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Abstract

In this study, we consider a non-invasive body-machine interface that captures body motions still 

available to people with spinal cord injury (SCI) and maps them into a set of signals for 

controlling a computer user interface while engaging in a sustained level of mobility and exercise. 

We compare the effectiveness of two decoding algorithms that transform a high-dimensional body-

signal vector into a lower dimensional control vector on 6 subjects with high-level SCI and 8 

controls. One algorithm is based on a static map from current body signals to the current value of 

the control vector set through principal component analysis (PCA), the other on dynamic mapping 

a segment of body signals to the value and the temporal derivatives of the control vector set 

through a Kalman filter. SCI and control participants performed straighter and smoother cursor 

movements with the Kalman algorithm during center-out reaching, but their movements were 

faster and more precise when using PCA. All participants were able to use the BMI’s continuous, 

two-dimensional control to type on a virtual keyboard and play pong, and performance with both 

algorithms was comparable. However, seven of eight control participants preferred PCA as their 

method of virtual wheelchair control. The unsupervised PCA algorithm was easier to train and 

seemed sufficient to achieve a higher degree of learnability and perceived ease of use.

I. INTRODUCTION

Spinal cord injury (SCI) can lead to severe motor impairments, and currently there is no 

‘cure’ for paralysis after SCI. The annual number of SCI cases in the US is estimated to be 

approximately 12,000, with 50% of these cases occurring at one of the spinal cord’s cervical 

segments (C1-C7) [1]. Injuries at this level often result in tetraplegia: weakness or total loss 

of movement that affects all limbs [1]. People with SCI face long-lasting effects such as loss 

of motor and sensory functions, weakness, altered reflexes, and muscular and cortical 

atrophy [2]. Furthermore, these patients often lack motivation for exercising their residual 
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motion, have depression and decreased self-confidence [3], and have difficulty controlling 

their assistive devices [4], [5].

The current commercially available assistive devices for people with tetraplegia – like the 

sip- and-puff and the head arrays – have a small vocabulary of commands, restrict head 

movement, and place the burden of learning device operation entirely on the user. One of the 

challenges for people with paralysis is to preserve their mobility as much as possible. 

However, current assistive devices, being focused on minimizing body motions, fail to keep 

an active body and to promote the use of the neural and muscular resources that survived the 

injury, which could be critical for people with tetraplegia to avoid collateral effects of 

paralysis and to recover some of the lost mobility [6]–[9]. In fact, even when the injuries 

occur at a high level of the spinal cord, some residual motor and sensory capacities remain 

available [4]. These functions could potentially serve as the means to control assistive 

devices such as robotic arms, computers, and wheelchairs, without requiring invasive 

interventions [4], [5]. Therefore, it is essential to develop control interfaces that provide a 

stimulating framework for exercising and practicing motor skills while providing an 

advanced level of control. Every SCI is different, and the residual abilities vary across 

people. To overcome current limitations, novel assistive devices for people with high 

tetraplegia cannot follow a ‘one-size fits all’ approach; instead, they should be user-based 

[4]. The new generation of assistive devices should have the ability to adapt to each user’s 

residual ability and be continuously modified according to their evolving skills.

For this purpose, our team has developed new methods for human-machine interfaces, which 

we call body-machine interfaces (BMI's), harnessing the overabundant number of signals 

from the cache of body movements that SCI users are still capable of executing. Infrared 

video cameras and inertial measurement unit (IMU)-based BMIs have allowed unimpaired 

and SCI participants to use their upper-body movements to engage in exercises that require 

different operational functions such as controlling a keyboard for typing, playing a 

videogame, driving a simulated wheelchair in a virtual reality (VR) environment, and 

performing a center-out reaching task. Two main algorithms have been used to develop a 

body-to-cursor map, principal component analysis (PCA), and Kalman. In PCA, body-

motion signals are recorded during a one-minute calibration ‘dance’ phase, where 

participants executed self-paced and self-directed motions with the upper-body. Then a static 

body-to-cursor map is derived from the first two principal eigenvectors, as explained in [10], 

[11]. In the Kalman experimental setup, analogous to brain-machine interfaces [12]–[15], 

unimpaired participants generated the body-to cursor map enacting upper body motions as if 

they were controlling the image of a 2D moving cursor presented to them on a computer 

monitor. Results from both approaches demonstrated the potential of non-invasive IMU-

based BMIs as an alternative or complement to brain-machine interfaces for accomplishing 

cursor control in 2D space.

Body-machine interfaces based on PCA have been adapted for remote control of a robotic 

arm [16], to control powered wheelchairs [17], and as a tool for neuromotor rehabilitation 

after stroke [18] and SCI [19]. The Kalman filter approach has been widely used in the 

brain-machine interface field [20]–[23], and by unimpaired participants in a BMI to perform 

center-out reaching tasks and driving a VR wheelchair on a computer screen [24]. PCA and 
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Kalman mapping algorithms transform a high-dimensional body-signal vector into a lower 

dimensional control vector, and each algorithm offers specific benefits. The PCA ‘dance’ 

allows capturing each person’s unique residual ability over the high dimensional residual 

movement space, and using the two first principal components extracted from their 

movement as the 2D control signals. However, the motions that a user has to make in order 

to move the cursor horizontally or vertically are not always clear or intuitive. In comparison, 

the Kalman filter allows participants to explicitly choose two movements they want to use to 

control horizontally and vertically.

The current exponential decrease in IMU technology cost and size [25] could make the 

IMU-based BMI an affordable platform for people with tetraplegia to control assistive 

devices such as powered wheelchairs. However, although the effectiveness of both PCA and 

Kalman algorithms has been demonstrated independently, a direct comparison between both 

algorithms has not been performed yet.

II. METHODS

A. Experimental Setup

Six participants with a cervical-level injury to the spinal cord (characteristics in Table 1) and 

eight healthy participants (4 female, 31±4 years old) gave their informed and signed consent 

to participate in this study, which was approved by Northwestern University’s Institutional 

Review Board. Participants sat in front of a computer monitor wearing a vest with Velcro® 

patches on the shoulder areas. Four IMUs (MTx, Xsens Technologies B.V., Enschede, 

Netherlands) were attached to the shoulders as shown in Fig. 1A. The IMUs were connected 

to a CPU via a digital data bus system. The combination of the sensors’ 3D gyroscopes and 

accelerometers allowed us to capture shoulder and upper-body motions. Data from the IMUs 

were sampled in real-time (Simulink, Mathwoks, Inc., Massachusetts, United States) at a 

sampling frequency of 50Hz.

