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Clinical Predictors of Hospital Mortality
Differ Between Direct and Indirect ARDS
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BACKGROUND: Direct (pulmonary) and indirect (extrapulmonary) ARDS are distinct syn-
dromes with important pathophysiologic differences. The goal of this study was to determine
whether clinical characteristics and predictors of mortality differ between direct or indirect
ARDS.

METHODS: This retrospective observational cohort study included 417 patients with ARDS.
Each patient was classified as having direct (pneumonia or aspiration, n = 250) or indirect
(nonpulmonary sepsis or pancreatitis, n = 167) ARDS.

RESULTS: Patients with direct ARDS had higher lung injury scores (3.0 vs 2.8; P < .001), lower
Simplified Acute Physiology Score II scores (51 vs 62; P < .001), lower Acute Physiology and
Chronic Health Evaluation II scores (27 vs 30; P < .001), and fewer nonpulmonary organ failures
(1 vs 2; P < .001) compared with patients with indirect ARDS. Hospital mortality was similar
(28% vs 31%). In patients with direct ARDS, age (OR, 1.29 per 10 years; P = .01; test for inter-
action, P = .03), lung injury scores (OR, 2.29 per point; P = .001; test for interaction, P = .058),
and number of nonpulmonary organ failures (OR, 1.67; P = .01) were independent risk factors for
increased hospital mortality. Preexisting diabetes mellitus was an independent risk factor for
reduced hospital mortality (OR, 0.47; P = .04; test for interaction, P = .02). In indirect ARDS, only
the number of organ failures was an independent predictor of mortality (OR, 2.08; P < .001).

CONCLUSIONS: Despite lower severity of illness and fewer organ failures, patients with direct
ARDS had mortality rates similar to patients with indirect ARDS. Factors previously asso-
ciated with mortality during ARDS were only associated with mortality in direct ARDS.
These findings suggest that direct and indirect ARDS have distinct features that may

differentially affect risk prediction and clinical outcomes. CHEST 2017; 151(4):755-763
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ARDS remains associated with significant mortality during
critical illness despite use of low tidal volume ventilation
and conservative fluid strategies.' * Numerous studies have
attempted to define contributors to mortality, with
conflicting results,”” which may be related to changes in
clinical practice patterns and varying definitions of ARDS.
There is also conflicting data regarding the importance of
underlying comorbidities (eg, diabetes mellitus [DM]) to
ARDS mortality, with multiple studies reaching different
conclusions.'”'® One potential explanation for discrepant
results in the literature is that different underlying
etiologies of ARDS may have variable clinical phenotypes,
with different risk and prognostic factors.'”'”*’

Patients with ARDS are a heterogeneous group with
significant variability in clinical presentation and
outcomes. One approach to reducing this heterogeneity

is to subclassify patients with ARDS as having direct
(pulmonary) or indirect (extrapulmonary) ARDS.® Such a
classification is based on variability in the pathology,
radiology, respiratory mechanics, and response to
different management strategies between patients with
direct and indirect ARDS.?*° In addition, distinct plasma
biomarker signatures have been identified in patients with
direct and indirect ARDS” that imply differences in
underlying pathophysiology. For example, patients with
direct ARDS had greater evidence of lung epithelial injury,
whereas patients with indirect ARDS had greater evidence
of endothelial injury.

The goal of the present study was to determine whether
the clinical characteristics and predictors of hospital
mortality differed between direct and indirect ARDS
in a cohort of well-phenotyped patients with ARDS.

Methods
Study Population

This study used clinical data from the Validation of Biomarkers for
Acute Lung Injury Diagnosis (VALID) study,”® a single-center,
prospective, observational study of critically ill patients at risk for
developing ARDS. The inclusion and exclusion criteria for the
VALID study have been described previously. Informed consent was
provided by the patient or their surrogate when possible; if
unavailable, patients could be enrolled into this minimal-risk study
with a waiver of consent. The study was approved by the Vanderbilt
Institutional Review Board (institutional review board no. 051065).

