a global jump move on a randomly selected 

component graph. We stop the overall search when no improvement is seen on the posterior 

probability for S consecutive iterations, where typically S ≫ C. We suggest selecting the 

threshold parameters C and S on the basis of the dimension of the problem to reflect that the 

search naturally wanders for longer in higher-dimensional models. In our illustrations we 

used C = (n + p) and S = 20(n + p). In our experience, a small number of local updates for 

the component-specific graphs and membership indicators in the split and merge moves is 

enough to improve the quality of the proposal configurations; in our illustrations we set Q = 

1, f = 5 and t = 2 with good empirical results. We also suggest mixing the local shotgun 

moves on  with the local updating moves on ξ1:n in ratio of their respective parameter 

dimensions. We accomplish this in our implementation by setting g = Lp(p − 1)/2n. Since 

computation of the minimal triangulation supergraph in the global graph jump move is 

prohibitively slow with time-complexity of (p3) (Berry et al., 2004), several mode-break 

moves should be attempted before a global graph jump move is called. In our illustration we 

set R = 10. Finally, we arbitrarily specify D = 10 and h = 10 for all of our mode-break 

moves.

Total execution time can be greatly reduced if good initial values for the algorithm are 

chosen. Indeed, in some of our tests the amount of time required to arrive at a meaningful 

region of the parameter space when a random initial configuration was used was prohibitive. 

We suggest using either known categorical covariates (as we do in section 5.3) or 

hierarchical clustering to identify multiple reasonable initial clustering configurations, while 

constructing component-specific graphs by thresholding the corresponding matrix of partial 

correlations. In addition, we strongly suggest running multiple search-chains starting at 

multiple reasonable starting points to more thoroughly explore the posterior distribution. 

Given I user-specified initial configurations and N search-chains, our algorithm initiates the 

first I search-chains respectively from the I specified configurations, and each of the 

subsequent (N − I) chains from one of the initial configurations that is randomly selected 

with probability proportional to their stopping-time score.

4 Parallel implementation using graphical processing units

4.1 Graphical processing units for parallel, high-performance computing

Graphical processing units (GPUs) are inexpensive manycore processors that can yield 

tremendous computational power for data-parallel problems. We use NVIDIA GPUs with 

CUDA 4.0 (NVIDIA CUDA C Programming Guide, Version 4.0, 2011) as our development 

environment. The NVIDIA GPU architecture is built around a scalable array of multi-

threaded streaming multiprocessors (SMs), where each SM consists of a number of 

computing units (the CUDA cores), and a fast-access memory pool of the order of few 

kilobytes (the shared memory). Additionally, NVIDIA GPUs have a large, high-latency 

memory pool of the order of few gigabytes (the global memory).

CUDA is an extension of C where parallel jobs are programmed with special functions 

called kernels. Copies of a kernel running on the GPU are called threads. The CUDA 
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programming model organizes threads in equal-sized blocks of threads and executes every 

thread in a thread-block on one SM during runtime. Each thread-block solves a coarse-

grained parallel task with individual threads cooperatively performing finer-grained parallel 

operations. To use a GPU, data accessed by a kernel first need to be transferred to its global 

memory. Subsequently, a kernel call is executed by parallel execution of multiple threads-

blocks on available SMs. After the kernel execution is finished all results need to be written 

to the global memory and copied back to the CPU.

Compared to other architectures for high-performance computing, GPUs offer the promise 

of fast computation at a very low cost. However, realizing the full potential of GPUs can be 

difficult because of the constraints imposed by the architecture. One of such constraint 

derives from the fact that SMs operate on the thread blocks in single instruction, multiple 

threads (SIMT) paradigm. Under SIMT, threads are run simultaneously on different pieces 

of data by different CUDA cores. When threads that are being run simultaneously diverge 

via data-dependent conditional branching, each branch path is serially executed while other 

threads are disabled. Parallel processing is restarted when all divergent paths have been 

completed. Hence substantial performance improvements usually require that the number of 

logical branching operations in each coarse-grained parallel task be minimized.

Algorithm 1

Stochastic search for MAP estimation of DPM-GGM parameters

Input: Initial parameter configurations .

Input: # chains N, # follow-up moves C, max # of iterations without score increment before stopping S.

Input: Max # consecutive mode-break moves R, # top modes disregarded in move-break moves D.

Input: Split and merge move parameters Q, f, t.