B. Calibration

The main purpose of the BMI was to map the high-dimensional body-signal vector of upper-

body movements, measured by the IMUs, into a lower dimensional (2D) control vector. We 

compared the effectiveness of two decoding algorithms that allowed participants to perform 

center-out reaching and virtual wheelchair driving (VR) tasks.

One algorithm was based on a static mapping from current body position signals to the 

current value of the control vector, the other was based on dynamically mapping a segment 

of body signals to the value and the temporal derivatives of the control vector. The dynamic 

mapping was set by a Kalman Filter [26] as applied by [14] in their brain-machine interface. 

In analogy with brain-machine interfaces, where the map was based on estimating the 

desired cursor movement from spike trains, our IMU map was based on explicit information 

on position, velocity, and acceleration [24], [27]. In contrast, the static mapping was set by 

Principal Component Analysis (PCA) [28] as applied by [10], [11].

Kalman Calibration—Participants were presented with a cursor on the computer monitor 

that moved with a pre-determined path. They were instructed to move their shoulders with 
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the cursor as if they were already controlling it with their chosen movements. Participants 

were instructed to control horizontal cursor movements by moving their left shoulder up 

(elevation) and down (depression) respectively, and to control vertical cursor movements by 

moving their right shoulder up and down respectively.

The 2 cm diameter cursor moved with a minimum-jerk velocity profile that resembles 

commonly observed human point-to-point movement [29]–[31]. The cursor’s position 

history while moving from the center towards the right and back was governed by the 

function:

(1)

(2)

where τ = t/tt, s0, y0 are the initial cursor position coordinates at t = 0 and xf and yf are the 

final cursor position coordinates at t = tf [31]. The profile of cursor position, velocity, and 

acceleration history during training is shown in Fig. 1B, top. The trajectory is a straight line 

between the center and final positions with a bell-shaped unimodal velocity profile. The total 

duration of each movement to the right and back lasted 4 sec. A 6×6 cm box delimited the 

cursor’s movement range so that participants knew where the cursor would stop moving and 

come back to the center, and plan to move their shoulders accordingly. The cursor moved to 

each of the four directions (up, down, right, left) six times for a total calibration time of 96 

sec.

While participants followed the cursor as if they were controlling it with their shoulders 

during the calibration phase, we logged body motion and cursor data. The IMU’s Euler 

angles, angular velocities, and linear accelerations [Fig. 1B] were recorded at each time step 

k (every 20ms) as the body observation in a 24-dimensional (2 angles, 2 velocities, 2 

accelerations * 4 sensors) vector Zk. The position, velocity, and acceleration of the cursor 

were recorded at each time step k as the cursor’s state Sk. Both data were fed into a Kalman 

state estimator to learn the matrices that relate body motions to cursor kinematics.

The purpose of the Kalman filter is to estimate the cursor’s state at every instant in time, 

based on the body observations. The Kalman model assumes the state to be linearly related 

to the future state (next time step) by a stochastic linear function:

(3)

where k = 1,2,…,M, Ak ∈ R6×6 is the matrix that linearly relates the cursor’s kinematics 

between successive time steps, wk represents the process noise term, which we assumed to 

have zero mean and to be normally distributed, i.e. wk ~ N(0,Wk), Wk ∈ R6×6, and M is the 

total number of time steps.
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The Kalman model also assumes that the observation is linearly related to the state at each 

time step by the stochastic linear function:

(4)

where zk ∈ R 24×1 is the vector containing the IMUs’ observation at each time step k. Hk ∈ 
R24×6 is the coefficient matrix that linearly relates the cursor’s state to the body motion, and 

qk is the measurement noise term, i.e. qk ~ N(0,Qk), Qk ∈ R24×24 .

Through these two assumptions, we can use the calibration data from the cursor and the 

IMUs to estimate the model’s matrices via least squares (for details, see [14], [24], [27]). 

After the model’s parameters have been estimated, the model encodes the body observation 

and cursor propagation [Fig.1C, top], and participants can move their shoulders to control 

the 2D cursor on the screen [Fig. 1D].

PCA Calibration—During the PCA Calibration phase, participants were asked to perform 

a “free body dance” where they were instructed to move their shoulders as freely and 

randomly as possible for 1 minute. Participants were told to make shoulder movements 

within a comfortable range of motion and to avoid extreme or uncomfortable movements.

As participants performed the “free body dance”, we recorded body motion from the IMUs 

Euler angles [Fig. 1B, bottom] as the calibration data. Principal component analysis was 

then performed on the calibration data to rearrange the IMU signals into eight principal 

components ordered by decreasing variance. The calibration data projected onto the first 

three principal components is shown in Fig. 1B, bottom. We then used the first two principal 

components (the ones that accounted for the highest percentage of variance) to determine a 

forward map (8x2) between the 8-dimensional body vector to the 2-dimensional cursor 

vector [Fig. 1C, bottom] as demonstrated before in [17]. This method allows the users to 

exploit the redundancy of their body positions to control the 2D cursor on the screen [Fig. 

1D].

Familiarization—After the calibration phase, participants were allowed to familiarize with 

the control of the body-machine interface before beginning the experiment. There were no 

specific instructions or goals during the familiarization phase. Participants were told to try 

different body movements and see how they affected the cursor’s position. They were asked 

to try to move the cursor up, down, left, right, and to make sure that they could reach all 

edges and corners of the screen. If the participants could not comfortably reach an edge of 

the screen, the gain between body motions and cursor coordinates was manually adjusted. If 

participants had trouble controlling the map, or if they did not feel comfortable with it, the 

calibration procedure was repeated.

C. Protocol

Once participants were able to comfortably control the 2D cursor using their shoulder 

motions, they performed a variety of computer tasks that allowed us to chart an explicit 

learning curve for different performance measures. The first three SCI participants used 
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body-machine interface with the PCA algorithm to complete the tasks. The last three SCI 

participants used Kalman. In contrast, healthy participants used both maps in random order 

to complete the same tasks.

