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Abstract

Multistage clonal expansion (MSCE) models of carcinogenesis are continuous-time Markov 

process models often used to relate cancer incidence to biological mechanism. Identifiability 

analysis determines what model parameter combinations can, theoretically, be estimated from 

given data. We use a systematic approach, based on differential algebra methods traditionally used 

for deterministic ODE models, to determine identifiable combinations for a generalized subclass 

of MSCE models with any number of pre-initation stages and one clonal expansion. Additionally, 

we determine the identifiable combinations of the generalized MSCE model with up to four clonal 

expansion stages, and conjecture the results for any number of clonal expansion stages. The results 

improve upon previous work in a number of ways and provide a framework to find the identifiable 

combinations for further variations on the MSCE models. Finally, our approach, which takes 

advantage of the Kolmogorov backward equations for the probability generating functions of the 

Markov process, demonstrates that identifiability methods used in engineering and mathematics 

for systems of ODES can be applied to continuous-time Markov processes.
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1 Introduction

The two-stage clonal expansion (TSCE) model is a continuous-time Markov process 

proposed by Moolgavkar, Venzon, and Knudson [1, 2] to capture the initiation–promotion–

progression hypothesis of carcinogenesis, wherein normal cells undergo a genetic 

transformation that causes clonal expansion, followed by progression to malignancy. The 

initiation–promotion–progression paradigm allows one to consider carcinogenic factors as 

initiators or promoters given their mechanism of action and their differential effects at 

different stages of life. The TSCE model formulation may be extended to three or more 

stages or other more complex variations, which are collectively called multistage clonal 

expansion (MSCE) models. Parameter estimation with multistage clonal expansion models 

has proven a valuable approach, and MSCE models have been successfully used to analyze 

and fit data from pancreatic, colorectal, esophageal, and oral cancer, among others [3–16].

*corresponding authors (brouweaf@umich.edu, marisae@umich.edu). 

HHS Public Access
Author manuscript
Risk Anal. Author manuscript; available in PMC 2018 July 01.

Published in final edited form as:
Risk Anal. 2017 July ; 37(7): 1375–1387. doi:10.1111/risa.12684.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Consideration of identifiability is the first step in estimation of model parameters from data. 

A model is said to be identifiable if all model parameters may be uniquely determined from 

given observed data [17-19]. Identifiability is a key step in ensuring successful parameter 

estimation and is often considered in two forms: structural identifiability, which considers 

the best-case scenario of noise-free, continuously measured data in order to uncover 

identifiability issues inherent in the model structure, and practical identifiability, which 

addresses issues such as noise, bias, and frequency of sampling [20]. While the best-case 

scenario is unrealistic, structural identifiability is necessary for practical identifiability and 

can often lead to useful insights for model reparameterization and data collection strategies.

For deterministic models, one often frames the identifiability problem as testing the 

injectivity of the map from the parameters to the output trajectories (implicitly defined by 

the corresponding ordinary differential equations (ODE) system) [21]. There are a wide 

range of approaches to answering questions of identifiability for such systems, including 

Laplace transformation, Taylor series, similarity transformation, and differential algebra [19, 

21-28].

The identifiability of certain individual clonal expansion models, which are stochastic rather 

than deterministic, has been addressed primarily on a case-by-case basis and in no 

systematic way. Heidenreich et al. [29] determined the identifiability of the TSCE model 

with constant and piecewise-constant parameters when fitted to incidence data through 

derivation of closed form solutions of the corresponding hazard function. Luebeck and 

Moolgavkar [5] similarly analyzed the identifiability of MSCE models with multiple pre-

initiation stages and constant parameters. Little et al. [30] developed bounds for the number 

of identifiable combinations for a class of stochastic cancer models with genomic instability

—which includes MSCE models—through observing parameter combinations in the form of 

the cancer hazard in the model and numerical evaluations of the Fisher information matrix.

