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Abstract

Aims—Testosterone action is mediated via the androgen receptor (AR). We have reported that 

male mice lacking AR selectively in β-cells (βARKO−/y) develop decreased glucose-stimulated 

insulin secretion (GSIS), producing glucose intolerance. We showed that testosterone action on 

AR in β-cells amplifies the insulinotropic action of GLP-1 on its receptor via a cAMP- dependent 

protein kinase-A pathway.

Methods—To investigate AR-dependent gene networks in β-cells, we performed a high 

throughput whole transcriptome sequencing (RNA-Seq) in islets from male βARKO−/y and control 

mice.

Results—We identified 214 differentially expressed genes (DEGs) (158 up- and 56 down-

regulated) with a false discovery rate (FDR) < 0.05 and a fold change (FC) > 2. Our analysis of 

individual transcripts revealed alterations in β-cell genes involved in cellular inflammation/stress 

and insulin secretion. Based on 312 DEGs with an FDR < 0.05, the pathway analysis revealed 23 

significantly enriched pathways, including cytokine-cytokine receptor interaction, Jak-STAT 

signaling, insulin signaling, MAPK signaling, type 2 diabetes (T2D) and pancreatic secretion. The 

gene ontology analysis confirmed the results of the individual DEGs and the pathway analysis in 

showing enriched biological processes encompassing inflammation, ion transport, exocytosis and 

insulin secretion.
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Conclusions—AR-deficient islets exhibit altered expression of genes involved in inflammation 

and insulin secretion demonstrating the importance of androgen action in β-cell health in the male 

with implications for T2D development in men.
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1. Introduction

The aging of the U.S. male population will cause a large increase in the burden of clinically 

symptomatic androgen deficiency, which currently represents 18% of men over 70 years old 

(Araujo et al., 2007). In addition, prostate cancer is the most common malignancy in men, 

and androgen deprivation therapy (ADT), the standard of treatment, produces severe 

testosterone deficiency. Treatment of the metabolic complications of ADT is now considered 

a clinical challenge (Navarro, Allard, Xu, & Mauvais-Jarvis, 2015; Yu, Lin, Sparks, Yeh, & 

Chang, 2014; Zitzmann, 2009). The impact of testosterone deficiency on the development of 

visceral obesity and insulin resistance in men is well established (Navarro et al., 2015; 

Zitzmann, 2009). In contrast, and surprisingly, the role of testosterone deficiency in β-cell 

dysfunction remains poorly explored. This remarkable lack of knowledge is particularly 

surprising because previous research has implicated low testosterone levels in the 

pathogenesis of hyperglycemia in men (Mauvais-Jarvis, 2016a). Men with prostate cancer 

treated with ADT, and therefore exhibiting primary testosterone depletion, are predisposed 

to diabetes. In two large population-based studies of men with prostate cancer, ADT was 

associated with a 28% to 44% increased risk of incident T2D compared to controls (Keating, 

O'Malley, Freedland, & Smith, 2010; Keating, O'Malley, & Smith, 2006). Mice lacking AR 

globally are also hyperglycemic and exhibit decreased GSIS (Dubois et al., 2016).

To assess the role of AR in β-cell function in the male, we previously generated male mice 

lacking AR selectively in β-cells (βARKO−/y). These mice develop decreased glucose-

stimulated insulin secretion (GSIS) without alteration in β-cell mass but producing glucose 

intolerance (Navarro et al., 2016). When these mice are exposed to a western diet, they are 

hyperglycemic and hypoinsulinemic in the fasted and fed states. We reported that 

testosterone action on AR β-cells amplifies the insulinotropic action of GLP-1 on its 

receptor via a cAMP-dependent protein kinase-A pathway (Navarro et al., 2016). Thus, 

androgen deficiency predisposes to T2D via the combination of loss of androgen action in 

peripheral tissues producing insulin resistance and loss of androgen action in β-cells 

producing β-cell failure to compensate for insulin resistance (Mauvais-Jarvis, 2016b; 

Navarro et al., 2015; Navarro et al., 2016).

To gain further insight on the role of AR in male β-cells though AR-dependent gene 

networks, we performed a high throughput whole transcriptome sequencing (RNA-Seq) in 

islets from male βARKO−/y and control mice.
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2. Material and Methods

2.1 Generation of Mutant Mice

The βARKO /y mouse was generated by crossing mice carrying the AR gene with floxed 

exon 2 on their X chromosome (ARlox) with transgenic mice with the Cre recombinase 

expression under rat insulin II promoter (RIP-Cre, Jackson Laboratory) as previously 

described (Navarro et al., 2016).