Protocol for SCI Participants—Six participants with high-level SCI performed 12 

sessions of BMI training. Each session consisted of four blocks. The blocks consisted of: 

reaching, typing, playing pong, and another reaching block. There was a 1-minute resting 

period between blocks. Participants performed 24 trials per reaching block, with random 

target order comprised of exactly three trials in each direction.

Once participants familiarized themselves with the map in the beginning of each session, 

they controlled a computer arrow cursor to reach eight peripheral 2.2cm diameter targets 

appearing in pseudorandom order on the screen. Participants had to hold the cursor inside 

the center target for 1sec in order for one peripheral target to appear in the screen. 

Participants were instructed to reach the targets as smoothly and accurately as possible, but 

they were not given any specific time constraints.

During the typing task, participants were asked to type the common pangram “The quick 
brown fox jumps over the lazy dog”. They moved the 2D cursor over a virtual Keyboard 

(Click-N-Type) that would click if the cursor hovered over a key for more than 500 

milliseconds. During the pong task, they were asked to hit a moving ball as many times as 

possible. The ball moved in a 45deg angle along the screen with a constant velocity. When 

participants hit the ball with the paddle, the ball’s vertical velocity component changed sign.

Protocol for Control Participants—Eight non-impaired subjects performed one session 

of BMI training. The session consisted of four blocks of reaching and one block of virtual 

driving with a 1-minute resting period between blocks using one of the two maps. The 

reaching blocks were identical to the ones performed by SCI participants. After the virtual 

driving block, control participants repeated all five blocks with the other map. The order in 

which participants tried the maps was determined at random, and there was a 5-minute 

resting period between maps.

After the fourth block of reaching, participants were placed in a virtual environment 

developed by our laboratory using a commercial-grade, 3D gaming engine (Unity®, Unity 

Technologies, San Francisco, CA, USA). The virtual environment provided a safe system for 

controlling a powered wheelchair without the risk of collisions or accidents. The simulator 

was adapted so that the 2D cursor output from the decoders was transformed into the virtual 

wheelchair’s joystick input; by moving the cursor up, the simulated wheelchair moved 

forward, and so on. The simulated environment reproduced a series of tasks features that a 

wheelchair user would have to perform in a real wheelchair. The tasks included: a) driving in 

a straight line, b) turning 90° and 45° clockwise, and c) turning 90° and 45° counter-

clockwise [Fig. 7A].

D. Analysis

Performance Measures—Performance was quantified by four performance measures. 

For each center-out trial, jerk, path length, error after 1 sec, and movement time were 
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computed. Jerk was computed as the time derivative of acceleration normalized by 

movement amplitude, duration, and mean speed. This dimensionless measure of jerk has 

been shown to properly quantify common deviations from smooth, coordinated movement 

[32]. A small jerk value would indicate a smooth, well-coordinated movement. Path length 
was computed as the sum of the Euclidean distance between consecutive cursor positions 

along each center-out reach trajectory, normalized by the straight-line distance between the 

starting and ending cursor positions. Path length quantifies movement “straightness” and 

“effectiveness”. A path length value of 1 would indicate the participant moved in a perfectly 

straight line from the center target to the peripheral target. Error after 1 sec was defined as 

the Euclidean distance between the cursor and target positions 1sec after movement 

initiation. Movement initiation was determined as the instant when the cursor’s velocity was 

above 10% of the velocity peak for that trial. Movement time was computed as the time 

between the target appearing on the screen, and 1sec before the participant completed the 

trial (target had to be held for one second). The movement time measure indicates the time 

that it took participants to complete the trial.

All performance measures were averaged over all trials to obtain one value per session or 

block for each participant. This resulted in a total of 12 values for SCI participants (12 

sessions, averaged 1st and 2nd reaching blocks) and 8 values for control participants (4 

blocks, 2 maps) for the whole experiment. Together, these performance measures allowed us 

to measure differences in cursor control proficiency for each participant, within a map, and 

between the four different maps (SCI-Kalman, SCI-PCA, Control-Kalman, Control-PCA). 

Other performance measures were also computed (straight-line distance and aspect ratio), 

but they were highly correlated to these four, so these four were enough to characterize 

movement performance during the center-out reaching task. An additional analysis on 

movement velocity was performed for control participants. Cursor and IMU peak tangential 

velocities were computed for each center out reach in order to investigate movement speed 

differences between maps. The tangential velocity at each point in time was calculated as the 

square root of the sum of the squared instantaneous speeds along each dimension (2 

dimensions for cursor, 8 dimensions for IMU).

Typing performance was quantified by the total time it took to type the sentence. A words-

per-minute (WPM) metric was computed by dividing the number of characters in the 

pangram (43) by the total typing time and then again by 5 (making the common assumption 

that the English language has on average 5 characters per word). Pong performance was 

quantified by the number of times the participant was able to hit the ball with the paddle.

Virtual wheelchair driving performance was quantified by two metrics. For each driving 

block, the time to completion, and the number of collisions were recorded. This resulted on 

a total of 2 values for each performance measure for each control participant (1 for each 

map).

At the end of the experiment, we asked each control participant to choose the map that they 

liked the best (Kalman or PCA). Specifically, we asked each participant “What map would 

you choose to stay with in the future? The one that you calibrated with the dance, or the one 

were you followed the cursor?”
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In order to determine whether we could predict task performance based on calibration data, 

we tested the correlation between the reconstruction of the training data for Kalman and the 

performance in the first block. For the Kalman algorithm, we tested each participant’s map 

on a testing set that consisted of the body-movement observations for the calibration data. 

We ‘fed’ those observations into the map in order to make a prediction of the state. We then 

calculated a correlation coefficient between the reconstructed state and the actual state. We 

averaged the reconstruction correlation coefficients for the first two dimensions of the state 
(x, y). For each participant, we plotted their reconstruction correlation against each of the 

performance measures at the first block. This analysis allows us to determine if we can 

predict what each participant’s performance will be before they begin the experiment, based 

on their calibration data.

Statistics—A two-way mixed model analysis of variance (ANOVA) was performed on 

each center-out reaching performance measure. SESSION (1vs12 for SCI or 1vs4 for 

Controls) was set as the within-participant factor and MAP (PCA vs. Kalman) as the 

between-participant factor, with a Greenhouse-Geisser correction for violations of sphericity. 