Input: Mixing ratios: local shotgun graph moves to local ξ-moves g, local ξ-moves to split moves h.

1

2 for i ← 1 to N do
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3 % Select the initial configuration for the i-th search chain

4 if i ≤ I then

5

6 else

7 d ~ Multinomial(1, exp(last_best_score[1:I]))

8

9

10 % Start the i-th run of stochastic search

11 k ← 0, c ← 0, last_best_score[i] ← −∞

12 while c < S do

13 % Local moves

14 while c < C do

15 if g * k is an integer then

16 Perform local update moves on ξ1, …, ξn

17 Perform the merge move with tuning parameters (f, t)

18 if g * h * k is an integer then

19 Perform the split move with tuning parameters (f, t)

20 else

21
Perform local shotgun update moves on 

22

23 if score > last_best_score then c ← 0

24 else c ← c + 1

25

26 % Move break moves

27 r ← 1, B ← 1

28 while c ≥ C and r ≤ R do

29 Perform a mode break move with tuning parameters (B, D)

30 for j ← 1 to C do

31
Perform local shotgun update moves on 

32

33 if score > last_best_score then c ← 0

34 else c ← c + C, r ← r + 1, B ← B + 1

35

36 % Global graph jump move

37 if r > R then

38 l ~ uniform{1, …, L}

39
Perform a global jump move on 

40 c ← 0
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41

42 k ← k + 1

43
if score > last_best_score[i] then last_best_score[i] = score, 

44

45

return 

Another issue with GPUs is memory organization. A kernel can allocate memory for a 

coarse-grained task either on the shared memory or on the global memory. The number of 

active thread-blocks on an SM during runtime is determined by the shared-memory 

requirement of the kernel. Trading fast-access shared memory allocations with slower global 

memory ones allows for more thread-blocks to be run simultaneously, but will slow down 

execution of each individual thread-block. Hence, the memory allocation is an important 

design choice that needs be optimized for overall GPU performance. Furthermore, when 

performing global memory read/writes, consecutive positions should be accessed in parallel 

threads for best performance.

Scaling up the number of GPUs can bring further computational speedups for massive-scale 

parallel problems (e.g., see section 5.1). Multi-GPU systems are particularly useful for 

kernels with total global memory requirement exceeding any single GPU’s memory pool. 

Indeed, kernels that allocate large global memory buffer for the thread-blocks may exhaust 

the global memory pool on a single GPU quite quickly. In this situations, it may take more 

than one kernel call to get the whole parallel job done. If one has multiple GPUs at its 

disposal, the total task may often be split into parts that can be fit into separate GPU global 

memory pools and executed simultaneously. In this situation, a thorough understanding of 

the system architecture (hardware configuration) and its impact on CPU-GPU and GPU-

GPU memory throughputs is essential to achieve optimal computational performance (see 

Micikevicius, 2011 for additional details).

4.2 Speeding up model search using graphical processing units

Since shotgun updates for the component-specific graphs are by far the most frequent moves 

in our algorithm, we focus most of our attention on them. Shotgun updates involve two 

computationally demanding tasks, namely, testing decomposability of the p(p − 1)/2 

neighbors of a given component-specific graph, and computing the score associated with 

each of those neighbors. GPU parallelization of these tasks is not trivial, as they involve 

numerous conditional statements which would normally be treated as conditional 

divergences in GPU thread-parallelization. To deal with this issue, we define 32-thread 

thread-blocks and treat each graph-decomposition test or score computation as a coarse-level 

problem solved by a thread-block. This strategy avoids most serial executions of conditional 

divergences and allows us to properly accommodate the shared memory requirement of each 

task.
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Consider first the parallel implementation of the decomposability tests. Generally speaking, 

testing the decomposability of a p-vertex graph via maximal cardinality search has a time-

complexity of (p3) (Rose et al., 1976). However, since adding/deleting one edge to/from a 

decomposable graph affects at most two cliques and one separator, the decomposability test 

and marginal probability computations can be performed much more efficiently for local 

shotgun neighbors following the algorithm of Giudici & Green (1999). The condition for 

decomposability after an edge-deletion to a graph G = (V, E) verifies whether the edge is 

contained in exactly one clique of G. The condition for decomposability after adding an 

edge between vertices a and b examines (i) if a and b belong to different connected 

components in the parent graph, or (ii) if there exists R, T ⊂ V such that a ∪ R and b ∪ T are 

cliques of G, and S = R ∩ T is a separator on the path between a ∪ R and b ∪ T in the 

junction-tree of G.