2.2 Islet Isolation and RNA Preparation

Islet isolation was performed following pancreatic duct injection with collagenase as 

previously described (Tiano et al., 2011). Islets were isolated from 3 male ARlox−/y mice 

and 3 RIP-Cre mice and immediately frozen in liquid nitrogen (Fig. 1). Mice were at 12-

week of age at the time of islet isolation, and were fed on the normal chow. The metabolic 

parameters of mice at the same age were previously described (Navarro et al., 2016). Total 

RNA was extracted using RNeasy Maxi Kit (Qiagen) following the manufacturer’s 

recommendations, and the samples were sent to NUseq Core, Northwestern University for 

RNA sequencing.

2.3 RNA-Seq Analysis

The quality of DNA reads, in FASTQ format, was evaluated using FastQC (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc/). Adapters were removed and reads of 

inadequate quality were filtered. The raw read data was processed largely following the 

procedure described in (Trapnell et al., 2012). Briefly, the reads were aligned to the Mus 
musculus genome (mm10) using TopHat (v2.0.8b). Subsequently, the aligned reads, in 

conjunction with a gene annotation file for mm10 obtained from the University of California 

Santa Cruz (UCSC) website (http://genome.ucsc.edu/), were used to determine RNA 

expressions of annotated genes using Cufflinks (v2.1.1).

2.4 Single-Gene Analysis

For a transcript g, the expression level is estimated by the number of reads (Cg) mapped to 

the region of the transcript normalized by the length (L) of the transcript in nucleotides and 

the total number (N) of mapped reads of the mouse genome. If we use kilobase as the unit 

for L and million reads as the unit for N, this estimation is called reads per kilobase of 

transcript per million mapped reads (RPKM), which is the most widely used RNA-seq 

normalization method (Li, Piao, Shon, & Ryu, 2015). The individual transcript files 

generated by Cufflinks for each sample were merged into a single gene annotation file, 

which was then used to perform a DE analysis with the Cufflinks routine, Cuffdiff. 

Significant DEGs were determined by Cuffdiff using the procedure described in (Trapnell et 

al., 2012) based on a Benjamini-Hochberg false discovery rate (FDR) threshold of 0.05 

(Reiner, Yekutieli, & Benjamini, 2003). Results of such differential expression analysis were 

processed with CummeRbund (Trapnell et al., 2012). The significant DEGs were separated 

into those that were up-regulated and those that were down-regulated.
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2.5 Quantitative Reverse Transcription PCR (qRT-PCR)

Total RNA was extracted from MIN6 cells with RNeasy Plus Mini Kit (Qiagen) following 

the manufacturer's instructions. The quality and concentration of RNA were assessed by 

NanoDrop Spectrophotometer (Thermo Scientific). RNA was reverse transcribed into cDNA 

using iScript cDNA Synthesis Kit (Bio-Rad). Quantification of targeted genes was 

performed using iTaq Universal SYBRR Green Supermix (Bio-Rad) and the iCycler iQ Real 

Time PCR Detection System (Bio-Rad). Ct values were normalized to TBP and the relative 

gene expression was calculated with the 2−ΔΔCt method. Gene-specific KiCqStart primers 

were purchased from Sigma-Aldrich as listed in Supplemental Table 1.

2.6 Pathway and Gene Ontology (GO) Analysis

The list of 312 (225 up- and 87 down-regulated) significant DEGs (FDR < 0.05) were 

analyzed by applying (i) GeneCodis3 (http://genecodis.cnb.csic.es) (Tabas-Madrid, Nogales-

Cadenas, & Pascual-Montano, 2012) and (ii) GeneTrail (http://genetrail.bioinf.uni-sb.de/) 

(Backes et al., 2007) software tools to identify significantly enriched Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathways and GO categories by over-representation analysis.

2.7 Statistical Analysis

Results are presented as mean ± SEM in Fig. 4. All statistical analyses were performed using 

the unpaired Student’s t test. A P value less than 0.05 was considered statistically significant. 