In order to determine if participants using one map were better than participants using the 

other map at the end of training, a post-hoc comparison was performed to test the null-

hypothesis that the mean between two maps at the last block was the same. In order to test 

for a learning effect, we performed a post-hoc paired t-test for each map. We tested the null 

hypothesis that the mean difference between paired observations of the first vs. the last 

blocks was zero. All statistical tests were repeated for each performance measure and 

allowed us to reject the null hypothesis at p < 0.05.

A one-sample t-test was performed on the collision VR measure to test the null hypothesis 

that the mean number of collisions for each map was equal to zero. Additionally, a two-

sample t-test was performed on both collision and time measures to test the null-hypothesis 

that the mean difference between both maps was zero. We rejected the null hypothesis at p < 

0.05.

III. RESULTS

A. Qualitative results show that SCI and Control participants perform straighter and 
smoother cursor movements with Kalman than with PCA

All participants were able to perform the center-out reaching task regardless of the mapping 

algorithm they were assigned. Center-out cursor trajectories for representative participants in 

each map group are shown in Figure 2A. Performing the task was somewhat difficult for all 

participants in the first block of reaching. Cursor trajectories were all over the task space, 

especially for SCI participants. Participants had trouble moving in the correct direction 

towards the target, and there were a lot of changes in movement direction while performing 

each trial. In the first block of reaching, participants in all map groups tended to overshoot 

and undershoot the target locations. This required participants to either come back to the 

target, or make another movement that would get them closer to the target. Interestingly, 

control participants using the Kalman filter appeared to move somewhat straight from the 

first block, and overshoots appear to be less drastic than for PCA.
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Body and cursor movements did not reflect proficient cursor control in the first block. IMU 

angle signals and cursor tangential velocity time histories for a representative trial for each 

block are shown in Figure 2B. In the beginning of BMI training, participants moved their 

bodies in different ways as if they were exploring the space to perform the task. There were 

many peaks in the velocity profile of the cursor movement, and each trial could take between 

20-30 sec for SCI participants and 4-6 sec for controls.

After training, participants in all map groups were moving with what appeared to be 

proficient cursor control. Participants moved the cursor in the correct direction towards the 

target, almost in a straight line [Fig. 2A]. There were less target overshoots and less changes 

in movement direction. Interestingly, cursor movements for control participants using the 

PCA appeared to be less straight than other maps. In the last block, participants’ cursor 

movement resembled a smooth, bell-shaped velocity profile (Fig. 2B). There appeared to be 

one main movement, with a low-speed correction towards the end of the reach and inside the 

target. By the end, each trial could take between 4-6 sec for SCI participants and 3-4 sec for 

controls. Trials that showed a representative velocity profile for each map where chosen for 

the figure.

B. Quantitative results show that both SCI and control participants perform smoother and 
straighter movements with Kalman decoding but are more precise with PCA

All participants were able to operate the BMI using both algorithms. Calculating 

performance measures for each trial allowed us to take a deeper look into the details of 

cursor movement. These measures provide insight into the specific characteristics of cursor 

movement that would make one map better than the other. Performance for each participant 

and mean map performance at each block are shown for SCI and control participants in Fig. 

3A and Fig. 4A respectively. There was an overall improvement in performance after 12 

sessions of BMI practice. However, the level of improvement was not consistent across maps 

or performance measures. Participants generally moved the cursor in a straight line with a 

smooth velocity profile while using the Kalman algorithm, and they moved more precisely 

while using the PCA algorithm.

A reduction in jerk after 12 sessions was apparent for most SCI participants in both maps, 

however only participants using the Kalman algorithm showed a significant effect [Fig. 

3A,B, Fig. 4A,B]. This indicated that, with practice, Kalman SCI participants were able to 

use coordinated shoulder movements to increase the movement smoothness of the controlled 

2D cursor. The session effect on jerk was not significant for SCI participants, but was for 

controls (Table 3). Additionally, map differences did not depend on session, and there was 

no significant difference in jerk between maps at the end of training (Table 3).

When a new target appeared, participants had unlimited time to plan and start their center-

out movement. However, as they became more familiar with the BMI, the Euclidean 

distance between the cursor and the target 1 second after movement initiation decreased with 

both maps (Fig. 3A,B, Fig. 4A,B, and Table 2). This indicated that, with practice participants 

moved more accurately towards the target location. There was a session and block effect on 

Euclidean error after 1 sec for SCI and control participants respectively. However, map 

differences did not depend on session (Table 2). Overall, SCI participants using the PCA 
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algorithm moved more accurately than participants using the Kalman algorithm. There was a 

significant difference in Euclidean error after 1 sec between the PCA and Kalman maps at 

the end of training for both SCI and controls (Table 3).

Participants were not instructed to move in a specific manner. However, participants with 

both maps gravitated towards a straight trajectory from target to target. This was reflected in 

a reduction in path length for both SCI maps and PCA controls. There was a session effect 

on path length. However, map differences did not depend on session (Table 2). There was no 

significant difference in path length between SCI maps at the end of training (Table 3). In 

contrast, control participants had a shorter path length in the last block while working with 

the Kalman map. It is important to notice that most control participants had a path length 
close to 1 while working with the Kalman map, so there was not much room for 

improvement in their performance, and there exists the possibility of a floor effect.

As participants became proficient using the BMI, both maps showed a reduction in 

movement time with practice. There was a session and block effect on movement time for 

SCI and control participants respectively. However, map differences did not depend on 

session or block (Table 2). Additionally, there was no significant difference in movement 
time between SCI maps at the end of training (Table 3). Although control participants 

appeared to move faster by the end of training using the Kalman algorithm, the difference 

between both maps was not statistically significant (Table 3, p = 0.051).

