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Abstract

Age-related macular degeneration (AMD), the most common form of irreversible blindness in the 

industrially developed world, can present years before a patient begins to lose vision. For most of 

these patients, AMD never progresses past its early stages to the advanced forms that are 

principally responsible for the vast majority of vision loss. Advanced AMD can manifest as either 

an advanced avascular form known as geographic atrophy (GA) marked by regional retinal 

pigment epithelium (RPE) cell death or as an advanced form known as neovascular AMD marked 

by the intrusion of fragile new blood vessels into the normally avascular retina. Physicians have 

several therapeutic interventions available to combat neovascular AMD, but GA has no approved 

effective therapies as of yet. In this chapter, we will discuss the current strategies for limiting dry 

AMD in patients. We will also discuss previous attempts at pharmacological intervention that were 

tested in a clinical setting and consider reasons why these putative therapeutics did not perform 

successfully in large-scale trials. Despite the number of unsuccessful past trials, new 

pharmacological interventions may succeed. These future therapies may aid millions of AMD 

patients worldwide.
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1 Introduction

Age-related macular degeneration (AMD) is the most prevalent cause of blindness in the 

elderly in the USA (Schmier et al. 2012) and affects as many as one in eight individuals over 

the age of 80 (Zeng et al. 2016). AMD affects many different cell types, including the retinal 

pigment epithelium (RPE) (Ambati and Fowler 2012), choriocapillaris endothelial cells 

(ECs) (Zeng et al. 2016), and photoreceptor cells (Carr et al. 2013). Early AMD initially 

presents with drusen, whitish or yellowish punctate extracellular deposits >63 μm in 

diameter positioned between the RPE and Bruch’s membrane (Ferris et al. 2013). Changes 

to RPE pigmentation mark the transition to intermediate AMD (Ratnapriya and Chew 2013). 

Noticeable declines in visual function do not occur until advanced forms of AMD, which 

may take years (Buschini et al. 2015). Advanced AMD takes two primary forms defined by 

whether neovascularization occurs; geographic atrophy (GA) (Buschini et al. 2015) presents 
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with regional RPE cell death without blood vessel intrusion, while exudative (i.e., wet) 

AMD does (Wong et al. 2008). Over three-quarters of legal blindness results from wet AMD 

(Buschini et al. 2015), but GA accounts for the vast majority of advanced AMD cases 

(Tarallo et al. 2012). Unfortunately, no therapeutic options for dry AMD are available 

(Tarallo et al. 2012).

Because age is the greatest risk factor for AMD (Bora et al. 2014) and the US census data 

indicates the number of elderly individuals is expected to greatly increase in the next few 

decades, the number of patients with AMD is expected to almost double by the year 2050 

(Rein et al. 2009). Given the large number of patients with untreatable dry AMD and the 

reduced quality of life experienced by these patients, there is an immediate need for effective 

medications to treat the disease. To date, no potential therapeutics show efficacy with respect 

to slowing or reversing dry AMD progression. The purpose of this chapter is to explore the 

different therapeutic targets and their proposed treatments and to consider reasons for why 

these approaches have not been effective.

2 Current Strategies for Addressing Dry AMD

Lifestyle modification and dietary supplements are the only options to combat AMD 

development, progression, and associated visual function decline. Modifiable risk factors for 

dry AMD include smoking and obesity (Cheung and Eaton 2013). Smoking in particular has 

been associated with development and progression of AMD (Buschini et al. 2015), and some 

evidence AMD risk has a dose-dependent relationship with smoking (Velilla et al. 2013). 

