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Abstract

Rationale and Objectives—Previous investigation suggests that visually detected interstitial 

changes in the lung parenchyma of smokers are highly clinically relevant and predict outcomes 

including death. Visual subjective analysis to detect these changes is time consuming, insensitive 

to subtle changes and requires training to enhance reproducibility. Objective detection of such 

changes could provide a method of disease identification without these limitations. The goal of 

this study was to develop and test a fully automated image processing tool to objectively identify 

radiographic features associated with interstitial abnormalities in the computed tomography scans 

of a large cohort of smokers.

Materials and Methods—An automated tool that uses local histogram analysis combined with 

distance from the pleural surface was used to detect radiographic features consistent with 

interstitial lung abnormalities in computed tomography scans from 2257 individuals from the 
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Genetic Epidemiology of COPD study, a longitudinal observational study of smokers. The 

sensitivity and specificity of this tool was determined based on its ability to detect the visually 

identified presence of these abnormalities.

Measurements and Main Results—The tool had a sensitivity of 87.8% and a specificity of 

57.5% for the detection of interstitial lung abnormalities, with a c-statistic of 0.82, and was 100% 

sensitive and 56.7% specific for the detection of the visual subtype of interstitial abnormalities 

called fibrotic parenchymal abnormalities, with a c-statistic of 0.89.

Conclusions and Relevance—In smokers, a fully automated image processing tool is able to 

identify those individuals who have interstitial lung abnormalities with moderate sensitivity and 

specificity.
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Introduction

Interstitial lung diseases (ILD) such as idiopathic pulmonary fibrosis (IPF) have long been 

described based on clinical, radiographic and pathologic findings. However, there is a 

growing recognition that a broader definition is required to identify the early stages of ILD.

(1) This has become increasingly important with the introduction of new therapies that slow, 

but do not reverse the progression of IPF, which is a progressive and frequently fatal disease.

(2, 3) Interstitial lung abnormalities are radiographic precursor lesions to ILD, which 

themselves are associated with reduced total lung capacity, decreased exercise capacity, and 

increased mortality. (4–8) In populations at risk for ILD, such as smokers, the rate of 

interstitial lung abnormalities seen visually on computed tomography (CT) scans can be as 

high as 9.7%, but visual analysis alone may be insensitive to very early pathology and 

grading systems built using visual analysis may be inaccurate.(8–10)

Certain types of objective analysis of CT images, including densitometric and textural based 

approaches, have been shown to be sensitive for detecting ILD in patients at high risk, and 

have been found to correlate with pulmonary function and mortality in those with known 

ILD.(11–15) However, the role of objective CT as a screening tool for the detection of 

interstitial lung abnormalities in a large cohort of smokers is unknown.

We have developed an objective and fully automated method that uses the local histogram 

pattern of lung density proposed by Mendoza et al, but which in addition also incorporates 

the distance to the pleural surface to identify and quantify the volume of radiographic 

features consistent with interstitial lung abnormalities on CT imaging of 9501 smokers.(16) 

We hypothesized that the objective measurement of these interstitial radiographic features 

would accurately identify those individuals who have visually identified interstitial lung 

abnormalities, and may also identify those individuals who have the visually defined subtype 

of interstitial abnormalities called fibrotic parenchymal abnormalities.
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Materials and Methods

Study Design and Image Acquisition

COPDGene is a longitudinal investigation focused on the epidemiologic and genetic risk 

factors for the development of chronic obstructive pulmonary disease (COPD) in smokers. 