We set up two kernels, CanDeleteEdge() and CanAddEdge(), to distribute the p(p − 1)/2 

decomposability tests associated with the different neighbors to multiple GPUs 

simultaneously. In addition to implementing these kernels using a thread-block of 32 parallel 

threads, we reduce the memory requirements and data-transfer times by using a 2-byte short 

integer type throughout our implementation. Since the decomposability test implemented in 

CanDeleteEdge() requires single access to each clique, we store them on the global memory 

rather than the shared memory, and use only 8 bytes of shared memory for inter-thread 

communications. On the other hand, the test for edge-added neighbors requires multiple 

accesses to the cliques, separators and the junction tree. The kernel for this test loads the set 

S, the whole junction tree T, and one clique/separator of G at a time onto the shared 

memory. The shared memory requirement is (86+2p+4|T|) bytes, where p is the number of 

vertices in G and |T| is the number of edges in the junction tree. Both kernel-

implementations reduce memory-latency by reading from/writing to the global memory pool 

in parallel threads. Initial data transfers to some GPUs are overlapped with the first kernel 

call in other GPUs to improve efficiency. Furthermore, transfer of results from the first 

kernel call is also overlapped with the second kernel execution. Finally, results from the 

second kernel call are copied back to the CPU, asynchronously, overlapping with the 

subsequent computations on the CPU.

In terms of parallelizing the computation of the score function, we note that because we are 

adding or removing a single edge at a time, this step again involves evaluating inverse-

Wishart normalizing constants only for two cliques and one separator for each 

decomposable neighbor. As before, we implement a CUDA kernel GGScore() to evaluate 

the score of a given neighboring graph with a thread-block of 32 parallel threads. The 

program starts by copying D0 and D0 + U + A to the GPU global memory. Subsequently, the 

kernel extracts (D0)P and (D0 + U + A)P for each relevant clique and separator P, then 

computes det((D0)P) and det((D0 + U + A)P) by computing their Cholesky factorizations in 

parallel threads. We reduce memory latency by storing P, (D0)P and (D0 + U + A)P in 

 bytes of the shared memory buffer, where pm is the size of the largest clique 

for which we need to compute the inverse-Wisart normalizing constant. This rather large 

shared memory requirement constrains the size of cliques and separators that can be 

accommodated on the GPU. Furthermore, since CUDA allows only a single size dynamic 
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shared memory allocation for a given kernel call, it is too wasteful to evaluate all 

neighboring graphs in a single kernel call as the shared memory requirement varies widely 

for different graphs. Hence, to improve GPU performance in this step we divide the 

decomposable neighbors into bins of comparable shared memory requirement, and evaluate 

large bins on the GPUs in separate kernel calls, while smaller bins are evaluated on the CPU 

simultaneously. Results from all GPU kernel calls are copied back to the CPU 

asynchronously, overlapping with other CPU computations.

4.3 Speeding up MCMC algorithms using graphical processing units

The GPU kernels discussed in Section 4.2 can also be used to accelerate computation for 

MCMC algorithms. In particular, the decomposability tests associated with the component-

specific graph proposals discussed in section 3.1 can be parallelized using the 

CanDeleteEdge() and CanAddEdge() kernels introduced in section 4.2. Similarly, the 

GGScore() kernel can potentially be used to accelerate the calculation of the posterior 

distributions required for the different steps of the algorithm. However, although the use of 

GPU-enabled versions of the MCMC algorithm do tend to provide speedups when compared 

with their CPU-based counterparts, the execution times are still much longer than those of 

our novel stochastic search algorithms (see Section 5).

5 Illustrations and evaluation

We evaluate the performance of our proposed stochastic search algorithm using simulated 

datasets (sections 5.1 and 5.2) and real gene expressions (section 5.3). All computations 

were carried out on a system consisting of a AVA Direct Custom CrossFireX workstation 

with Intel Core i7-975 Extreme Quad-Core processor (clock speed: 3.33 Ghz) and three 

graphics cards: one Tesla C1060 (30 SMs with clock speed 1.30 Ghz) and two GeForce 

GTX 285 (30 SMs with clock speed 1.48 Ghz). All graphics cards are architecturally 

similar, consisting of SMs with 8 CUDA cores and 16 KB shared memory. Although the 

system has multiple CPU cores available, all of our implementations and tests (both CPU 

and hybrid CPU/GPU) involve a single core. Furthermore, the same initial random seed is 

used for both executions so that all implementations yield identical output.