The present study included 2,952 patients enrolled between January
2006 and October 2014 (Fig 1). Of these, 707 patients were diagnosed

with ARDS on at least 2 consecutive ICU days by using the
American-European Consensus Conference definition of acute lung
injury.® Chest radiographs were scored by consensus between two
physician investigators for ARDS diagnosis and for calculation of lung
injury scores (LIS). When Pao, was not available, the Spo,/Fio, ratio
was used to assess hypoxemia.” Patients with ARDS were classified as
having direct ARDS or indirect ARDS based on the underlying risk
factor for ARDS recorded by study personnel. Patients with risk
factors of pneumonia or aspiration of gastric contents were
categorized as having direct ARDS (n = 250), whereas patients with
risk factors of nonpulmonary sepsis or pancreatitis were categorized
as having indirect ARDS (n = 167). For this study, patients who
could not be classified as having uniquely direct or indirect ARDS
were excluded. Patients with sepsis due to pneumonia (pulmonary
sepsis) were classified as having direct ARDS. Patients with

{ Patients at risk for ARDS (N = 2,952) ]

!

[ARDS on > 2 consecutive days (n = 707)]

Excluded ARDS risk factors of:
Trauma (n = 220)

Multiple transfusions (n = 24)
Drug overdose (n = 4)

Other risk factors (n = 21)

No recorded risk factors (n = 1)

| Excluded patients with sepsis also

with pneumonia or aspiration (n = 20)

Study Population (n = 417)

Direct ARDS (n = 250)
Pneumonia (n = 152)
Aspiration (n = 98)

Indirect ARDS (n = 167)
Nonpulmonary sepsis (n = 165)
Pancreatitis (n = 2)

Figure 1 - Study population. Risk factors for ARDS were recorded and each patient classified into direct ARDS or indirect ARDS as described. “Other”
risk factors included alveolar hemorrhage (4), eosinophilic pneumonia (2), sickle cell crisis (1), acute myeloid leukemia (1), graft vs host disease (1), blast
crisis (1), tumor lysis syndrome (2), drug toxicity (2), fat emboli (1), bronchiolitis obliterans organizing pneumonia (1), fat embolus (1), alveolar
proteinosis (1), Wegener’s granulomatosis (1), primary graft dysfunction (1), and no known risk factors (1).
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both pneumonia and nonpulmonary sepsis (n = 20) were excluded. A
subgroup of 100 patients from the present study (44 with
direct ARDS, 56 with indirect ARDS) were included in a previous
biomarker study of molecular phenotypes in direct and indirect
ARDS.”

Data Collection

Demographic information, medical comorbidities, and clinical
outcomes were determined based on the patient’s medical record.
DM was characterized as type 1 or type 2 on the basis of patient
history and medical documentation. Acute Physiology and Chronic
Health Evaluation (APACHE) II and Simplified Acute Physiology
Score (SAPS) II scores during the first 24 h after admission were
calculated from the component variables.””*" LIS were calculated on
the first day that each patient met ARDS criteria.”” The number of
organ failures is the sum of nonpulmonary organ failures at
enrollment, as defined by using the Brussels Organ Failure Scoring
system.33

Statistical Analysis

Continuous variables are displayed by using medians (lower and
upper quartiles) and categorical variables by using frequencies
(percentage). Mann Whitney U tests (continuous variables) and
Pearson Y tests (categorical variables) were used to compare patient
groups.

To determine risk factors for hospital mortality, multivariable logistic
regression analysis with testing for interactions was performed and
included varijables that were significantly different between survivors
and nonsurvivors in the direct or indirect ARDS subgroups. A
sensitivity analysis demonstrated that weight compared with BMI, and
SAPS II compared with APACHE II, similarly predicted mortality
(data not shown). Adjusted ORs with 95% ClIs are reported. To further
evaluate the observed differences in risk factors for mortality between
direct and indirect ARDS, we utilized interaction terms between ARDS
type and each risk factor. Statistical significance was considered at a
two-sided 5% level. All analyses were conducted by using R version 3.1
(R Foundation for Statistical Computing).34

Results

Patients with direct and indirect ARDS had similar
age, sex, race, weight, and BMI (Table 1). Chronic
liver disease was more common in patients with
indirect ARDS, whereas there were no significant
differences in preexisting heart failure, renal disease,
or DM between the ARDS subtypes. Patients with
direct ARDS had higher LIS (P < .001), whereas
patients with indirect ARDS had higher SAPS II
scores, higher APACHE II scores, and more organ
failures (P < .001 for each). Patients with direct ARDS
had shorter lengths of stay in the ICU and in the
hospital, despite having a similar duration of
mechanical ventilation.