10,300 smokers were enrolled, and each underwent a protocolized study visit which 

included an extensive interview, volumetric high resolution CT scanning of the chest, and 

spirometric assessments of lung function. Smokers between the ages of 45 and 80 with at 

least a 10 pack year history of tobacco smoke exposure were eligible to enroll. Subjects were 

excluded if they had active lung diseases other than asthma or COPD. These exclusion 

criteria included the presence of ILD as determined by the visual review of CT scans by the 

COPDGene imaging core.(17)

Volumetric CT scans of the chest were performed at both maximal inflation and relaxed 

exhalation. Images were acquired with the following CT protocol: for General Electric (GE) 

LightSpeed-16, GE VCT-64, Siemens Sensation-16 and -64, and Philips 40- and 60-slice 

scanners with 120kVp, 200mAs, and 0.5s rotation time. Images were reconstructed using a 

standard algorithm at 0.625mm slice thickness and 0.625mm intervals for GE scanners; 

using a B31f algorithm at 0.625 (Sensation-16) or 0.75mm slice thickness and 0.5mm 

intervals for Siemens scanners; and using a B algorithm at 0.9mm slice thickness and 

0.45mm intervals for Philips scanners.

All subjects who participated in COPDGene provided written informed consent, and the 

study was approved by the institutional review boards at all of the participating centers.

Objective CT Analysis

The objective detection and quantification of the volume of radiographic interstitial feature 

subtypes was performed using an approach similar to that which we designed for evaluating 

subtypes of emphysema, and which combines the attenuation properties of the local tissue 

and distance from the pleural surface.(18) First, segmentation of the lung parenchyma from 

the chest wall and surrounding structures was performed on the inspiratory scans using a 

fully automated approach which uses particles, thin plate splines and maximum a posteriori 

estimation. This method has been described previously and was implemented through the 

Chest Imaging Platform (http://acil.med.harvard.edu/chest-imaging-platform).(19)

In order to train the objective detection and quantification tool, two experts placed 33865 

fiducials in 138 CT scans on radiologic features unique to each disease type. The training 

CT scans were randomly selected by subject identification number. The radiologic features 

included normal parenchyma, interstitial feature subtypes (reticular, honeycombing, 

centrilobular nodule, linear scar, nodular, subpleural line, ground glass), and emphysema 

subtypes (centrilobular and paraseptal). (Note that panlobular emphysema was not identified 

in the training cases likely because patients with alpha 1 antitrypsin disease were not 

represented in the cohort.) This was done to build a library of points to be used as tissue 

classifiers.
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Regions of interest (ROI) consisting of 30 by 30 in-plane voxels centered about these 

training points were constructed to use as training data. For each ROI a feature vector was 

built consisting of a local density histogram obtained using kernel density estimation (KDE) 

and distance to the pleural surface. KDE is a non-parametric method used to estimate a 

probability distribution over the densitometry values in each region of interest by smoothing 

over the local histogram information. This is especially useful when a parametric 

distribution cannot be fit over the densitometry values. The estimated distribution  as a 

function of densitometry value (x) was obtained by smoothing a normalized histogram of all 

patch samples (xi) using a Gaussian kernel (K). The smoothing factor (h) is particularly 

useful due to the finite number of densitometry samples per patch. Higher values of h result 

in increased smoothing of the distribution and the optimal value for this factor was obtained 

using methods described previously.(16, 20)

The final feature incorporated into the tissue vector was the distance from each ROI to the 

closest point on the pleural surface. This distance information is especially helpful for 

classifying conditions such as a subpleural line which are localized to the lung periphery.

After the training process was completed, de-novo regions of the CT scan were classified 

based on their similarity to the training data. The feature vectors consisting of histogram and 

distance features were extracted from each test region of interest and were compared to the 

features vectors of each region in the training data. For the comparison, the following metric 

that combines the L1 norm between the local density histograms and a weighted difference 

between the distances to the chest wall was used:

The weight (β) was determined by performing a Bayesian optimization using the Spearmint 

package.(21) Within this data set, an optimal weight of 0.026 was found. A k-nearest 

neighbor classification scheme was then used to select the label with the highest frequency 

from the 5 nearest training neighbors as determined by the distance metric.