To characterize map differences and identify the most relevant features reflecting proficient 

cursor control, we computed 6 performance measures that provided a comprehensive 

description of the cursor movement quality. We subjected these combined parameters to a 

PC analysis. Map differences for SCI participants were differentiated along PC1 and PC2, 

which explained 62% and 25% respectively of the total variance in the data sets for SCI 

participants and 61% and 27% respectively for controls (Fig. 3C and Fig. 4C). Analysis of 

factor loadings on PC1 revealed that movement time, path length, aspect ratio, and jerk were 

the most robust variables (SCI factor loadings, 0.50, 0.49, 0.47, 0.48; Controls factor 

loadings 0.47, 0.49, 0.46, 0.48 respectively) to capture map differences along PC1. In 

contrast, straight-line distance and Euclidean error after 1 sec were more robust in capturing 

differences along PC2 (SCI factor loadings, 0.72 and 0.62; Controls factor loadings, 0.72 

and 0.56 respectively). Factor loadings in Fig. 3C and Fig. 4C were normalized by the 

maximum value in each column for illustration purposes.

Participants using PCA seemed to be moving at a higher peak velocity in Fig. 2B and, even 

though PCA participants had a smaller distance between the cursor and the target 1 s after 

movement initiation, the final movement time did not differ between maps. The additional 

analysis of movement speed highlights differences between maps. The average block cursor 
peak velocity and IMU peak velocity for each participant are shown in Fig. 5. Participants 

moved the cursor and their body with a higher velocity when using the PCA map, compared 

to Kalman [Fig.5]. Peak velocity for cursor and IMU was not dependent on block, and there 

was no learning effect after training. Both maps were significantly different at the last block 

(Table 3).
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C. SCI participants can use the BMI to type on a virtual keyboard and play pong

All SCI participants were able to type using the virtual keyboard and play a pong-like game 

using the BMI. There was no difference between maps in typing or pong performance [Fig. 

6A,B]. Although there was no significant improvement in typing time for PCA but there was 

for Kalman, (Fig. 6C, PCA learning effect t = 2.19, p = 0.080, Kalman learning effect t = 

2.93, p = 0.049) performance improvement was evident in the pong task for both maps (Fig. 

6C, PCA learning effect t = −16.25, p = 0.002, Kalman learning effect t = −6.14, p = 0.013). 

The average typing task achieved by most participants at the end was around 3.5 WPM. 

However, two participants using the PCA map were able to achieve typing speeds of up to 6 

and 7 WPM.

D. Control participants using PCA outperform participants using Kalman during virtual 
wheelchair navigation

For the majority of control participants, driving with the PCA algorithm was significantly 

easier than driving with the Kalman algorithm. Wheelchair trajectories in the VR navigation 

map, wheelchair forward and turning velocities during a straight hallway, and wheelchair 

driving performance measures are shown in Figure 6. Participants had straighter and 

smoother wheelchair trajectories using PCA than using the Kalman algorithm. There was 

more consistency across participants’ trajectories with PCA, while Kalman trajectories 

showed sharper turns, many changes in direction, and even instances where the wheelchair 

went across a wall (that wall was a visual limit, but could be crossed) [Fig. 7B].

Participants were able to drive at a high velocity for a long time while using the PCA map 

[Fig. 7C]. There were few spikes in the forward velocity profile, and the turning velocity 

time history for PCA driving showed an almost flat turning velocity, indicating that 

participants were able to maintain a constant direction while driving with PCA. In contrast, 

there were many spikes in the velocity time history for Kalman driving. Participants were 

not able to drive at a high velocity for long periods of time, and a lot of corrections in 

velocity were needed. Kalman driving required participants to move in reverse several times. 

Moreover, the turning velocity time history for Kalman driving showed a lot of high-speed 

changes. This indicates participants constantly corrected the wheelchair’s direction, overshot 

their correction, and had to adjust in the opposite direction. Participants had trouble moving 

forward with a constant speed while using the Kalman algorithm.

Even though the time it took participants to complete the navigation task was comparable for 

both maps (Fig. 7D, two-sample t-test t = 0.586, p = 0.586), the number of collisions was 

significantly lower when participants were using the PCA algorithm (paired t-test t = 2.31, p 

= 0.027). The number of collisions for participants using the Kalman map was, in fact, 

significant (one-sample t-test t = 3.50, p = 0.010). When asked what map participants would 

prefer keeping for future hypothetical experiments, an overwhelming majority chose the 

PCA map (7 vs. 1).

Subjects with SCI performed the VR wheelchair task with either the PCA or the Kalman 

algorithm. Moreover, the VR environment and the driving courses that they used were 

different. Therefore, performance between algorithms in VR driving for SCI subjects was 
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not directly comparable. We included the results for each individual group in Supplementary 

Fig. 1.

E. Kalman training can predict reaching performance on the first block

The Kalman state reconstruction coefficient for the training data could moderately predict 

participant performance in the first block. The initial participant performance dependency on 

Kalman training data is shown in Fig. 8A. As the reconstruction coefficient between the 

predicted state and the actual state of the training data became larger, performance in the 

first block improved. In contrast, we were not able to find a characteristic of the PCA map 

that could predict participant performance in the first block [Supplementary Fig. 2].

IV. DISCUSSION

A. The body-machine interface as an assistive device

Our results confirm the ability of PCA and Kalman methods as decoding algorithms for 

BMIs used as assistive devices. These results are in agreement with observations of the 

ability of the motor control system to reorganize motor coordination by exploiting available 

motor redundancy [33], [34]. Other EEG-based brain-machine interfaces have been 

proposed for cases where all mobility has been lost –like in locked-in syndrome or advanced 

multiple sclerosis [35], [36]. Compared to the simplicity of PCA and Kalman, these methods 

have a low bandwidth, have longer training and familiarization periods, are computationally 

expensive, and demand high concentration from the user. In contrast, our training and 

familiarization protocols lasted for 1 minute each, the computation of the matrices is 

extremely fast, and SCI participants were able to maintain conversations while driving the 

VR wheelchair. Although the performance of the BMI has been shown to improve with 

increased calibration duration, there is no noticeable improvement in performance after 

48sec of calibration [24].

B. Qualitative and Quantitative differences between PCA and Kalman in center-out 
reaching

Qualitative reaching differences between PCA and Kalman maps were most apparent in 

smoothness and straightness of cursor movement. Participants controlling the cursor with the 

Kalman filter had a generally straighter movement to the target with a smooth cursor and 

IMU velocity profiles. Even though the task was more difficult for SCI participants, 

participants in all maps were able to straighten their movements after practice, with little to 

no overshoot, and a smoother, ‘bell-shaped’ velocity profile. These results are in agreement 

with observations in studies of coordination of voluntary human arm and cursor movement, 

where participants performing planar, multi-joint movements, control the endpoint with a 

unique straight trajectory that can be described with a minimum jerk model [30], [31]. 