** P<0.01, *** P<0.001.

3. Results

3.1 Single-Gene Analysis

A total of 23,179 genes were annotated with RefSeq IDs. Of these, a fold change (FC) 

(defined as the relative ratio of gene expression between βARKO−/y to control islets) could 

be computed for 22,061 genes. Among these genes, 312 differentially expressed genes 

(DEGs) (225 up- and 87 down-regulated) were discovered at a false discovery rate (FDR) < 

0.05. At FDR < 0.05 and FC > 2, a total of 214 significant DEGs (158 were up- and 56 

down-regulated) were identified (Supplemental Table 2). Of these DEGs, 66 were associated 

with inflammation and stress (53 up- and 13 down-regulated) (Table 1), and 56 were 

associated with β-cell insulin secretion including metabolism, cAMP-PKA signaling, ion 

channels, Ras-related protein/GTPase, glucose metabolism, membrane polarization, and 

secreted factor (44 up- and 12 down-regulated) (Table 2). Thus, in βARKO−/y islets, 31% of 

the DEGs were associated with β-cell inflammation and stress, and 26% with insulin 

secretion (Fig. 2). We validated a set of individual gene expression results by qRT-PCR in 

cultured MIN-6 insulin-producing cells treated with the pure AR agonist dihydrotestosterone 

(DHT) (Fig. 3). Mirroring the results obtained in control and βARKO-/y islets, DHT 

suppressed the mRNA for hepatokine fibroblast growth factor 21 (Fgf21), the innate 

immune molecule lipocalin 2 (Lcn2), syntrophin, gamma 2 (Sntg2), G-protein-coupled 

receptor (GPR) 26 (Gpr26), and Gpr119. No effect of DHT was observed for dual oxidase 2 

(Duox2), and the transient receptor potential cation channel, subfamily C, member 4 

(Trpc4).
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3.2 Pathway Analysis

Gene expression analyzed on a gene-by-gene basis ignores the underlying biological 

structure and diminishes the power of analysis, obscuring the presence of important 

biological signals (Haynes, Higdon, Stanberry, Collins, & Kolker, 2013). Thus, grouping 

genes by biological pathways is often the most relevant approach, because it takes into 

account the cooperative nature of genes and considers that genes involved in the same 

process are dysregulated together. Such an approach yields more robust results and may 

reveal novel insights about molecular mechanisms of disease (Lee, Chuang, Kim, Ideker, & 

Lee, 2008). The 312 DEGs at FDR < 0.05 were interpreted in a biological pathway context. 

Based on GeneCodis3 analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways, 23 significantly enriched pathways were revealed (Table 3). The representative 

pathways are cytokine-cytokine receptor interaction (Kegg: 04060), Jak-STAT signaling 

pathways (Kegg: 04630), MAPK signaling pathway (Kegg: 04010), insulin signaling 

pathway (Kegg: 04910), and pancreatic secretion (Kegg: 04972). Based on the KEGG 

pathway results and our analysis of the literature, we combined these pathways and 

summarized them into three biologically relevant pathways: insulin secretion (Fig. 4A), 

stress/growth factor signaling (Fig. 4B), and inflammatory pathways (Fig. 4C).

3.3 Gene Ontology (GO) Analysis

Ontologies provide a formal representation of knowledge that is amenable to computational 

as well as human analysis, an obvious underpinning of systems biology (Thomas, Mi, & 

Lewis, 2007). The GO, like other formal ontologies, consists of a structured hierarchical 

controlled vocabulary for standardizing representations of gene and gene product attributes 

in relation to a large and growing context of biological knowledge (Boyle et al., 2004). 

Scientists have used GO terms to evaluate the characteristics of sets of genes (Consortium, 

2017). The GO classifies gene functions into three categories: biological process (BP), 

cellular component (CC), and molecular function (MF) (Table 4). For the 312 significant 

DEGs, based on GeneCodis3 and GeneTrail analyses of GO categories, 43 BP, 17 CC, and 

23 MF categories were identified (selection criteria: # genes in GO category ≥ 2 and FDR < 

0.05 for both programs). For BP, representative categories included inflammatory response 

(GO: 0006954), ion transport (GO: 0006811), insulin secretion (GO: 0030073), negative 

regulation of signal transduction (GO: 0009968), apoptosis (GO: 0006915), cell adhesion 

(GO: 0007155), regulation of growth (GO: 0040008), and response to stress (GO: 0006950), 

indicating alteration in the β-cell function and stress. For CC, significantly enriched 

categories included extracellular region (GO: 0005576), integral to membrane (GO: 