The results of this objective analysis assigned a tissue subtype to every portion of the lung 

parenchyma and provided the volume of each tissue subtype. The total percentage of all of 

the interstitial lung features was then determined by combining the reticular, centrilobular 

nodule, linear scar, nodular, subpleural line, ground glass and honeycombing subtype 

volumes and dividing by the total volume of all subtypes including normal, interstitial and 

emphysematous. CT scans included in the training subset were not excluded from the 

primary analysis, but represented only 7.09% of the total number of CT scans analyzed. A 

secondary analysis which excluded individuals with CT scans included in the training subset 

was also performed.
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Visual HRCT Analysis

The visual assessment of CT for interstitial lung abnormalities in subjects participating in 

COPDGene has been described previously and was performed in two stages.(5, 7) In stage 1, 

each CT was evaluated by three readers (one pulmonologist and two chest radiologists, two 

of whom were separate from the readers who placed fiducials for the objective analysis) 

using a sequential reading method.(7) Interstitial lung abnormalities were defined as non-

dependent ground-glass or reticular abnormalities, diffuse centrilobular nodularity, 

nonemphysematous cysts, honeycombing, or traction bronchiectasis affecting more than 5% 

of any lung zone. Focal or unilateral ground-glass attenuation, focal or unilateral 

reticulation, and patchy ground glass abnormalities (present in less than 5% of the lung) 

were considered to be indeterminate findings. In stage 2 of the visual CT analysis, those 

subjects who had interstitial lung abnormalities were subcategorized into having one of four 

major radiographic subtypes. For the purposes of this particular study, only one of these 

subtypes was considered: fibrotic parenchymal abnormalities, the diagnosis of which was 

based on the presence of the following CT findings: bilateral ground glass opacities with 

irregular reticular opacities and traction bronchiectasis or bronchiolectasis, in the absence of 

significant honeycombing.(8)

Statistical Analysis

The percentage of interstitial features was evaluated both as a continuous and a binary 

variable. Receiver operating characteristic curves and the area under the curve were 

generated using logistic regression for the objective detection of visually defined interstitial 

abnormalities and for the objective detection of fibrotic parenchymal abnormalities. 

Subgroup analyses were performed in which those subjects who were visually categorized as 

having indeterminate evidence of interstitial abnormalities were excluded. The sensitivity, 

specificity, positive predictive value and negative predictive value for the objective detection 

of visually defined interstitial abnormalities and for the detection of visually defined fibrotic 

parenchymal abnormalities were calculated after dichotomizing subjects using a cut off of 

5% of the lung volume occupied by objective interstitial features, i.e. those subjects with 

greater than 5% of their lung volume occupied by objective interstitial features were defined 

as having objective disease. All analyses were performed using SAS software, version 9.4 

(SAS Institute. Cary, NC).

Results

Cohort

Of the 10300 study participants in COPDGene, 9501 (92%) had a CT scan available that 

could be successfully analyzed using the objective technique. Of these, visual analysis of CT 

was available for 2257 (24%). Summary statistics for the cohort are shown in Table 1.

Validation of the Objective Detection Algorithm

Validation was performed in three parts. First, in order to perform a small scale preliminary 

review of the method, we performed a visual inspection of the tissue classification on full 

CT volumes of 5 random subjects. This revealed a systematic over classification of 
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paraseptal emphysema as reported previously using the local histogram method.(18) We 

therefore removed the 205 paraseptal subtype regions from the training data. This resulted in 

regions previously classified as paraseptal emphysema being reclassified as either normal 

parenchyma or centrilobular emphysema. We next performed a leave-one-out validation on 

the 33660 remaining regions of interest, whereby at each iteration, one of the regions was 

selected as the testing data, and the remaining regions were selected to be part of the training 

data. This portion of validation was performed in two phases. The first phase was undertaken 

with aggregated features of emphysema and interstitial lung features. In this way a ROI in 

the lung was labeled as “normal”, “emphysema” or “interstitial”. This was done to generate 

a preliminary estimate of the overall ability our algorithm to differentiate disease subtypes. 

The average overall accuracy of the algorithm assessed in Phase 1 was 80.9% with an 

accuracy of 79.0% for the classification of “interstitial”. The second phase involved a leave-

one-out validation with the non-aggregated subtypes. In this step the emphysema features, 

interstitial features (reticular, centrilobular nodule, linear scar, nodular, subpleural line, 

ground glass and honeycombing), and normal parenchyma were interrogated as unique 

patterns of disease. When examined by interstitial and emphysema subtype the overall 

average accuracy was 53.3%. Further review of the data illustrates that the accuracy of the 

algorithm was greater than 71% for honeycombing and greater than 78% for reticular 

changes, but only 12.9% for nodular changes and 12.4 for ground glass.