5.1 Performance analyses of GPU kernels

We start by investigating the performance of our GPU kernels with synthetic data 

experiments that involve both small and large graphs. The performance of our GPU kernels 

CanDeleteEdge(), CanAddEdge() and GGScore() is compared against that of single-thread, 

CPU-versions of themselves. We use the insights gained from these performance evaluations 

to tune the stochastic search algorithm for our other illustrations.

Consider first the evaluation of the CanDeleteEdge() and CanAddEdge(). Our synthetic 

experiments involve graphs with p = 50, 100, 200, 300, 400 vertices. For each selected 

graph-dimension, graphs are simulated with edge-inclusion probabilities 0.01, 0.02, …, 

0.25. For each of these edge-inclusion probabilities we simulate 5 random graphs and 

compute a minimal triangulation supergraph of the sampled graph. The resulting graphs are 

decomposable and range from very sparse to quite dense graphs of that relevant dimension. 
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For each of the graphs we test the decomposability of all neighboring graphs with kernel 

calls to CanDeleteEdge() and CanAddEdge(), and measure the total execution time for both 

kernels. Speedups are reported in figures 1 and 2, which present the one-GPU and three-

GPU performances in separate panels, where the average speedup for each graph dimension 

is plotted as different curves. The vertical bars show the range of fluctuation in speedup for 

the given edge-inclusion probability.

Figure 1 shows the results for CanDeleteEdge(), where we observe substantial speedups 

with increasing graph dimension. This is possible since the Giudici & Green (1999) test for 

decomposability for edge-deleted neighbors does not require many logical branching 

operations for implementation. This GPU-kernel is also implemented with a small shared 

memory requirement. The relatively small ranges of fluctuation come from the fact that the 

algorithm has very similar computational load for graphs with same dimension and density. 

Although we observe poor GPU performance for sparse graphs in small dimensions (which 

can be attributed to not having enough number of tasks to parallelize), as graphs become 

larger and denser, the one-GPU and three-GPU performances improve dramatically. In 

particular, we observe up to 25-fold speedup on 3 GPUs for some graphs with 400 vertices. 

This motivates us to use the 3 GPU implementation in the stochastic search for our real data 

application.

The GPU-kernel CanAddEdge() requires complex operations involving multiple passes 

through the cliques and separators of the graph, numerous logical branching, and a large 

amount of shared memory allocation. Even then, the computational speedups are significant, 

especially using 3 GPUs, as shown in figure 2. Interestingly, we do not observe an 

increasing relationship between average speedups and graph density. Also, large ranges of 

fluctuations in the speedup are seen across all graph dimensions and graph densities. This 

arises from the fact that the computational load of this kernel is largely dependent on the size 

of the junction tree, and the cliques and separators of the graph. Peak performance is 

achieved when the GPU core occupancies are optimal. However, the average speedup is 

satisfactory in general, with the possible exception of small, sparse graphs.

To evaluate the GGScore() kernel we follow a similar procedure, but for each one of the 

graphs we first simulate a covariance matrix according to a G-Wishart prior with p + 1 

degrees of freedom and identity scale matrix, and then generate a sample of 148 

observations from a Gaussian distribution with mean zero and the covariance matrix just 

sampled. Figure 3 plots the GPU performance for the score computation kernel GGScore(). 
The speedups are often less than 1, and when the GPU-kernel performs better than the CPU-

kernel, speedups are not as impressive as for the other two kernels. Interestingly, GGScore() 
tends to perform better for graphs with 50 and 100 vertices on the GPU. This is because for 

smaller graphs we can GPU-parallelize score computations of most shotgun neighbors using 

the shared memory of our GPUs. For large graphs most of the shotgun neighbors are 

computed using the CPU, where the cost of large CPU-GPU data transfers increase runtime. 

As a consequence of these results we do not use this GPU-kernel in our current search 

algorithm. However, we note that current releases of NVIDIA GPUs have much higher 

amounts of shared memory on each SMs that will allow GPU-parallelization of more 

shotgun neighbors on the GPUs. Additionally, newer GPU architectures allow for concurrent 
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kernel execution, which facilitate simultaneous score computation of all bins of 

decomposable neighbors under the shared memory cap. These hold promise for potential 

usage of our GPU-kernel in score computations of large dimensional graph search as the 

hardware improves.