Analysis of pooled datasets from the Beaver Dam Eye Study (Klein et al. 1993), Rotterdam 

Study (Vingerling et al. 1995), and Blue Mountains Eye Study (Mitchell et al. 1995) 

suggests smokers have an approximately three-fold greater risk of AMD than patients who 

never smoked (Smith et al. 2001). Patients who quit smoking greatly reduce their risk for 

developing AMD, but are still at a greater risk for AMD than patients who never smoked 

(Velilla et al. 2013; Smith et al. 2001). Much of the RPE toxicity has been attributed to 

reactive oxygen species (ROS) formation (Woodell and Rohrer 2014). Mice exposed to 

cigarette smoke exhibit signs of oxidative damage that recapitulate some symptoms of 

AMD, such as Bruch’s membrane thickening, basal infoldings in the RPE, and RPE cell 

death (Fujihara et al. 2008). Smoking also promotes the formation of advanced glycation 

end-products (AGEs) (Kirkham et al. 2003) and deposition of cadmium, which promotes 

ROS production, in the RPE (Woodell and Rohrer 2014; Kirkham et al. 2003). Like 

smoking, obesity and high-fat diets have also been associated with early AMD and 

progression to late AMD (Cheung and Eaton 2013). The Beaver Dam Eye Study, for 

example, suggested a potential link between obesity and AMD (Howard et al. 2014). High 

glucose (Ghaem Maralani et al. 2015), high triglycerides (Ghaem Maralani et al. 2015), and 

daily red meat consumption (Ersoy et al. 2014) all appear to contribute to AMD risk. 

Collectively, these findings suggest lifestyle modifications may reduce the risk of AMD.

Because observations indicated diets rich in fruits and vegetables may protect against AMD 

(Ersoy et al. 2014; Seddon et al. 1994), the Age-Related Eye Disease Study (AREDS) (Age-

Related Eye Disease Study Research 2001) was conducted to determine whether a dietary 

supplement containing high-dose vitamins C and E, beta carotene, and zinc could protect 
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against AMD progression by reducing oxidative stress (Cheung and Eaton 2013). A second 

study, AREDS2, tested lutein, zeaxanthin, and omega-3 fatty acids for AMD protection 

(Age-Related Eye Disease Study 2 Research G 2013). An initial report suggested the 

supplement slowed AMD progression (Age-Related Eye Disease Study Research 2001), but 

closer examination of the data suggested that it was ineffective (Ambati and Ambati 2002). 

Indeed, a meta-analysis of multiple AREDS trials indicated the supplement was ineffective 

(Evans 2008), a finding supported by follow-up examination of the original AREDS study 

participants (Chew et al. 2014). At the moment, lifestyle modification may be the only 

option to prevent the development and progression of AMD.

3 Previous Pharmacological Interventions

To date, there are no approved therapies effective at treating dry AMD despite decades of 

intensive research. Unlike neovascular AMD (Cheung and Eaton 2013; Schmidt-Erfurth et 

al. 2014), dry AMD continues to defy searches for a therapeutic target for intervention 

(Cheung and Eaton 2013). This section of the chapter will review both previous and current 

therapeutic interventions being tested for dry AMD treatment and the cell signaling 

pathways targeted by those interventions.

3.1 Antioxidants, Vitamins, and Herbal Supplements

Oxidative and mitochondrial stress may promote AMD development and progression 

(Hollyfield et al. 2008; Jarrett and Boulton 2012; Barot et al. 2011; Liang and Godley 2003), 

but to date, there are no effective therapies targeting oxidative damage or cellular oxidative 

response pathways. The AREDS dietary supplement formulations do not appear to be 

effective in preventing AMD progression (Age-Related Eye Disease Study Research G 

2001; Evans 2008; Chew et al. 2014). Other herbal supplements and vitamin formulations 

not related to the AREDS and AREDS2 studies are also being studied for any potential 

efficacy against AMD progression. Some studies suggest Ginkgo biloba extract may protect 

against AMD by modulating choroidal blood flow and scavenging free radicals (Wilkinson 

and Fraunfelder 2011), and small trials conducted in Germany and France suggest the 

supplement may preserve vision in patients (Evans 2013). No large-scale clinical trials 

studying G. biloba extract have been conducted, however. Similarly, curcumin may inhibit 

the formation of oxidized lipids in oxidative stress conditions (Mandal et al. 2009), but no 

clinical trials have been performed yet. Resveratrol is also of interest because of its 

antioxidant activity (Pervaiz and Holme 2009), but given its limited testing in a clinical 

setting (Richer et al. 2014), results are inconclusive pending further investigation.