Here, we present a derivation of the identifiability of a generalized subclass of MSCE 

models with multiple pre-initiation steps when fitting to age-specific cancer incidence data, 

as is typical. We use a differential algebra approach that was developed for deterministic 

ODE models and which has not previously been brought to bear on this class of models [21, 

26, 27, 31, 32]. We do this by leveraging the Kolmogorov backward equations for 

continuous-time Markov processes, which can be reduced to a system of differential 

equations. This approach has many advantages: it is analytical and systematic, returns 

explicit identifiable combinations rather than bounds, and is a global result over the 

parameter space. We additionally demonstrate the identifiability of the fully general case 

with multiple clonal expansions for models with up to four clonal expansion stages and 

conjecture that our framework could be extended to any number of stages. Our work 

demonstrates that approaches for identifiability in deterministic dynamical systems can be 

used in Markov branching processes and, more generally, continuous-time Markov 

processes.
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2 Methods

2.1 Derivation of the MSCE model

Although the mathematics of multistage clonal expansion models has been detailed 

elsewhere [1-3, 11, 29, 33-39], we provide a sketch of the derivation in order to provide a 

basis for using the differential algebra method of identifiability with other continuous-time 

Markov processes. The n-stage clonal expansion model (Figure 1a) is characterized by a set 

of conditional probability generating functions, where Yk(t), 1 ≤ k ≤ n − 2, and Z(t) are as in 

Table I, and τ is a fixed time such that 0 ≤ τ ≤ t. If we define

(1)

for some dummy variables y1, ⋯ , yn−1, and z, then the conditional probability generation 

functions are as follows:

(2)

These probability functions satisfy the Kolmogorov backward equations. Here, we assume 

that the parameters, which are listed in Table I, are constant in time (age). These equations 

are

(3)

with initial conditions
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(4)

The usual data in this context are age-specific incidence curves (e.g. as are available in the 

Surveillance, Epidemiology and End Results (SEER) cancer registries). The age-specific 

incidence curve corresponds to a model hazard. The hazard and survival contain equivalent 

information , so, for simplicity of analysis, we 

consider the survival to be known. For this model, the survival can be related to Ψ in the 

following way:

(5)

Let s = t − τ and define x(s) = Ψ (1, ⋯ , 1, 1, t − s, t), x1(s) = Φ1(1, ⋯ , 1, 1, t − s, t), ⋯ , 

xn−1(s) = Φn−1(1, ⋯ , 1, 1, t − s, t). Then x(t) = S(t). Let ẋk denote derivative of xk with 

respect to s. Then the following set of differential equations, 1 ≤ k ≤ n − 2, governs the 

survival:

(6)

with initial conditions x(0) = 1, xk(0) = 1, and xn−1(0) = 1.

2.2 Differential algebra approach to identifiability

As noted earlier, structural identifiability focuses on examining the inherent, structural 

estimation properties of a given model and data, assuming a best-case scenario in which the 

model output (i.e. the observed variable(s)) is perfectly observed and the model is correctly 

specified. While this is unrealistic for real data, structural identifiability is a necessary 

condition for practical estimation from real-world data that many times goes unchecked, and 

in fact many mathematical models used in practice turn out to be structurally unidentifiable. 

Structural identifiability allows us to resolve these issues and can help in designing data 

collection or estimation strategies.
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Here we give an overview of structural identifiability definitions and the differential algebra 

approach for deterministic dynamical systems. For more details, the reader is referred to 

Saccomani et al. [21] and Audoly et al. [26]. For simplicity, here we consider the case where 

we have only one measured variable υ and one input function u, although the same 

definitions and approach can be used for multiple inputs and outputs as well. Consider a 

vector of states x(t) (unobserved), vector of parameters to be estimated ρ, and observed 

(known) input u(t) and output υ(t) in the ODE model

(7)

Structural identifiability analysis addresses the following question: given the model, states x, 

known input u, and known output υ, is it possible to uniquely identify the model parameters 

ρ? This can be framed as an injectivity question: is the map (implicitly defined by f and g) 

from parameter values (ρ) to output trajectories (υ) injective? [21]. Structural identifiability 

is a global property, but, because there may be some degenerate parameters or initial 

conditions for which an otherwise identifiable model may be unidentifiable (e.g. if all initial 

conditions or parameters are zero), it is typically defined almost everywhere over parameter 

and initial-condition space.