5.2 Synthetic data

In this section we analyze a synthetic dataset to demonstrate effectiveness of our stochastic 

search as a Bayesian learning tool for Dirichlet process mixtures of Gaussian graphical 

models vis-à-vis Markov chain Monte Carlo algorithms. Our synthetic example deals with a 

dataset with a relatively small-dimension, n = 150 and p = 50. The data is generated from a 

three-component mixture with equal weights, where the distribution for the l-th component 

follows a . To generate the precision matrix K1, K2 and K3 we first simulate three 

random decomposable graphs G1, G2 and G3 with respective edge-inclusion proportions of 

2.53%, 10.12% and 14.94%. Subsequently, the precision matrices are sampled from G-

Wishart distributions, Ki ~ WGi (d, (d − 2)S) for i = 1, 2, 3, where d = 5000 and S = 0.1Ip 

+ 0.9Jp. Here Ip denotes the p × p identity matrix and Jp denotes the p × p matrix of ones. 

The parameters of the baseline measure are specified as n0 = 0.01, δ0 = 3, D0 = Ip.

First, we used the stochastic search using the Algorithm 1 to obtain an estimate of the 

posterior mode of the model. In this example we use three random initial configurations (N 
= I = 3 in Algorithm 1). In addition, we used a version of the MCMC algorithm discussed in 

section 3.1 that incorporates single-core CPU versions of the kernels CanDeleteEdge() and 

CanAddEdge(). For this MCMC algorithm we run a total of three chains (one starting from 

one of the three initial random configurations used for the stochastic search-chains described 

below), with each chain generating 100, 000 samples after a burn-in period of 20, 000 

iterations. Both the stochastic search and the MCMC algorithm were run first using only the 

CPU of the AVA Direct Custom CrossFireX desktop computer, and then again using the 

GPU accelerated versions of the algorithm that simultaneously use all three available GPUs. 

The seed for the random seed generator is set to the same values for each pair of GPU/CPU 

runs so that differences in execution times reflect only differences in the implementation.

Table 1 presents a comparison of the performance of the MCMC algorithm with the 

performance of the stochastic search. We report results for the model with the highest 

posterior probability under our algorithm (denoted by MAP-SS) and for the model with the 

highest posterior probability visited by the Markov chain (denoted by MAP-MCMC), as 

well as the score associated with the true model used to generate the data. Note that the 

stochastic search algorithm is significantly faster than the MCMC algorithm, and that the 

computing times of the MCMC chains are prohibitively large even in this relatively low-

dimensional dataset. This is true even if the MCMC algorithm is accelerated using massive 

GPU parallelization. Furthermore, Table 1 suggests that the stochastic search algorithm is 

able to identify higher probability models than the more standard MCMC algorithm. 

Another interesting observation is that the score associated with the MAP model is better 

than the score associated with the true model.
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Some additional insight on the behavior of the algorithms can be gained by exploring the 

structure of both modes. Both MAP-SS and MAP-MCMC imply the same grouping of 

observations (both correctly identify the presence of three clusters and misclassify one 

observation), so the modes differ essentially in terms of the quality of the component-

specific graphs they identify. Table 2 shows the error rates (total density, false positive and 

false negative rates) for each component graph for each of the two algorithms. Note that, 

although both modes overestimate the total number of edges in all three graphs, MAP-SS is 

consistently better than MAP-MCMC in all error categories for all component graphs.

5.3 Analysis of a gene-expression dataset

As a final illustration, we demonstrate the performance of the GPU-powered stochastic 

search by analyzing gene expression data of human breast cancers. The original dataset 

contains gene-expressions of 4512 genes from an Affymatrix HU95aV2 oligonucleotide 

microarray for 148 breast tumor samples. Each tumor in the dataset has additional 

classification tags according to its estrogen receptivity (ER+/ER−) and presence of cancer 

metastasis in neighboring auxiliary lymph-nodes (LN+/LN−). Parts of this dataset have been 

previously analyzed in West et al. (2001), Huang et al. (2003a), Huang et al. (2003b), Nevins 

et al. (2003), Pittman et al. (2004) and Hans et al. (2007) using models that assume 

homogeneity in the underlying population. In contrast, we employ the Dirichlet process 

mixtures of GGMs to assess whether different genetic-pathways are present in the data.