Patients with direct and indirect ARDS had similar
hospital mortality (28% vs 31%, respectively; P = .49).
However, because of the growing recognition that
direct and indirect etiologies of ARDS have distinct
pathogenetic mechanisms, we tested whether factors
associated with mortality differed between the groups
(Table 2). In the direct ARDS cohort, survivors were
younger (P = .04) and had lower SAPS II scores

(P = .002), lower APACHE II scores (P = .01), lower
LIS (P = .04), and fewer organ failures (P = .001)
compared with nonsurvivors. Survivors of direct ARDS
were also more likely to have preexisting DM compared
with nonsurvivors (P = .04). In the indirect ARDS
cohort, survivors had fewer organ failures (P = .001),
with no significant impact of age, SAPS II, APACHE,
LIS, or preexisting DM. As expected, patients with
chronic liver disease had increased mortality, and this
result was similar regardless of ARDS subgroup, whereas
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there was no impact of underlying cardiac disease or
renal disease on mortality in either the direct or indirect
ARDS group.

To determine whether the independent contributors
to hospital mortality differed between direct and
indirect ARDS, multivariable logistic regression
models for hospital mortality were applied in the
overall study cohort and then in the direct and
indirect ARDS groups (Table 3). In the combined
ARDS cohort, age, LIS, and number of organ failures
were independently associated with hospital mortality;
preexisting DM was not. In the direct ARDS group,
age, LIS, and number of organ failures were
independently associated with increased mortality,
whereas preexisting DM was independently associated
with reduced mortality. In the indirect ARDS group,
the only factor independently associated with
mortality was number of organ failures.

Figure 2 graphically depicts the association between
hospital mortality and age according to ARDS subgroup,
adjusted for confounders included in the multivariable
analysis. Hospital mortality increased significantly with
age in direct ARDS but not in indirect ARDS (test for
interaction, P = .03). Figure 3 graphically depicts

the association between hospital mortality and LIS
according to ARDS subgroup (test for interaction,

P = .058). Figure 4 shows that hospital mortality of
direct ARDS in the presence of preexisting DM was
significantly lower than that of indirect ARDS with
preexisting DM (19% vs 38%; P = .02); there was no
significant difference in hospital mortality between
direct ARDS and indirect ARDS in the absence of
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TABLE 1 | Demographic and Clinical Characteristics of Patients With Direct and Indirect ARDS

Total ARDS Direct ARDS Indirect ARDS ]

Characteristic (N =417) (n = 250) (n = 167) P Value®
Age, y 55 (45-66) 55 (45-66) 55 (45-66) .78
Male 216 (52) 122 (49) 94 (56) .13
White race 367 (88) 220 (88) 147 (88) .99
Weight, kg 75 (64-95) 74 (61-91) 77 (66-95) .16
BMI, kg/m? 26 (23-31) 26 (23-30) 26 (23-31) .64
Current smoker 137 (33) 83 (33) 54 (32) .85
Alcohol abuse 71 (17) 37 (15) 34 (20) .14
Chronic liver disease 40 (10) 18 (7) 20 (12) .04
Chronic renal disease 69 (17) 40 (10) 29 (17) .71
Chronic heart failure 44 (11) 29 (12) 15 (10) .39
MI/angina 35 (8) 25 (10) 10 (6) .15
Diabetes mellitus 122 (29) 74 (30) 48 (29) .85
Type 2 diabetes mellitus 118 (28) 71 (28) 47 (28) .96
SAPS 1I score 56 (41-69) 51 (37-65) 62 (49-74) < .001
APACHE II score 29 (23-35) 27 (21-34) 30 (25-37) < .001
Lung injury score 3.0 (2.3-3.3) 3.0 (2.5-3.5) 2.8 (2.3-3) < .001
Paoy/Fio, 120 (79-181) 108 (73-159) 154 (123-212) < .001
Shock 294 (71) 157 (63) 137 (82) < .001
No. of organ failures 1(1-2) 1(1-2) 2 (1-2) < .001
Mortality 122 (29) 70 (28) 52 (31) .49
ICU LOS, d 8 (5-14) 7 (4-12) 10 (6-17) < .001
Hospital LOS, d 14 (9-24) 13 (9-21) 17 (10-27) .001
Ventilator-free days 18 (2-24) 21 (2-24) 15 (2-23) .054