Definition 1—Parameter ρi in the model given in Eq. (7) is uniquely structurally 

identifiable if, for almost all values  and initial conditions, the observation of an output 

trajectory (υ(t) = υ* (t)) uniquely determines the parameter value , i.e. if only one 
value of ρi could have resulted in the observed output.

Definition 2—The model given in Eq. (7) is structurally identifiable if each ρi is 
structurally identifiable.

If a model is not structurally identifiable, it is said to be unidentifiable, and there exists a set 

of identifiable combinations of parameters that represents the parametric information 

available in the data (except in degenerate cases where the model is reducible or has 

insensitive parameters). Such a set is not unique; any set of combinations that generate the 

same field is an equivalent set of identifiable combinations, e.g. {ab, c/b} and {ab, ac} are 

equivalent sets of identifiable combinations.

We must emphasize that identifiability is an assessment that is dependent on both what 

quantities are observed (i.e. the data u(t) and υ(t)) and on the parameterization of the model. 

A model is unidentifiable if even one parameter cannot be uniquely determined from the 

available data. An unidentifiable model can sometimes be rendered identifiable by 

reparameterization (i.e. in terms of identifiable combinations) or by changing what data are 

measured.

Differential algebra offers one approach for evaluating the structural identifiability of 

rational-function differential-equation models. Technical details of the differential algebra 

approach to identifiability may be found elsewhere [21, 32], but this method is built on the 
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idea of treating the differential equations as elements of a differential polynomial ring, that 

is, a polynomial ring in the variables and their derivatives, with an additional derivative 

operation. Once framed in this algebraic perspective, reduction techniques such as 

characteristic sets or Gröbner bases can be used to reduce the model to a form in which the 

identifiability properties can be determined, called the input–output equation [26, 40].

The input–output equation is central to the differential algebra technique [41]. It is a monic 

differential polynomial only in terms of u and υ, their derivatives, and the parameters ρ. In 

the case of multiple outputs, there will be as many of these monic differential polynomials—

input–output equations—as there are observed output variables. The solutions of the input–

output equation are precisely the possible input-output pairs for the system; in other words, 

the input–output equation is an equivalent differential equation where the unobserved 

variables have been eliminated, so that every solution trajectory for the model (in terms of x, 

u, υ) corresponds to a solution for the input–output equation (in terms of only u and υ), 

though we note that multiple model trajectories may correspond to the same input–output 

solution. The coefficients of the input–output equation are a complete, though typically not 

minimal (redundancies are usual), set of identifiable combinations, and testing for structural 

identifiability can thus be reduced to testing the injectivity of the map from the parameters to 

the identifiable combinations. We illustrate the differential algebra technique and the input–

utput equation for a simple example in Appendix A.

The input–output equation must be monic—the choice of variable ranking is arbitrary, 

though u < u̇ < ü < ⋯ < υ < υ̇ < ϋ < ⋯ is traditional [26]—or the set of identifiable 

combinations may not be uniquely determined. For example, the following are equivalent 

differential polynomials,

but the map from {a, b, c} to  is injective while that to {1, ab, ac} is not. The input–

output equation is required to be monic to identify the correct set of identifiable 

combinations.

Finally, we note that, in the notation of this section, the MSCE model (Eq. 6) has states x = 

(x(t), x1(t), … , xn−1(t)), output (data) υ(t) = x(t), and has no input u(t).

3 Results

3.1 Two-stage clonal expansion (TSCE) model

Although the identifiability of the TSCE model is well-known [29], this model provides a 

tractable test-case for the differential algebra approach to identifiability in this context.