Other pharmacological interventions targeting the oxidative stress response include 5-

hydroxytryptamine1A (5-HT1A) agonists (Collier et al. 2011; Jaffe et al. 2015) and OT-551 

(Wong et al. 2010). The 5-HT1A receptor is best known for its role in mediating serotonin-

dependent signaling events involved in regulating sleep and anxiety, but receptor activation 

has also been demonstrated to protect against oxidative stress-induced RPE and 

photoreceptor cell death (Collier et al. 2011). The 5-HT1A agonists 8-hydroxy-2-(di-n-

propylamino)-tetralin (8-OH-DPAT) and tandospirone (AL-8309A) protect against light-

induced retinal damage in rodents (Collier et al. 2011; Biswal et al. 2015) by mitigating 

Wright and Ambati Page 3

Handb Exp Pharmacol. Author manuscript; available in PMC 2017 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



oxidative damage to mitochondria (Biswal et al. 2015). Unfortunately, tandospirone was not 

found to prevent lesion growth in GA patients during a phase III trial (Jaffe et al. 2015), 

casting doubt on the potential utility of 5-HT1A agonists in treating dry AMD. Similarly, 

OT-551 (Evans and Syed 2013) appeared promising in preliminary studies but failed to 

significantly halt the GA lesion spread in a phase II clinical trial (Wong et al. 2010).

3.2 Visual Cycle Modulators

Analysis of eyecups obtained from AMD patients found increased amounts of N-retinyl-N-

retinylidene ethanolamine (A2E) compared to eyecups obtained from healthy patients (Suter 

et al. 2000). Two molecules of all-trans-retinal (Redmond et al. 1998) react with 

ethanolamine in oxidative conditions to produce A2E (Suter et al. 2000), which accumulates 

in the RPE with age (Eldred 1995). A2E appeared to induce RPE toxicity by suppressing 

lysosomal function, suggesting visual cycle byproducts may contribute to AMD pathology 

(Suter et al. 2000). Because A2E is toxic to RPE and was thought to be a principal 

component of the autofluorescent material lipofuscin that appears in many AMD patients 

(Eldred 1995), several groups attempted to create therapeutics that could halt its formation 

and slow AMD progression.

Given the well-defined functional and biochemical role of the visual cycle protein RPE-

specific protein 65 kDa (RPE65) (Redmond et al. 1998), inhibitors specific to RPE65 were 

developed to slow the rate of retinoid metabolism to slow A2E generation (Buschini et al. 

2015; Zhang et al. 2015). Emixustat specifically binds RPE65 at its active site to inhibit its 

activity (Kubota et al. 2014). Later work found emixustat scavenges free retinoids as well, 

and that this activity heavily contributes to its mechanism-of-action (Zhang et al. 2015). 

Early phase I clinical trials tested the safety and tolerance of emixustat through oral 

administration of the drug in doses ranging from 5 to 40 mg over a 14-day period (Kubota et 

al. 2014). Two-thirds of patients experienced mild adverse reactions to the drug, and because 

these adverse reactions resolved at the end of the study (Kubota et al. 2014), emixustat 

proceeded to phase II/III clinical trial (Dugel et al. 2015). This clinical trial is expected to be 

completed by July 2016.

Fenretinide (N-4-hydroxyphenylretinamide) also targets retinoid metabolism to slow AMD 

progression. The synthetic retinoid was originally designed as a potential therapeutic to use 

against various cancers that require retinoids for tumorigenesis, but was found to be 

ineffective against cancer progression in phase II/III clinical trials (Malone et al. 2003). 

Similarly to emixustat, fenretinide reduces the total pool of vitamin A-derived retinoids 

needed to form A2E (Danis et al. 2015). Mechanistically, fenretinide binds to retinol-binding 

protein 4 (RBP4) in the serum to interfere with vitamin A transport to various tissues 

(Petrukhin 2013), effectively causing vitamin A to be cleared through the urine (Danis et al. 