As expected, there was differential accuracy based on interstitial subtype due to differing 

numbers of fiducials per subtypes. For instance, while 5531 points were used to train for the 

reticular subtype, only 116 were used for the nodular subtype. This discrepancy in number 

of fiducials per tissue subtype was due to the visual prevalence of each feature in the training 

CTs. Also, the training data used for the leave-one-out validation included peripheral areas 

of normal parenchyma and disease, which was beneficial for the full volume classification 

but penalized leave-one-out accuracy.

Distribution ofObjective Interstitial Lung Features in the Cohort

The percentage of lung volume occupied by objectively identified interstitial features within 

each individual’s CT scan ranged from 0.567% to 45.1%, with a mean of 5.80%. The full 

distribution of the percentage of objective interstitial features in the cohort is shown in 

Figure 2, and a representative CT image showing the labeling of interstitial features is shown 

in Figure 3.

Objective Detection of Visually Defined Interstitial Lung Abnormalities

Objective interstitial lung features were found to have an area under curve (AUC) of the 

receiver operating characteristic (ROC) curve of 0.82 for the detection of visually defined 

interstitial lung abnormalities and an AUC 0.89 for the detection of visually defined fibrotic 

parenchymal abnormalities. When defined using the cutoff value of 5% lung volume 

occupied by objective interstitial lung features, the objective lung feature detector had a 

sensitivity of 87.8% and a specificity of 57.5% for visually defined interstitial lung 

abnormalities, and had a sensitivity of 100% and a specificity of 56.7% for visually defined 

fibrotic parenchymal abnormalities. Based on an observed prevalence of 6.91% for visually 

defined interstitial lung abnormalities and of 4.12% for the fibrotic parenchymal abnormality 
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subtype, the positive predictive and negative predictive values for the detection of interstitial 

abnormalities were 13.3% and 98.5 respectively, and for the detection of fibrotic 

parenchymal abnormalities were 9.03% and 100%. When subjects with indeterminate visual 

findings were excluded from the analysis, the detector was 87.8% sensitive and 72.6% 

specific for interstitial lung abnormalities with an AUC of 0.88, and was 100% sensitive and 

70.6% specific for fibrotic parenchymal abnormalities with an AUC of 0.94.

When the individuals whose CT scans were in the training subset were excluded from the 

primary analysis the AUC for the detection interstitial abnormalities was 0.81, and the AUC 

for the detection of fibronodular abnormalities was 0.90. When both the training scans and 

those scans which were visually indeterminate were excluded, the AUC for the detection 

interstitial abnormalities was 0.87, and the AUC for the detection of fibronodular 

abnormalities was 0.94.

Discussion

In this study we found that the objective assessment of radiographic interstitial lung features 

in smokers using a fully automated method that involves local histogram analysis and the 

distance from the pleural surface can identify individuals with interstitial lung abnormalities.

Previous studies of the objective assessment of interstitial lung abnormalities and ILD have 

used semi-quantitative methods utilizing visual scoring systems, or have focused on the 

correlation of objective measures with specific visually defined tissue types, spirometry or 

other outcomes. And the majority of these studies have been done in subjects previously 

visually or pathologically identified as having interstitial disease.(12, 14, 15, 22–29) The 

role of objective radiographic analysis tools in identifying those with interstitial lung 

abnormalities in a large population is, however, less clear.

This led us to investigate the ability of our local histogram and distance based objective 

approach to identify and quantify radiographic features consistent with interstitial lung 

abnormalities from a large cohort of patients who are not known to have, and are at only 

mildly increased risk for, interstitial lung disease. Beyond its size and novel approach, 

additional strengths of our study include the relatively high area under the curve for the 

detection of both interstitial lung abnormalities and the fibrotic parenchymal visual subtype 

of interstitial abnormalities.