Theorem 1—If cancer survival (or, equivalently, age-specific incidence) is perfectly 
measured, the two-stage clonal expansion model with constant parameters (ν, X, α, β, μ1) is 
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unidentifiable but has three identifiable parameter combinations, which may be represented 
as μ0μ1, α1μ1, and α1 − β1 − μ1, where μ0 = ν X.

Proof: From Eqs. (6), the following equations contain all information of the the two-stage 

clonal expansion model:

(8)

We assume that the survival function x is perfectly measured. The goal here is to determine 

the identifiable parameter combinations from the input–output equation for the system, 

which will be a monic polynomial of the observed output x and its derivatives.

We solve for x1 in terms of x and its derivatives,

(9)

Plug this in to the ẋ1 equation,

(10)

simplifying to

(11)

This last equation is a monic polynomial of x and its derivatives, is equivalent to the original 

differential equations, and is thus an input–output equation. We can read a set of identifiable 

parameter combinations from the equation coefficients: μ0μ1,α1 − β1 − μ1, and α1μ1.

Remark—The two-stage clonal expansion is often parameterized [5] as

(12)

It is easy to see that {r, p, q} is an equivalent set of identifiable parameter combinations.
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Remark—Although the initial conditions can, generally, provide additional identifiable 

combinations, they do not in this case. At the initial conditions, x(0) = 1 and x1(0) = 1,

(13)

As the data is x, we can identify ẋ(0), which, in this case, is identically equal to 0 and thus 

does not provide any additional parametric information. We do not observe x1, so ẋ1(0) = 

−μ1 is not observed.

3.2 Generalized MSCE model with multiple pre-initiation steps

We extend the result and method for the two-stage model to an n-stage model in which only 

the final non-malignant compartment has clonal expansion (Figure 1b). This model, unlike 

the fully generalized MSCE model, is often used in the literature to model cancer 

progression (e.g. [5, 9, 11]). The differential equations defining the survival x—and 

implicitly the hazard—of this model may be found by setting each of α1, … , αn−2, β1, … , 

βn−2 to zero in Eqs. (6):

(14)

for 1 ≤ k ≤ n − 2 and with initial conditions x(0) = 1, xk(0) = 1, and xn−1(0) = 1.

Theorem 2—If cancer survival (or, equivalently, age-specific incidence) is perfectly 
measured, the n-stage (n ≥ 3) multistage clonal expansion (MSCE) model with only one, 
final clonal expansion and n + 3 constant parameters (ν, X, α, β, μ1, ⋯ , μn−1) is 
unidentifiable but has n identifiable parameter combinations, which may be represented by 
μ0, … , μn−3, μn−1μn−2, αn−1μn−1, αn−1 − βn−1 − μn−1, where μ0 = νX.

In order to highlight the result and its implications without the distraction of technical 

details, we leave the proof to Appendix B. This is a global result over parameter space, and 

there are no degenerate parameter values of interest: when μk = 0, the problem is no longer 

of biological interest, and, when excluding those cases, αk = 0 and βk = 0 are not degenerate 

values for the theorem.

3.3 Generalized MSCE model with multiple clonal expansions

Here, we consider the full model (Eqs. (6), Figure 1a), allowing clonal expansion to occur at 

each pre-malignant stage.

Proposition 1—If cancer survival (or, equivalently, age-specific incidence) is perfectly 
measured, the n-stage (n ≥ 3) multistage clonal expansion (MSCE) model with 3n − 1 

constant parameters (ν, X, α1, … , αn−1, β1, … , βn−1, μ1, … , μn−1) is unidentifiable.
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As above, we leave the proof to Appendix B.

Conjecture 1—If cancer survival (or, equivalently, age-specific incidence) is perfectly 
measured, the n-stage (n ≥ 3) multistage clonal expansion (MSCE) model with 3n − 1 

constant parameters has 3n − 3 identifiable parameter combinations, which may be 
represented as α1, … , αn−2, β1, … , β n−2, μ0, … , μn−3, μn−1μn−2, αn−1μn−1, αn−1 − βn−1 − 

μn−1, where μ0 = νX.