Moreover, movement smoothness has been shown to improve during stroke [37] and SCI 

recovery [10].

Performance differences between PCA and Kalman during reaching were reflected in 

measures of smoothness, straightness, and accuracy. SCI participants moved more smoothly 

with Kalman but were more precise with PCA. Control participants moved straighter with 
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Kalman and more precise with PCA. Control participants did not show a learning effect in 

smoothness or straightness using Kalman. However, this result could indicate a floor effect, 

where participants were proficient in those measures from the first block. There appeared to 

be a slight difference in performance improvement trends between SCI and control subjects. 

A possible reason is that performance improvement for control subjects was calculated 

between blocks, within the same session, whereas performance improvement for SCI 

subjects was computed between their first and their twelfth session.

When the performance measures were represented in a new ‘denoised’ space created by 

PC1-3, data points associated with each experimental condition clustered in a well-defined 

location, indicating that participants exhibited map-specific reaching patterns. Typically, 

PC1 differentiated measures of smoothness, straightness, and timing, while PC2 captured 

differences in movement accuracy.

Even though control participants were closer to the target 1 second after movement onset 

while using the PCA map, movement time was not different between maps. An analysis of 

cursor velocity revealed that participants were in fact moving faster with the cursor with 

PCA, thus approaching the target in less time than Kalman. However, participants spent 

more time making small corrections towards the correct target location with PCA than with 

Kalman. In order to determine if the cursor movement speed difference could be attributed 

to the map’s kinematics, we also computed the IMU tangential velocity peaks for each 

reach. The IMU velocity peaks revealed that participants were moving their shoulders with a 

higher speed while using PCA.

We speculate that the higher effectiveness of the Kalman-based map to induce smooth and 

rectilinear movements is likely to derive from the very structure of the Kalman filter and 

from its calibration procedure. To set up the Kalman parameters the participants were 

explicitly asked to relate their body motions to the observed movements of the cursor, as it 

was moving along a set of rectilinear paths. Through this approach, the Euclidean structure 

of the task space (i.e. the computer monitor) was directly associated to the body motions in 

the calibration procedure, whereas this was not the case for the PCA map. To set up the PCA 

map, subjects were asked to perform free body motions without any reference to cursor 

control. Nevertheless, the direct mapping of the dimensions of greater body mobility over 

the task space by the PCA method resulted in a higher level of accuracy.

C. Generalization tasks using the body-machine interface

Participants with SCI were able to generalize their experience in center-out reaching to other 

tasks like typing and playing video games. Participants had to use different shoulder 

combinations, with different movement amplitudes and different timing requirements to 

complete these tasks. These results are in agreement with studies suggesting the formation 

of an internal model between the body and the cursor. There was no significant difference in 

generalization of task performance between both algorithms. Two participants typing with 

the PCA achieved a typing speed of 6 & 7WPM. In comparison, the sip-and-puff system has 

reported top speeds of 4WPM, while the best brain-computer interface has achieved a typing 

speed of 6WPM [38]. Although the typing speed of the BMI is still well below common 

QWERTY texting (20 WPM), it can serve as a replacement or complement to the majority 
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of current brain-computer interface users that revealed they would only be satisfied by over 

90% accuracy and by performance at least 3 times faster than current standard speeds [39].

Participants driving with PCA were able to keep a straight trajectory with small changes in 

direction, and the number of collisions was not significantly different from zero. In contrast, 

driving the VR wheelchair was more challenging for participants while using Kalman. The 

wheelchair path with Kalman was not straight, there was less consistency between 

participants, and the number of collisions was significantly different than zero. The static 

properties of the PCA map offer an advantage in collisions avoidance during driving. When 

participants were about to collide with an object or wall, the urgency of the situation caused 

them to make fast corrective shoulder movements. With PCA, participants knew exactly 

where the cursor was going to move to, regardless of how fast they corrected their 

movement. In contrast, the dynamic properties of the Kalman map caused participants to 

overshoot in their correction, as the fast acceleration of their shoulders moved the cursor to 

the edge of the screen, even when the movement amplitude was small. To solve this problem 

in the future, the Kalman BMI’s gains for position or velocity could be adapted during 

driving. Alternatively, an asymmetric map could be developed where moving forward and 

backward is easier than moving right and left. Another alternative would be to make the 

Kalman algorithm be static by using only the angles of the sensors as the observation to 

implement a position-to-position map. However, a previous study analyzing the role of 

sensor signal redundancy on cursor kinematics revealed taking advantage of the numerous 

available signals from the IMUs improved overall performance [24]. At the end of the 

experiment, an overwhelming majority of participants preferred PCA as their algorithm of 

choice.

While reaching performance was comparable with both algorithms, VR driving elicited the 

largest differences between maps. We believe this difference arises from the differences in 

cursor movement requirements from both tasks. VR driving had timing requirements for the 

participants to move the cursor with a high velocity. In contrast, reaching did not have a time 

constraint, and participants could take as much time as needed in order to move the cursor to 

the required location. Without a time constraint, participants perhaps concentrated on 

moving the cursor more smoothly and precisely towards the target. It remains to be 

investigated whether adding a time constraint on the reaching task would elicit higher 

differences between the Kalman and PCA decoding algorithms. Moreover, the difference in 

results between VR and reaching highlights the importance of testing control interfaces in 

tasks that more closely resemble the desired application, since differences in control abilities 

might not be reflected by the chosen performance metrics of center-out reaching.

D. Predicting performance from training data

Reaching performance in the first block could be predicted by training data in Kalman. 

Participants followed a cursor moving with a predetermined trajectory on the screen using 

their shoulders. When we used the shoulder movements and the learned Kalman map to try 

to predict the cursor’s predetermined trajectory, we could calculate the accuracy of the 

reconstruction. As the accuracy of the reconstruction increased, performance during the 

reaching task in the first block was higher. These results can be used in a Kalman filter 
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approach to develop and test new algorithms before training, and predict what their effect 

will be during the reaching task. Moreover, this knowledge can serve as a means to test the 

effectiveness of adaptive algorithms that are adjusted on-line based on participant 

performance (supervised learning) or the statistics of each participant’s movement 

(unsupervised learning).