2015). Unfortunately, phase II clinical trial data indicated fenretinide did not significantly 

reduce the rate of lesion expansion in GA patients (Mata et al. 2013). There are no known 

plans to carry out a phase III clinical trial of fenretinide as a GA therapeutic agent (Danis et 

al. 2015). Other nonretinoid RBP4 antagonists (Cioffi et al. 2015) such as A1120 are also 

currently being tested for efficacy against AMD-like phenotypes in mouse models with high 
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rates of lipofuscinogenesis (Petrukhin 2013; Dobri et al. 2013), but these studies have not 

yet been translated to human patients.

3.3 Inflammatory Modulators

With the proliferation of studies suggesting pro-inflammatory pathways may be involved in 

AMD, anti-inflammatory agents are now of particular interest. A 1992 study reported 

elevated amounts of complement proteins C1q, C3c, and C3d in subretinal membranes 

removed from AMD patients (Baudouin et al. 1992). A series of landmark studies also 

identified the complement factor H Y402H (CFHY402H) polymorphism as the first heritable 

risk factor for AMD (Haines et al. 2005; Edwards et al. 2005; Klein et al. 2005), further 

highlighting the potential role of the complement cascade pathway in AMD pathogenesis. 

Unfortunately, the identification of both complement factor polymorphisms and complement 

factor proteins in AMD patients have not successfully facilitated the development of AMD 

therapeutics. The COMPLETE study (Yehoshua et al. 2014), which tested eculizumab, an 

anti-C5 antibody already approved for use in paroxysomal nocturnal hemoglobinuria 

(Buschini et al. 2015), found complement cascade inhibition had no effect on GA 

progression (Yehoshua et al. 2014). Similarly, the anti-C5 antibody LFG316 was ineffective 

in slowing or halting GA progression. Clinical trial data for another anti-C5 antibody, 

ARC1905, has not been published (Buschini et al. 2015). A neutralizing antibody targeting 

complement factor D (CFD) in GA patients, lampalizumab, is now in phase III trials (Danis 

et al. 2015).

Sirolimus, also known as rapamycin, has known anti-inflammatory properties (Mata and 

Vogel 2010). Already used as an immunosuppressant for organ transplant patients (Danis et 

al. 2015), it was hypothesized sirolimus may be effective in treating AMD as well because it 

was found to prevent RPE cell death in mouse models (Zhao et al. 2011). Two phase II 

clinical trials found no protective effect of sirolimus against GA, with no reported visual 

acuity protection or prevention of atrophic lesion spreading (Wong et al. 2013; Petrou et al. 

2015).

Other efforts to treat AMD center on the NLRP3 inflammasome. A series of studies 

published within the last five years indicate DICER1 reduction in GA patients may 

contribute to RPE cell death because the enzyme is required to degrade cytotoxic Alu RNA 

transcripts (Kaneko et al. 2011). Increases in Alu RNA transcripts in GA patients cause 

activation of the NLRP3 inflammasome (Tarallo et al. 2012; Dridi et al. 2012), ultimately 

resulting in P2X7-dependent Caspase-8-mediated RPE cell death (Kerur et al. 2013; Kim et 

al. 2014). These observations are supported by other data showing this signaling pathway 

can be instigated by the presence of excess iron (Gelfand et al. 2015), which has also been 

previously associated with AMD in humans (Wong et al. 2007). It was recently found that 

nucleoside reverse transcriptase inhibitors (NRTIs), typically used to treat human 

immunodeficiency virus (HIV) patients, possessed anti-inflammatory properties because of 

their ability to block P2X7-dependent NLRP3 inflammasome activation (Wong et al. 2007). 

Preparations are currently underway to examine NRTIs in an AMD context in a clinical 

setting.
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3.4 Neuroprotective Agents

Given the fact that blindness in GA is the direct result of photoreceptor death over regions 

with RPE atrophy (Danis et al. 2015), neuroprotective agents preventing photoreceptor cell 

apoptosis have been proposed as potential therapeutics. Ciliary neurotrophic factor (CNTF), 

for example, was previously demonstrated to preserve photoreceptor cell function and 

reduce apoptosis in various models of canine (Tao et al. 2002) and mouse retinal 

degeneration (LaVail et al. 1998). An encapsulated cell therapy (ECT)-based implant 

housing mammalian cells engineered to overproduce CNTF (Thanos et al. 2004) was 

injected into the eyes of GA patients in phase I (Sieving et al. 2006) and II clinical trials 

(Zhang et al. 2011). The CNTF-producing implant, NT-501 (Thanos et al. 2004), was found 

to be well-tolerated in patients (Sieving et al. 2006), but could not inhibit lesion spreading in 

GA patients (Zhang et al. 2011).