The conjecture is true for n ≤ 5; the proof, left to Appendix B, is an extension of that of 

Proposition 1. We believe that the method developed in the proof of Theorem 1 could be 

used to prove this conjecture in general, though additional combinatorial results will likely 

be needed to deal with the added complexity.

In Figure 2, we plot the hazards for the full model with four to eight stages using two 

different sets of parameters. For each model with n stages, the plotted points are generated 

using parameter values μk−1 = 10−2, αk = 3, βk = 2.8 for k = 1, … , n− 2 and μn−2 = 10−3, 

αn−1 = 3, βn−1 = 2.5 + 10−6, and μn−1 = 10−6. The corresponding lines use the parameters 

μk−1 = 10−2, αk = 3, βk= 2.8 for k = 1, … , n − 2 and μn−2 = 10−2, αn−1 = 30, βn−1 = 29.5 

+ 10−7, and μn−1 = 10−7. The indistinguishability of the hazards generated with each of the 

two parameters sets is consistent with the conjecture.

4 Discussion

Structural identifiability analysis is necessary for accurate estimation of model parameters 

from data, a fact that merits wider appreciation. Failure to verify the identifiable 

combinations in one’s model given one’s data may result in specious parameter estimates. 

Conversely, knowing the identifiable combinations can lead to insight and helpful model 

reparameterizations (e.g. [42]). This is true for the two-stage clonal expansion model. Using 

the r, p, q parameterization (Eqs. (12)), the survival and hazard can be expressed succinctly, 

and, observing that r = μ0/α, p ≈ −(α − β) and  [43], one can identify 

multiplicative effects (e.g. temporal effects) on initiation, promotion (net cell proliferation), 

and malignant conversion respectively, as in Brouwer et al. [16].

The identifiability of MSCE models has been previously considered by Heidenreich et al. 

[29] (two stage model), Luebeck and Moolgavkar [5] (MSCE models with up to three pre-

initiation steps), and Little et al. [30] (bounds on the maximum number of identifiable 

combinations in a generalized class of models that includes the MSCE model with any 

number of clonal expansion steps). Some of these previous results have relied on the form of 

the hazard function, which can only bound the identifiable combinations, or numerical 

evaluations of the rank of the Fisher information matrix, which, although strong evidence of 

local identifiability, is not formal proof. We offer an analytical proof of the exact identifiable 

combinations for MSCE models with any number of pre-initiation steps and one clonal 

expansion. This is a global result over the parameter space. Additionally, we provide a 

framework and conjecture for considering the exact identifiable combinations for the model 

with any number of clonal expansion stages, which we prove for n ≤ 5. For practical 
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purposes, parsimonious carcinogenesis models are unlikely to need this many clonal 

expansion stages, let alone more. Moreover, this framework extends easily to variations of 

MSCE models that future work may consider, such as those incorporating disease 

precursors, e.g. gastroesophageal reflux disease (GERD) for esophageal cancer [15] or 

human papillomavirus (HPV) infection for anogenital or oral cancer [39].

Our methods and results are important in a larger context as well. We expand the differential 

algebra approach for structural identifiability, which has been primarily been used in the 

field of biological, deterministic ODE models (though is of course applicable to models in 

other fields), into the realm of stochastic branching processes and, more generally, 

continuous-time Markov processes. Once one is able to write a continuous-time Markov 

process as a system of differential equations of probability generating functions, a variety of 

identifiability techniques become available (e.g. Taylor series expansion [24] or similarity 

transform [23]). Of course, use of these techniques requires that one’s data relate to the 

probability generating functions in some way, so it is as of yet unclear exactly how widely 

applicable this framework will be. However, our approach to identifiability is applicable to at 

least one broad class of continuous-time Markov chain models, those that relate data to 

survival methods (i.e. time-to-event processes), which is true of many carcinogenesis and 

other health-outcome models.