Kalman training required participants to meet certain constraints in order for them to have 

good performance. For example, participants had to properly follow instructions, they had to 

be consistent in doing a similar movement every time the cursor moved in the same 

direction, and participants couldn’t get distracted or make mistakes (moving one way when 

they intended to move another) during training. In contrast, PCA has no explicit instructions 

so there is no ‘mistake’ for participants to make. We were not able to find a meaningful 

relation between the features of the PCA dance (symmetry, planarity, or ‘dance’ 

reconstruction) and the performance metrics, but this is currently being investigated.

E. Limitations

Our BMI requires more effort from the user compared to current available devices such as 

joysticks, sip-and-puff, and head and chin arrays. In future studies, we will include a 

questionnaire that can evaluate whether people with high-level SCI would prefer control 

interfaces that require more effort. We believe that there will be a tradeoff between required 

effort and level of control. When participants require more effort to use the BMI than their 

current interface, such as a joystick, and there is no added control benefit, it would be 

unlikely that subjects prefer the BMI. However, if the BMI offers a higher level of control 

that their current interface, for example 360°, continuous, proportional control, the 

likelihood of participants preferring the BMI would be higher. Studies in healthy subjects 

suggest that the degree of performance improvement in motor learning is dependent on the 

amount of practice [40], and that retention of motor learning is best accomplished with 

variable training schedules [41]. Our BMI can provide an enjoyable environment in which 

people with neuromuscular disabilities can sustain the motivation to practice for extended 

periods of time In fact, if properly directed, physical effort may be a therapeutic resource. A 

recent related study with our BMI [42] has highlighted the potential rehabilitative benefits 

that derive from exercising the residual mobility while performing functional and/or 

recreational activities. In fact, the BMI provides patients and therapists with the means to 

modify the body-to-device mapping so as to target specific rehabilitation objectives.

Measuring the range of motion of SCI and control subjects would give a better idea of each 

subject’s mobility. However, the IMU system was not sufficient to measure range of motion. 

The IMU sensors were not placed on the exact same shoulder location on all subjects, and 

subjects differed in body size. These two factors would result in differences in IMU angle 

measurement magnitudes, and comparisons between movement amplitudes measured by 

IMUs would not be appropriate. For a fair comparison of movement amplitude between 

shoulders, we would need an additional evaluation of shoulder range of motion such as 

motion tracking my infrared optical markers or by a goniometer.
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V. CONCLUSION

Participants using the BMI were able to produce satisfactory performance using the PCA 

and Kalman algorithms. This study highlights differences and advantages of the different 

algorithms for SCI participants and controls. Most importantly we have observed an 

accuracy/smoothness tradeoff between the Kalman and the PCA approaches. While the 

former establishes an explicit relation between the intended motions of the cursor and the 

movements of the body, the latter "constructs" the task space by matching the highest 

mobility of the body with the coordinate system for the cursor. The PCA approach is 

effectively completely unsupervised as it is only based on the statistics of body motions. 

This seems sufficient to achieve a higher degree of learnability in terms of efficiency and of 

perceived ease of use. Future studies will be directed at exploring how the two approaches 

may be combined to capture the advantages of both.

Learning to use their remaining functions to perform complex motor tasks and adapt to an 

ever-changing environment is a fundamental component of SCI survivors’ lives. 

Understanding the benefits deriving from each decoding algorithm is crucial to develop and 

enhance BMIs used for physical rehabilitation paradigms that improve functional outcomes 

and facilitate the learning process related to assistive devices used by impaired individuals. 

Furthermore, this knowledge can be used to continuously modify the BMI in order to a) 

increase or decrease the level of effort required from the user for rehabilitation or assistive 

purposes respectively and b) move the sensors over body locations with regained mobility, 

which may address current problems of control difficulty [43], [44].

IMU-based BMIs using a PCA decoding map have already been developed to control a 

powered wheelchair using the shoulders [17]. However, these results highlight the 

importance of long-term VR practice with Kalman before participants drive a real 

wheelchair. This BMI allows for proportional, continuous, 360° control of their wheelchairs. 

Moreover, unlike current sip-and-puff and head-and-chin switches to control wheelchairs, 

the BMI is non-obstructive to the head or the mouth. This system can be used during long-

term training to investigate the rehabilitative effects of practicing upper-body control in 

people with SCI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Mapping algorithms to transform a high-dimensional body-signal vector into a lower 
dimensional control vector
(A) Participants sat in front of a computer monitor wearing four IMUs on the shoulder area. 

(B) The Kalman algorithm (top) required participants to follow a moving cursor on the 

screen as if they were controlling it with their shoulders while we recorded cursor and body 

kinematics. The PCA algorithm (bottom) required participants to move freely and randomly 

with their shoulders. A PCA on the high-dimensional body movement vector resulted in a 

low-dimensional representation of the body postures that explained most of the variance. (C) 

A mapping matrix was used to transform body signals into cursor kinematics. The Kalman 

observation matrix mapped position, velocity, and acceleration of the shoulders into 

kinematics of the 2D cursor. The state propagation matrix mapped the cursor kinematics at 

one time step to the cursor kinematics at the future time step. The PCA matrix mapped 

position of each sensor into the 2D cursor vector. Each column’s loadings are normalized by 

its maximum value. (D) The position output of both algorithms was projected into the X and 

Y coordinates of a computer cursor. Participants were able to see the feedback of cursor 

position and move their body accordingly to perform the required tasks.
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Fig. 2. Qualitative performance for SCI and control participants using the Kalman and PCA 
algorithms in a body-machine interface during center-out reaching
(A) Center-out cursor trajectories to eight targets during the first (left) and last (right) blocks 

of training. Each color represents a participant from a different map group. (B) 

Representative example of IMU orientation signals time history during one center-out reach. 