Our study does have several limitations. The most prominent is the discrepancy in 

prevalence between those with visually defined interstitial lung abnormalities (6.91%) and 

the prevalence of those had objectively defined interstitial lung features using our method 

(45.6%). We chose 5% objective interstitial features by volume because prior visual analyses 

had used this as a cut-off for the visual identification of interstitial lung abnormalities.(7) It 

should be noted that it is extremely unlikely that 45.6% of the population has early ILD. 

That said, the high negative predictive value of the tool suggests it may have a role as an 

objective screen for what is visually a relatively uncommon finding. In this way it would not 

replace visual interpretation of CT imaging, but rather provide automated and objective 

assistance in interpretation. In addition, based on this defined prevalence, as well as the 
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observation that fifty percent of subjects had a percentage of objective interstitial features of 

at least 4.65%, the objective interstitial lung features identified using this method are likely 

not just what are visually identified as interstitial lung abnormalities. Instead, it may be that 

while some of the patients with these features are those who have disease that is not yet 

discernible by visual inspection, others may represent an overlapping, but different group, 

such as those at risk for developing another smoking related disease in the future. In the 

latter scenario, these changes could be thought of as a possible marker of increased risk for 

cigarette related lung disease or of increased risk for other causes of smoking related 

mortality. It is also possible that some proportion of these findings are truly incidental. 

Further study will be needed to determine if this is the case, and to better identify the clinical 

characteristics of patients with these objective findings, what additional risk the findings 

may signify and what interventions might be available to reduce any such risk.

An additional limitation of this study relates to the exclusion of subjects with indeterminate 

scans in the secondary analysis. This was done for comparison with the visual literature, in 

which those subjects are often excluded. However, it should be noted that such a step would 

not be possible if the detector was used as a screening tool.

In conclusion, our study of the objective assessment of radiographic interstitial lung features 

in smokers has shown that an automated detector of interstitial lung features can identify 

individuals with interstitial lung abnormalities. Further study is needed to determine if these 

objective abnormalities are associated with spirometric values and clinical outcomes such as 

mortality.
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Rapid Communication Summary

In this study we describe a novel technique for the objective and fully automated 

detection of interstitial radiographic features on chest computed tomography scans. Our 

approach builds upon prior work by adding a distance measure from the pleural surface 

to a local histogram based analysis, in order to more accurately identify these features. In 

addition to the new approach, in this study we have also created a large database of over 

30,000 unique radiographic labels, or training points, which we used, via a machine 

learning algorithm, to train the feature detector. Finally, using data from a previously 

reported visual analysis of over 2000 smokers not known to have interstitial lung disease, 

we have shown that our automated detector is able to accurately identify those subjects 

with visually identified interstitial lung abnormalities, with a c-statistic of 0.82. Prior 

work using purely densitometry based screening methods has been far less accurate, and 

there has been limited investigation into the role of an automated objective interstitial 

disease detector in individuals who are not at high risk for interstitial lung disease. Our 

study suggests that such an approach may have a role in the future as an automated 

screening tool to detect those individuals at highest risk for interstitial lung disease.
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Figure 1. 
Averaged kernel density estimates over the training samples for each radiographic type. 

Each kernel density estimate approximates the probability density function over CT density 

values in the training patch.
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Figure 2. 
Cohort distribution of the percentage of objective interstitial features within each individual 

subject’s CT scan
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Figure 3. 
HRCT (A) with overlay of objectively defined interstitial lung features (B).

Ash et al. Page 14

Acad Radiol. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ash et al. Page 15

Table 1

Cohort Characteristics

Clinical

Age (years) - mean (std dev) 61.0 (9.31)

Sex - % female (n) 48.7 (1099)

Race - % black (n) 25.3 (570)

BMI - mean (std dev) 28.5 (6.20)

Pack Years - mean (std dev) 45.4 (25.28)

Current Smoking - % (n) 44.4 (1001)

FEV1 (% predicted) - mean (std dev) 74.7 (27.01)

MMRC (score) - mean (std dev) 1.39 (1.46)

Visual

% with interstitial lung abnormalities present visually (n) 6.91 (156)
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