This work sets the stage for several important problems. We have considered constant 

parameters, but time varying and piecewise-constant parameters are of great interest in the 

context of time-varying exposures [44-47]. The results given here address the piecewise 

constant case in part, since the problem can be expressed as multiple instances of the case 

with constant parameters, although additional analysis of initial conditions will be needed. 

Further, as data for each constant-parameter model will be limited (a full trajectory for each 

constant-parameter model is not observed), practical identifiability considerations arise. For 

more general time-varying parameters additional analysis is needed, though if the functional 

forms of the time varying parameters are known and if they are rational functions or 

approximable as such, then a similar approach as used here could be taken. Future work may 

also be able to see the conjecture given in this work proved beyond n = 5 using the 

differential algebra framework, but strong combinatorial tools may be necessary to 

disentangle the complexity of the coefficients of the input–output equation of the full model. 

Additionally, as mentioned above, future work that considers variations of the MSCE model 

will greatly benefit from this adaptable framework.

Finally, another important consideration is that of practical identifiability. In the context of 

real data, this structural identifiability analysis provides upper bounds on the number of 

identifiable parameter combinations, but there may be less parametric information available 

in real data. Such problems have been identified for MSCE models [11], but further analysis 

will be needed to address these issues more broadly.
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Appendix A

To illustrate these differential algebra approach to identifiability, we consider the classic 

example of a linear two-compartment model, commonly used in pharmacokinetics; the 

unidentifiability of this model is well-established through a range of methods [17, 26]. The 

model equations are given by

(15)

where x1(t) and x2(t) are the masses of a drug/substance in the plasma and tissue 

respectively, u(t) is a known input function (e.g. an intravenous injection or constant infusion 

at a known dose), the κij are unknown parameters to be estimated, and the output equation 

υ(t) is the plasma concentration, where ψ is the plasma volume (another unknown parameter 

to be estimated). Then our input–output equation should be a differential equation in terms 

of the parameters, input u, output υ, and their derivatives. This can be generated as follows

—we substitute x1 = ψυ into the ẋ1 equation above, and solve for x2 to give

(16)

Plugging this in to the ẋ2 equation yields the following (taking a derivative of Eq. (16) to 

substitute for ẋ2),

(17)

Clearing denominators and combining terms yields

(18)

This differential polynomial is monic and thus an input-output equation for the system under 

a ranking of the variables that places u as higher ranked than υ. However, the ranking u < u̇ 
< ü < ⋯ < υ < υ̇ < ϋ < ⋯ is traditional [26], so we take

(19)

as our input-output equation. The coefficients of Eq. (19) are the set of identifiable 

combinations for the model. The importance of making the input-output equation monic (or 

otherwise clearing the coefficient of one of the terms) can be seen here—if we did not 
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include such a restriction, we could multiply Eq. (19) by an arbitrary parameter 

combination, which would then be the coefficient of the ϋ term and appear to be identifiable. 

From these coefficients, we can see immediately that the model is unidentifiable—there are 

only four identifiable combinations, but there are five parameters. Moreover, we can see 

from the coefficient of u̇ that the parameter ψ is identifiable (since if 1/ψ is known, then ψ 
is known).

More broadly, testing for identifiability is usually accomplished by testing injectivity of the 

map from the parameters to the coefficients, i.e. evaluating each coefficient at two 

(symbolic) points, setting the two equal (e.g. ), and 

then testing whether it is possible to solve the resulting equations for each parameter in the 

form . In this case, it is apparent that the parameters are not identifiable. However we 

can find simpler representations of the identifiable combinations than the coefficients of Eq. 

(19): by noting that ψ is identifiable, we see that the coefficient for u shows that (κ12+κ02) is 

also identifiable (since both ψ and (κ12+κ02)/ψ are). Continuing in this fashion yields a 

simplified set of identifiable combinations: ψ, (κ12 + κ02), κ21 + κ01, and κ12κ21. Further 

examination shows that we can reparameterize the model in terms of the identifiable 

combinations by rescaling x̃2 = κ12x2, resolving the identifiability problem for the model 

(discussed further in [26]).