More recently, various groups have begun exploring the potential role of amyloid β in AMD. 

Amyloid β, perhaps best known for its suspected role in Alzheimer’s disease (Kang et al. 

1987; Hardy and Higgins 1992; Hardy and Selkoe 2002), was found to be a drusen 

component in AMD patients (Johnson et al. 2002; Dentchev et al. 2003). Ocular amyloid 

deposits in a mouse model of Alzheimer’s disease were associated with retinal degeneration 

(Ning et al. 2008) and RPE stress (Ding et al. 2011), and amyloid β is known to activate the 

NLRP3 inflammasome (Halle et al. 2008), consistent with other findings that inflammasome 

activation may mediate GA (Tarallo et al. 2012; Kerur et al. 2013; Kim et al. 2014; Gelfand 

et al. 2015). Based on the studies suggesting amyloid β accumulation may contribute to 

ocular pathologies in mouse models of AMD (Ding et al. 2011; Catchpole et al. 2013), a 

clinical trial testing the efficacy of a monoclonal antibody against amyloid β is currently 

underway (Danis et al. 2015). The results of the phase II trial are not yet available.

3.5 Cell-Based Therapies

With the advent of human embryonic stem cell (hESC) and induced pluripotent stem cell 

(iPSC) technologies, recent therapeutic efforts focus on transplanting healthy derived RPE 

cells into GA patients (Danis et al. 2015). The first hESCs implanted into humans occurred 

in 2012 when hESCs were differentiated into RPE cells for subretinal implantation in 

patients with either Stargardt’s disease or dry AMD (Schwartz et al. 2012). Following 

transplantation, patients were administered immunosuppressive drugs to prevent tissue 

rejection, and the patients were closely monitored for complications (Schwartz et al. 2012). 

Preliminary data indicate the therapy may be safe in human patients, but visual acuity 

improvements appeared marginal (Schwartz et al. 2012). A follow-up phase I/II clinical trial 

indicated a majority of patients who received RPE transplantation showed small regions of 

pigmentation several months following treatment, suggesting derived RPE cells injected into 

the eyes of patients could form a partial monolayer (Schwartz et al. 2015). Although the 

authors of the study claim visual acuity improvements in eyes receiving treatment compared 

to control eyes (Schwartz et al. 2015), the small patient sample is not currently sufficient to 

allow any definitive conclusions on whether hESC-derived RPE cells will effectively restore 

meaningful vision in AMD patients. The relatively small number of RPE cells surviving 

transplantation several months following treatments also suggests more refined methods of 

implantation using improved monolayers may be needed for these treatments to maximize 
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their efficacy (Brandl et al. 2015). iPSC-derived RPE cells may offer advantages over hESC-

derived RPE cells with respect to long-term safety. Because iPSC-derived RPE cells allow 

for autologous transplantation, future patients will hopefully have less risk of transplant 

rejection and obviate the need for immunosuppressive drugs (Brandl et al. 2015). Clinical 

trials for iPSC-derived RPE cells are already underway, and a case study of a woman who 

received iPSC-derived RPE cell transplantation suggests they may be as safe as hESC-

derived RPE cells (Forest et al. 2015). The results of these clinical trials will be forthcoming 

once they are complete.

4 Perspectives on Future Directions

Numerous lines of evidence suggest the field has long suffered from gaps in understanding 

with respect to basic AMD biology. The inability of the visual cycle therapeutic fenretinide 

to halt GA lesion growth (Danis et al. 2015; Mata et al. 2013), for example, supports this 

hypothesis. Fenretinide successfully depletes vitamin A in the serum (Danis et al. 2015) but 

has no effect on disease progression in humans. A primary reason fenretinide failed in 

clinical trials could be the fact that the field overestimated the importance of A2E in AMD 

pathogenesis. It was originally thought A2E correlated with AMD (Suter et al. 2000), but 

later work found A2E primarily accumulated in the periphery of AMD eyes (Bhosale et al. 