0016021), voltage-gated potassium channel complex (GO: 0008076), and integral to plasma 

membrane (GO: 00058887), revealing structural alterations in membrane proteins involved 

in insulin secretion. For MF, enriched categories were GTPase activity (GO: 0003924), 

calcium ion binding (GO: 0005509), GTP binding (GO: 0005525), hexokinase activity (GO: 

0004396), transporter activity (GO: 0005215), ion channel activity (GO: 0005216), voltage-

gated potassium channel activity (GO: 0005249), and potassium channel activity (GO: 

0005267), also indicating functional changes in β-cell secretory capacity.
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4. Discussion

Using islets from adult male βARKO−/y mice, we identified 214 dysregulated genes 

involved in β-cell insulin secretion and stress, confirming that AR plays a vital role in male 

β-cell health. A third of these genes are coding for proteins mediating or responding to 

inflammation and cellular stress, demonstrating that islets with prolonged AR deficiency are 

injured and suffering. These include genes coding for Fgf21 (Wente et al., 2006), Lcn2 
(Chang, Kim, Ko, Jo, & Kim, 2013), the member of the tumor necrosis factor receptor 

superfamily osteoprotegerin (tnfrsf11b) (Maruyama et al., 2006; Reid & Holen, 2009), 

chemokine ligands 5 and 10 (Cxcl5 and Cxcl10) (Nunemaker et al., 2014; Schulthess et al., 

2009), several interferon (IFN)-gamma-induced guanylate-binding proteins (Gbp4, Gbp 5, 
Gbp 6, Gbp 8, Gbp 9, Gbp 10, and Gbp 11 ) (Kim et al., 2016), intra islet pro-inflammatory 

cytokines and associated receptors like interleukin-1β (Il1b), the interleukin 22 receptor-α1 

(Il22ra1) (Shioya, Andoh, Kakinoki, Nishida, & Fujiyama, 2008), the IL-1 receptor 

antagonist (Il1rn) (Dayer-Metroz, Wollheim, Seckinger, & Dayer, 1989) and interleukin-10 

(Il10) (Russell & Morgan, 2014). The coagulation factor XIII, A1 subunit (F13a1) has also 

been implicated in chronic low-grade inflammatory islets in T2D subjects (Sharma et al., 

2015).

The second finding is that 20% of dysregulated genes are involved in β-cell function. These 

include genes coding for GPRs such as Gpr161 (Bachmann et al., 2016), Gpr126 (Mogha et 

al., 2013), Gpr26 (Zhang et al., 2011), ion channels altering membrane polarization like the 

potassium inwardly-rectifying channel, subfamily J, member 5 (kcnj5), the potassium 

voltage-gated channel, subfamily Q, member 1 (kcnq1) (33), and trpc4 (Islam, 2011), as 

well as proteins involved in β-cell exocytosis machinery such as the Ca(2+)-sensor 

synaptotagmin-10 (Syt10) (Cao, Maximov, & Sudhof, 2011), the GTP binding protein 

rabphilin 3a (Rph3a) (Arribas, Regazzi, Garcia, Wollheim, & De Camilli, 1997), heparan 

sulfate (glucosamine) 3-O-sulfotransferase 1 (Hs3st1) (Takahashi, Ohashi, & Nata, 2012) 

and enzymes involved in glucose metabolism, hexokinase 2 (hk2), hexokinase domain 

containing 1 (hkdc1) (Ludvik et al., 2016), glucokinase binding protein 6-phosphofructo-2-

kinase/fructose-2,6-biphosphatase 3 (Pfkfb3) (Arden et al., 2008) and zinc transport in 

βcells like the zinc transporter, member 4 (Slc39a4) (Hardy et al., 2015).