This example is simple enough to permit by-hand computation of the input–output equations 

and identifiable combinations. However, many models (even relatively simple nonlinear 

models) can result in extremely lengthy input output equations (e.g. terms numbering in the 

hundreds) or complicated combination structures which are not feasible to calculate by hand 

[27, 31]. Thus, it is common to use computational algebra techniques such as characteristic 

sets or Gröbner bases for many of the above steps [26, 27, 48], such as elimination of the 

unobserved variables x to generate an input–output equation or calculation of the 

identifiability results from the coefficients of the input–output equation. These approaches 

typically reduce a given set of polynomials/differential polynomials using some sort of 

ranking of the variables, typically ranking u < υ < x typically [26].

Appendix B

To prove Theorem 2, we begin with a series of lemmas.

Lemma 1

For 1 ≤ k < n − 1, xk is a rational function of x and its derivatives and may be written in the 

form , where qk and uk are polynomials of x and its derivatives and qk is monic.

Proof

We proceed by induction. Observe that
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(20)

Next, assume that xk, for some 1 ≤ k < n − 2, may be written in the form , where qk 

and uk are polynomials of x and its derivatives and qk is monic. Then, from the ẋk equation, 

we find

(21)

where

(22)

(23)

Because qk is monic,  is also monic. Further, qk and uk are clearly 

polynomials in x and its derivatives. Hence the result.

Lemma 2

The highest power of x in the polynomial qk is 2k−1, and the highest order derivative of x is k 
− 1. In particular, qk contains the term x2k−1

, which is the only term with this power of x. 
The only terms in qk of with the power 2k−1 − 1 of x are, for 0 ≤ m ≤ k − 1,

The highest power of x in the polynomial uk is 2k−1 −1 and the highest order derivative is k. 
In particular, uk contains the term
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which is the only term in uk with this power of x.

Proof

The relevant terms in qk and uk for the first few k are written out in Table II for convenience. 

We have q1 = x and , so the base case is—partly vacuously—true. Now, suppose 

that the hypotheses are true. Let qk+1 = (qk + uk)qk. Then, its term with the highest power of 

x is . Since qk contains the terms , 1 ≤ m ≤ k − 1, and 

x2k−1
 ,  contains the terms, for 1 ≤ m ≤ k − 1,

Since we have identified all of the terms with a power on x of 2k−1 and 2k−1 − 1 in qk, we 

have identified all of terms of power 2k−1 − 1 in . Additionally, there can be only one such 

term from qkuk: since qk contains x2k−1
 and uk contains , qkuk 

contains . Hence qk+1 contains the terms, for 1 ≤ m ≤ k,

Further, since the highest order derivative of x in uk is x(k), the term in uk+1 of order k + 1 

must come from . In particular, u̇k contains . Then, , 

uk+1 contains the term

Hence the result.

Now, we prove Theorem 2.

Proof

For ease of notation, let q :=qn−1 and u :=un−1. Now, we replace xn−1 with  in the ẋn−1 

equation to find an input–output equation.

(24)
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(25)

(26)

(27)

(28)

Viewed as a function of x, this last equation is an input–output equation. Under an 

appropriate ranking, it is monic because of the x2n−1
 term in q2. As in the proof of the 

previous lemma, q2 also contains the terms, for 1 ≤ m ≤ n − 2,

From the  qu term, we get

Next, from , as in the proof of the lemma, we get

From , we get
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A term of the same kind arrives from . Noting that the derivative of 

 contains ,

We have identified n + 1 coefficients in the input–output equation. They are, for 1 ≤ m ≤ n 
− 2,

and

Thus, we can identify μ0, μ1, … , μn−3 (n > 3), μn−2μn−1, αn−1μn−1, αn−1 − βn−1 − μn−1.