2009), not in the macula. Furthermore, later work also demonstrated that lipofuscin only 

poorly predicted lesion spread in GA (Hwang et al. 2006) and that the presence of A2E and 

lipofuscin did not even correlate with one another (Ablonczy et al. 2013). Together, these 

data indicate A2E might be largely irrelevant to AMD and that visual cycle therapeutics like 

fenretinide would have little chance of having a protective effect in patients. Similarly, 

numerous clinical trials focused on targeting complement factors to prevent GA spread but 

were ultimately found ineffective. The biological relevance of CFH polymorphisms in and 

AMD context (Haines et al. 2005; Edwards et al. 2005; Klein et al. 2005) remains elusive; 

Cfh mutant mice show only a marginal phenotype (Coffey et al. 2007), and many individuals 

exhibiting complement deposition in the RPE never present with AMD (Anderson et al. 

2010; Mullins et al. 2014). Thus, the field may be missing the biological understanding of 

AMD needed to create effective therapeutics.

Inadequate experimental design and data interpretation also confound efforts to treat dry 

AMD. The AREDS study, for example, originally reported the AREDS vitamin supplement 

could significantly slow the progression of AMD from its earlier to its more advanced 

stages, but further data analysis and later patient follow-up indicated AREDS was actually 

ineffective (Ambati and Ambati 2002; Evans 2008; Chew et al. 2014). Similarly, the role of 

the NLRP3 inflammasome with respect to AMD was at first unclear because of experimental 

design issues. After the NLRP3 inflammasome was linked to GA (Tarallo et al. 2012), the 

finding was challenged because of data demonstrating IL-18 antibody neutralization 

augmented laser-induced choroidal neovascularization in mice (Doyle et al. 2012). It was 

later found the IL-18 neutralizing antibody solution injected into mice contained glycerol, 

which is toxic to the retina and RPE; moreover, other laboratories could not replicate 

findings suggesting the NLRP3 inflammasome was protective (Ijima et al. 2014; Zhang et al. 

2016; Wang et al. 2016; Tseng et al. 2013; Kauppinen et al. 2012; Hirano et al. 2014). In 

order for effective therapeutic options to become available to patients with dry AMD, the 
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field requires a better understanding of the basic biology underpinning disease pathogenesis, 

which in turn requires rigorous experimental design and analysis.

5 Conclusions

The complexity of AMD pathogenesis continues to stymie the development of effective 

pharmacological interventions for the disease. Unlike neovascular AMD, which has a 

number of therapeutic options for patients, dry AMD currently has no effective 

pharmacological intervention. Previous attempts to slow disease progression have been 

unsuccessful, but a new generation of novel pharmacological approaches and cell-based 

therapies may have a greater degree of success in treating the disease (Table 1).
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Table 1

Therapeutics tested in the clinic for dry AMD

Agent Intervention Targeted biology

AREDS supplement Dietary supplement Oxidative stress

G. biloba extract Dietary supplement Oxidative stress

Curcumin Dietary supplement Oxidative stress

Resveratrol Dietary supplement Oxidative stress

8-OH-DPAT Small molecule Oxidative stress

Tandospirone (AL-8309A) Small molecule Oxidative stress

OT-551 Small molecule Oxidative stress

Emixustata Small molecule Visual cycle

Fenretinide Small molecule Visual cycle

A1120 Small molecule Visual cycle

Eculizumab Antibody Complement cascade

LFG316 Antibody Complement cascade

ARC1905 Antibody Complement cascade

Lampalizumaba Antibody Complement cascade

Rapamycin Small molecule Inflammation (mTOR signaling)

CNTF Recombinant protein Neuroprotection

GSK 933776a Antibody Amyloid-β aggregation

iPSC-derived RPEa Cell-based therapy RPE loss

a
Clinical trials have not yet been completed
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