We created five datasets by first reordering the genes in descending order of their correlation 

with the binary encoded ER status, and then selecting the first 50, 100, 200, 300 and 400 

genes from the reordered list. Within each dataset, gene expression values were standardized 

by subtracting their mean and then dividing by their marginal standard deviations. In all 

cases the baseline measure was specified so that n0 = 0.01, δ0 = 3 and D0 = Ip, where Ip is 

the p × p identity matrix. Three initial configurations for the search were used (i.e., I = 3 in 

Algorithm 1) in each dataset. These initial configurations correspond to: (i) a single 

component model, (ii) a two-component model where the sample is split according ER 

status, and (iii) a four-component model where the sample is split according to all 

combinations of ER and LN status. Initial graphs for each component are obtained by 

putting edges between variables that have corresponding within-cluster partial correlation 

greater than 0.5. We run 9 search-chains (i.e. N = 9 in Algorithm 1) for each dataset. The 

stochastic search was run twice for each dataset, once using all 3 GPUs, and once using the 

single-core CPU implementation. Table 3 reports computing times for the CPU- and the 

three-GPU implementations for all five gene-sets, as well as the relative speedups attained. 

Observe the increasing speedup as the number of genes increase. In particular, the near 10-

times speedup for dimension 400 is encouraging for DPM-GGM applications in high-

dimensional problems.

We consider now in more detail the MAP estimate for the dataset containing 400 genes. This 

estimate involves two clusters, which roughly match ER status (see Table. 4). This partition 

is also somewhat similar to the one obtained by first reducing the dimensionality of the 

responses by computing the first 30 principal components of the data and then using a 

mixture of Gaussians with equal variance and the Bayesian Information Criteria as 
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implemented in the R package mclust (Fraley & Raftery, 2003) to identify the clusters. 

(However, we note that the partitions generated by this simple two-stage approach are not 

robust to changes in the number of principal components used to reduce the dimensionality 

of the problem, that the structure of the principal components themselves is very sensitive to 

removal/addition of even a very small number of observations, and that the amount of 

variability captured by the principal components decreases very slowly). These graphs have 

very different densities (1.62% of the possible edges are included in the first cluster, while 

7.72% are included in the second), with only 24% of the edges present in the first cluster 

being also present in the second one. This suggests that gene pathways associated with the 

two groups are significantly different.

We also compared the results from our stochastic search algorithm for the dataset containing 

50 genes with those generated by the MCMC described in section 5.2. The comparison is 

based on three MCMC chains consisting of 100, 000 samples obtained after a burn-in period 

of 20, 000 iterations each. Each one of these chains was started from one of the three initial 

configurations for the stochastic search described before. Table 6 presents the scores 

associated with the MAP estimate, along with total execution times and the time required by 

the algorithms to reach the MAP estimate. As with the simulated data, the stochastic search 

is significantly faster than the MCMC algorithm. Indeed, the computing times of the MCMC 

chains are prohibitively large, and the quality of the response (as measured by the score of 

the best model visited in each case) is much lower.

6 Discussion

Our stochastic search algorithm relies on a mixture of local and global moves to explore the 

space of possible models. However, the relative efficiency of these moves varies. In 

particular, the posterior distribution appears to be much flatter in the direction of the 

component-specific graphs than in the direction of the partitions. As a consequence, the 

space of partitions is explored relatively quickly using local moves. The split-merge moves 

for the partitions, although helpful in terms of allowing the algorithm to quickly move away 

from local modes, appears to contribute comparatively less to improving the solution. In that 

regard, it is also worth noting that when we started this work we also considered mid-range 

moves in which a small number of observations (between two and five) where 

simultaneously reallocated using their joint full conditional distribution, but these moves 

proved to be computationally expensive while providing little improvement over reallocating 

a single observation at time. On the other hand, in the case of of the component specific 

graphs the mode-break move and the global jump moves appear to play a key role that is as 

important as that of the local moves.

The use of GPU computation in the context of mixtures of Gaussian graphical models was 

particularly challenging because of the “large p, small n” nature of the problem at hand. 