Dysregulated genes seem to fall into two categories. Some are detrimental to β-cell health 

and could be instrumental in impairing GSIS. For example, genome-wide association studies 

identified Kcnq1 and Rasgrp1 (RAS guanyl releasing protein 1) as susceptible genes for 

T2DM (Yasuda et al., 2008; Zeng et al., 2016) and βARKO−/y islets exhibit increased 

expression of both. Kcnq1 impairs insulin secretion by enhancing the β-cell potassium 

currents (Yamagata et al., 2011). Increased expression of Nr0b2 in βARKO−/y islets, coding 

the orphan nuclear receptor small heterodimer partner (SHP), is also expected to impair 

insulin gene transcription and decrease GSIS (Park et al., 2007) while increased Car2 
expression (carbonic anhydrase 2) (Yamato, Tashiro, & Miyazaki, 2013) is a genetic marker 

of poor GSIS, and increased Sostdc1 (sclerostin domain containing 1) expression inhibits 

Bmp and Wnt which impairs β-cell function (Henley, Gooding, Economides, & Gannon, 

2012). Other adverse upregulated genes include lcn2, induced in β-cells by inflammatory 

cytokines (Chang et al., 2013), the chemokines (Cxcl5 and Cxcl10) increased in islets from 
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T2D humans and rodents and which are known to impair β-cell function and survival 

(Nunemaker et al., 2014; Schulthess et al., 2009), and multiple GBPs that activate the 

inflammasome and produce β-cell inflammation (Kim et al., 2016).

In contrast, another set of dysregulated genes seems to be part of a concerted compensatory 

mechanism attempting to preserve β-cell function from the deleterious effect of the AR 

knockout. For example, increased expression of Fgf21 (Wente et al., 2006) or Il1rn (IL-1β 
receptor antagonist) (Dayer-Metroz et al., 1989) is expected to protect islet function and 

survival during inflammation, and the increased Hs3st1 expression is expected to enhance 

GSIS (Takahashi et al., 2012). Other adaptive mechanisms include increased expression of 

genes coding for proteins that could enhance GSIS by increasing β-cell glucose metabolism 

(Hk2, Pfkfb3) (Ludvik et al., 2016), cAMP production (Gpr119, Gpr26, GPR126, Gpr161, 
activating transcription factor 3, (Atf3)), insulin vesicle exocytosis (Syt10, Rph3a), and β-

cell membrane depolarization (Trpc4) (Islam, 2011).

Our pathway analysis revealed 23 significantly enriched pathways that we combined into 

two biologically relevant pathways, inflammatory pathways and insulin secretion, 

confirming our observation from individually dysregulated genes. Ontologies used to 

evaluate the characteristics of differentially expressed genes in βARKO−/y islets were also 

enriched for GO terms “response to stress,” “inflammatory response,” “apoptosis,” “insulin 

secretion,” “ion transport,” and “cell adhesion.” Taken together, these results of GO analysis 

confirmed the results of the pathway analysis and our individual gene evaluation that AR 

deficiency promotes β-cell dysfunction and inflammation. Consistent with our findings, 

testosterone protects early apoptotic damage induced by streptozotocin in male rat pancreas 

through AR suggesting that AR activation may protect male islets from inflammation 

(Morimoto et al., 2005; Palomar-Morales, Morimoto, Mendoza-Rodriguez, & Cerbon, 

2010). In addition, neuronal specific AR-deficient mice exhibit hypothalamic inflammation 

via activation of nuclear factor-κB (Yu et al., 2013) which promotes obesity, insulin 

resistance and glucose intolerance.

A limitation of the present study is that we did not validate all our individual gene 

expression results by qRT-PCR. However, previous studies have reported high consistencies 

between RNA-seq and qRT-PCR results (Trost et al., 2015). RNA-seq shows both high 

reproducibility and low frequency of false positives (Richard et al., 2010) and has been used 

for transcriptional profiling of specific cell types or tissues at unprecedented precision 

(Schmid et al., 2012).

In conclusion, a transcriptome analysis of islets from adult male βARKO−/y mice revealed 

alterations in genes involved in inflammation and insulin secretion, demonstrating the 

importance of androgen action in β-cell health in males, with implications for the 

development of T2D in androgen deficient men.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Flow chart of the RNA-Seq experiment
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Fig. 2. Single-gene analysis pie chart
Dysregulated genes were involved in inflammation and stress, as well as insulin secretion.
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Fig. 3. qRT-PCR validation of RNA-seq analysis
Min6 cells were treated with vehicle or DHT for 24 minutes/24 hours. mRNA expression of 

target gene was normalized to that of TBP.
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Fig. 4. 
Based on GeneCodis3 analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways, 23 significantly enriched pathways were revealed. We combined these pathways 

and summarized them into three biologically relevant pathways: (A) insulin secretion, (B) 
stress/growth factor signaling, and (C) inflammatory pathway. Red color represents up-

regulated genes and green color represents down-regulated genes.
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