However, there may be additional terms in the input–output equations. Thus, a priori, it is 

possible that smaller combinations making up these terms could be identifiable (or even that 

the model itself might be). So, we must show that the overall model is unidentifiable, and, 

moreover, that none of these combinations can be broken down into smaller identifiable 

pieces. To this end, we find a model equivalent to the original model (Eq. (14)) that can be 

parameterized using only the above identifiable combinations. To do so, solve ẋn−2 for 

, and plug this into the ẋn−1 equation to arrive at the following set 

of equations:
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(29)

for 1 ≤ k ≤ n − 3 and with initial conditions x(0) = 1, xk(0) = 1, xn−2(0) = 1, and ẋn−2(0) = 0. 

Because the parameters μn−2, μn−1, αn−1, and βn−1 appear only in the combinations 

μn−2μn−1, αn−1μn−1, and αn−1 − βn−1 − μn−1 in the model equations, specifying values for 

these parameter combinations fully describes the model. Because a product is the smallest 

unit in a combination, it is clear that μn−2, μn−1, and αn−1 are not individually identifiable. 

Because βn−1 appears only in a sum with αn−1 and μn−1, it too is unidentifiable.

Hence, the result.

Next, we prove Proposition 1.

Proof

That the full model is unidentifiable, generally, can be seen as follows. The model below is 

equivalent to that in described by Eqs. (6).

(30)

for 1 ≤ k ≤ n − 3 with initial conditions x(0) = 1, xk(0) = 1 , and xn−3(0) = 1, xn−2(0) = 1, and 

ẋn−2(0) = 0. As in the previous proof, parameters μn−2, μn−1, αn−1, and βn−1 appear only in 

the combinations μn−2μn−1, αn–1 μn−1, and αn−1 − βn−1 − μn−1 in Eqs. (30). So, the full 

model is indeed unidentifiable.

Finally, we sketch the proof of Conjecture 1 for n ≤ 5. Calculations were carried out in 

Mathematica 10.2.
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Proof

Solve the ẋ equation for x1. Take a derivative to find ẋ1. We now have x1 and ẋ1 as a 

function of x and its derivatives. Plug these into the ẋ1 equation so that it becomes an 

equation of x3, x, and derivatives of x. Solve for x2 as a function of x and its derivatives, and 

compute ẋ2. Continue in this manner until we have xn as a function of x and its derivatives. 

Substitute xn and ẋn into the final equation. We now have a single equation of x and its 

derivatives that contains all of the information of the system. Divide the equation by 

, which makes the equation monic under the appropriate ranking. This is an 

input–output equation. The equation has the following number of coefficients: 11 for n = 3, 

48 for n = 4, 365 for n = 5. Determine the identifiable combinations from the list of 

coefficients by setting the coefficients equal to copies of themselves with placeholder 

parameter values and finding a Gröbner basis.
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Figure 1. 
Generalized MSCE models. (a) The fully generalized model with clonal expansion at each 

pre-malignant step. (b) The standard model with several pre-initiation steps and one clonal 

expansion.
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Figure 2. 
Hazards of multistage clonal expansion models with four to eight stages under two different 

parameter sets each (points vs. lines). See text for parameter details.
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Table I

Variables and parameters of the generalized multistage clonal expansion (MSCE) model

Variables

X(t) Number of normal cells, treated deterministically or set to be constant X(t) = X

Yk(t) Number of cells in initiated stage k

Z(t) Number of malignant cells

Parameters

ν(t) Per cell mutation rate for normal cells (asymmetric division)

μ0(t) := ν(t)X(t), a notational convenience

μk(t) Mutation rate at the kth stage (asymmetric division)

αk(t) Clonal expansion rate at the kth stage (symmetric division)

βk(t) Cell death rate at the kth stage
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Table II

Relevant terms in qk and uk for k ≤ 4

k Relevant terms in qk Relevant term in uk

1 x

2

3

4
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