Although we successfully thread-parallelized the graph decomposability tests for moderate 

numbers of variables (a notable achievement, given the fact that they lack desirable 

arithmetic intensity due to numerous conditional branching in the tests), we were less 

successful in achieving speedups in the computation of score functions or the 

decomposability tests for large graphs involving thousands or tens of thousands of nodes. 

Mukherjee and Rodriguez Page 20

J Comput Graph Stat. Author manuscript; available in PMC 2017 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The main reason for this is the scarcity of shared memory on the GPUs cards and the need to 

sequentially launch kernel calls. One way to deal with this limitation that we did not pursue 

in this paper is to use multiple GPU accelerators and load partial tasks on each unit. 

Furthermore, as new generations of graphical cards become available, these constraints will 

become less important. Indeed, current releases of NVIDIA GPU cards feature faster clock 

speeds, lower memory latency at all levels, larger amounts of shared memory on each 

streaming multiprocessor, and allow for concurrent kernel execution capabilities. In the 

context of the GGScore kernel, these features would allow us to move away from a fixed 

specification of the shared memory resource for cliques and separators of various sizes, 

while in the case of CanAddEdge()and CanDeleteEdge() the additional memory would 

allow for larger graphs to be considered.

An important limitation of our approach is the restriction to component-specific graphs that 

are decomposable. Generally speaking, designing an algorithms for mixtures of Gaussian 

graphical models with non-decomposable graphs has been historically challenging because a 

formula for the score function is not available in closed form, requiring the use of Laplace 

approximations or Monte Carlo integration. If Monte Carlo integration is used to 

approximate the value of the score, GPUs could potentially be used to dramatically speed-up 

this computation. Alternatively, Uhler et al. (2014) have recently proposed closed-form 

formulas.
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Figure 1. 
Relative speedups (runtime on CPU/runtime on GPUs) attained by CanDeleteEdge() for 

random graphs sampled with various edge-inclusion probabilities. The top panel shows 

results from using one GeForce GTX 285 GPU, where the bottom panel shows results from 

using all three GPUs described in sec. 5.1. The five curves in each panel respectively 

correspond to graphs with 50, 100, 200, 300 and 400 nodes. Each curve shows average 

speedup for a given dimension, where the associated vertical bars represent the range of 

speedup (min to max) observed for the given edge-inclusion probability.
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Figure 2. 
Relative speedups (runtime on CPU/runtime on GPUs) attained by CanAddEdge() for 

random graphs sampled with various edge-inclusion probabilities. The top panel shows 

results from using one GeForce GTX 285 GPU, where the bottom panel shows results from 

using all three GPUs described in sec. 5.1. The five curves in each panel respectively 

correspond to graphs with 50, 100, 200, 300 and 400 nodes. Each curve shows average 

speedup for a given dimension, where the associated vertical bars represent the range of 

speedup (min to max) observed for the given edge-inclusion probability.
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Figure 3. 
Relative speedups (runtime on CPU/runtime on GPUs) attained by GGScore() for random 

graphs sampled with various edge-inclusion probabilities. The top panel shows results from 

using one GeForce GTX 285 GPU, where the bottom panel shows results from using all 

three GPUs described in sec. 5.1. The five curves in each panel respectively correspond to 

graphs with 50, 100, 200, 300 and 400 nodes. Each curve shows average speedup for a given 
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dimension, where the associated vertical bars represent the range of speedup (min to max) 

observed for the given edge-inclusion probability.
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Table 4

Number of matches and mismatches of the DPM-GGM based classification of tumor samples with the ER-

status in the 400 gene-expressions dataset.

ER+ ER− Total

Cluster 1 96 17 113

Cluster 2 1 34 35

Total 97 51 148
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Table 5

Percentage of exclusive edges and percentage of common edges in component graphs of the maximum a-
posteriori DPM-GGM model for the gene-expressions dataset with 400 genes.

% edges in G1 \ G2 % edges in G1 ∩ G2 % edges in G2 \ G1

1.23 0.39 7.33
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Table 6

Comparison of the stochastic search with MCMC for the dataset with 50 genes.

Max log-posterior
probability

Time to reach the
MAP estimate (sec)

Total runtime (sec)

SS on 3 GPUs −7052.69 137.57 152.84

SS on CPU −7052.69 208.13 230.79

MCMC chain 1 on CPU −7191.95 318314.06 368082.13

MCMC chain 2 on CPU −7175.45 256305.86 402676.77

MCMC chain 3 on CPU −7294.68 25418.33 424634.15
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