The shaded area indicates the time while the cursor was inside the target. (Bottom) Cursor 

tangential velocity history during the same center-out reach as the IMU signals above.
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Fig. 3. Spinal cord injured participant performance for 12 sessions of BMI training
(A) Participants performance at each session is shown for PCA (blue) and Kalman (red) SCI 

participants. Each marker type denotes a different participant’s mean performance at that 

session. The lines represent the map averages (n = 3 participants, 48 trials per session). (B) 

Improvement in performance (first – last) is shown for each map. (C) PCA was applied on 4 

performance measures for all participants calculated over 12 successive sessions. Least-

square elliptic fits are drawn to emphasize map differences in PC space. The matrix reports 

the normalized score of each performance measure along each PC. Data are means ± SEM 

(bars). a.u., arbitrary units.

Seáñez-González et al. Page 21

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2017 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Control participant performance for 4 blocks of BMI training
(A) Participants performance at each block is shown for PCA (amber) and Kalman (green) 

control participants. Each marker type denotes a different participant’s mean performance at 

that block. The lines represent the map averages (n = 8 participants, 24 trials per session). 

(B) Improvement in performance (first – last) is shown for each map. (C) PCA was applied 

on 4 performance measures for all participants calculated over 4 successive blocks. Least-

square elliptic fits are drawn to emphasize map differences in PC space. The matrix reports 

the normalized score for each performance measure along each PC. Data are means ± SEM 

(bars). a.u., arbitrary units.
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Fig. 5. Control participant peak velocity of cursor and IMU at each block
(A) Participants’ mean cursor (left) and IMU (right) peak tangential velocity at each block is 

shown for PCA (amber) and Kalman (green) control participants. Each marker type denotes 

a different participant’s mean performance at that block. The lines represent the map 

averages ± SEM bars (n = 8 participants, 24 trials per session).

Seáñez-González et al. Page 23

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2017 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. SCI participant performance during typing and pong
(A) Screenshot of the typing interface (left) and participant performance at each typing 

session (right) is shown for PCA (blue) and Kalman (red) SCI participants. Each marker 

type denotes a different participant’s mean performance at that session. The lines represent 

the participant averages (n = 3 participants, one trial per session). (B) Screenshot of the pong 

game (left) and participant performance at each pong session (right) is shown for PCA and 

Kalman participants. PCA participants began playing pong until the 3rd session. (C) 

Improvement in performance is shown for each task. Data are means ± SEM (bars). (D) 

Typing speed in words per minute for each SCI participant overlaid over a scale showing 

typing speeds for other devices (adapted from [38]).
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Fig. 7. Virtual wheelchair driving using a body-machine interface based on inertial sensors
(A) Three-dimensional rendering of the virtual environment used by participants during 

control of a simulated wheelchair. Participants drive the wheelchair by controlling the 

position of the green circle that represents the wheelchair’s joystick. (B) Example 

wheelchair trajectories for four participants are overlaid on the top-view of the VR 

navigation map. Trajectories are shown in amber of PCA participants and green for Kalman 

participants. White lines represent walls and obstacles, the black arrows indicate the position 

and orientation of the camera screenshots in (A), and the shaded area indicates the location 

for the data in (C). (C) Example wheelchair forward (top) and turning (bottom) velocities 

during a straight path in the navigation task (shaded area in B). (D) The number of collisions 

and total driving time is shown for each map. Data are means ± SEM (bars).
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Fig. 8. Initial performance dependency on Kalman training data
The correlation coefficient for the reconstruction of the Kalman training state based on the 

training observation is plotted against the first block performance. Each circle represents an 

individual unimpaired participant. The black line illustrates the linear regression on the map 

data. The regressions’ r-square values (R2fitt) are enclosed in the gray box.
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Table 1

SCI Participant Characteristics

SUBJECT ID GENDER AGE LEVEL OF INJURY TIME AFTER INJURY MAP

S003 Female 59 C6 2 years PCA

S005 Female 41 C6 8 years PCA

S006 Male 30 C5 10 years PCA

S301 Male 36 C5-C6 13 years Kalman

S302 Male 42 C5 16 years Kalman

S304 Male 55 C6 15 years Kalman
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Table 2

Repeated measures ANOVA statistical results (F-statistic, p-value)

ANOVA
Repeated measures

SCI CONTROL

Measure Session Interaction
(Session*Map) Map Block

Interaction
(Block*Ma

p)
Map

Jerk
(a.u.) 1.90, 0.066 0.389, 0.949 0.811, 0.419 4.17, 0.011* 0.20 0.895 1.52, 0.237

Error after 1 sec
(a.u.) 21.16, < 0.001* 1.15, 0.347 7.72, 0.049* 19.98, < 0.001* 1.51, 0.227 12.34, 0.003*

Path Length
(a.u.) 2.62, 0.011* 0.929, 0.522 1.76, 0.255 5.61, 0.003* 1.05, 0.383 3.45, 0.084

Movement Time
(sec) 5.05, < 0.001* 0.341, 0.971 0.11, 0.756 12.42, < 0.001* 0.431, .732 1.37, 0.262
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Table 3

Statistical analysis results for learning and difference at last block (t-statistic, p-value)

Learning Effect
Paired t-test

Difference at last block
Two sample t-test

SCI CONROL SCI CONTROL

Measure PCA KAL PCA KAL

Jerk
(a.u.) 2.01, 0.091 4.92, 0.020* 1.50, 0.088 1.72, 0.064 1.09, 0.391 2.02, 0.083

Error after 1 sec
(a.u.) 9.08, 0.006* 3.68, 0.033* 4.02, 0.002* 3.68, 0.004* 4.92, 0.039* 4.64, 0.002*

Path Length
(a.u.) 5.01, 0.018* 6.49, 0.011* 2.12, 0.036* 1.73, 0.063 1.17, 0.363 2.41, 0.047*

Movement Time
(sec) 4.43, 0.024* 16.44, 0.002* 2.38, 0.024* 3.17, 0.007* 0.997, 0.425 2.35, 0.051

Velocity statistical results for ANOVA (F-statistic, p-values) and t-test (t-statistic, p-value)

ANOVA Learning Effect Difference at last
block

Repeated Measures Paired t-test Two sample t-test

Measure Block Interaction
(Block*Map)

Map PCA KAL

Cursor Velocity
(m/s)

1.11, 0.355 0.663, 0.580 14.63, 0.002* 1.32, 0.115 1.10, 0.154 4.62, 0.002*

IMU Velocity
(deg/sec)

1.44, 0.244 1.08, 0.370 5.30, 0.037* 1.52, 0.087 0.04, 0.190 2.15, 0.068
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