Continuous variables are presented as median (interquartile range) and compared by using the Mann-Whitney U test. Categorical data are presented as No.
(%) and compared by using Pearson 2 test. Number of organ failures includes only nonpulmonary organ failures. APACHE = Acute Physiology and Chronic
Health Evaluation; LOS = length of stay; MI = myocardial infarction; SAPS = Simplified Acute Physiology Score.

“Comparison between direct ARDS and indirect ARDS.

preexisting DM (32% vs 29%; P = .26). The P value for
interaction between ARDS cohort (direct vs indirect)
and DM equaled .02.

Discussion

The main goal of the present study was to determine
whether the clinical characteristics and predictors of
hospital mortality differ between direct and indirect
ARDS. In this cohort, patients with direct ARDS had
higher LIS, whereas those with indirect ARDS had
more organ failures. In addition, notable differences
were seen between direct and indirect ARDS in terms
of predictors of hospital mortality. Age and LIS were
independent risk factors for hospital mortality only in
the direct ARDS cohort, whereas the number of organ
failures was independently associated with hospital
mortality only in the indirect ARDS cohort. Preexisting
DM was independently associated with reduced
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mortality in the direct ARDS cohort but not in the
indirect ARDS or the overall heterogeneous ARDS
cohort. To our knowledge, this study is the first
description of distinct associations among clinical
characteristics and hospital mortality in patients with
direct vs indirect ARDS.

Advanced age is a well-recognized independent risk
factor for mortality in patients with ARDS.”'**>*! In
the present study, the independent association of
increased hospital mortality with age was limited to
direct ARDS. In animal models of acute lung injury,
increasing age is associated with excessive inflammatory
responses, greater changes in lung permeability, and
increased mortality.”*° These experimental studies
include both direct and indirect models of lung injury.
Interestingly, age has not been associated with death in
patients with indirect ARDS, despite age being a known
risk factor for mortality in the general population with
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TABLE 2 | Clinical Characteristics of Survivors Vs Nonsurvivors in Direct and Indirect ARDS

Direct ARDS (n = 250) Indirect ARDS (n = 167)
Survivors Nonsurvivors Survivors Nonsurvivors
Characteristic (n = 180) (n=70) P Value® (n = 115) (n=152) P Value”
Age, Yy 55 (43-65) 58 (48-72) .04 55 (46-67) 56 (43-65) .57
Male 87 (48) 35 (50) .81 62 (54) 32 (62) .36
White race 154 (86) 66 (94) .06 98 (85) 49 (94) .10
Weight, kg 75 (64-97) 73 (59-83) .10 77 (68-95) 81 (65-98) .88
BMI, kg/m? 26 (23-32) 25 (22-28) .03 26 (23-31) 26 (22-33) .79
Current smoker 63 (35) 20 (29) .33 39 (34) 15 (29) .52
Alcohol abuse 26 (14) 11 (16) .80 24 (21) 10 (19) .81
Chronic liver 7 (4) 11 (16) .001 9(8) 13 (25) .002
disease
Chronic renal 32 (18) 8 (11) .22 16 (14) 13 (25) .08
disease
Congestive heart 19 (11) 10 (14) 41 7 (6) 8 (15) .05
failure
MI/angina 18 (10) 7 (10) .99 7 (6) 3(6) .94
Diabetes mellitus 60 (33) 14 (20) .04 30 (26) 18 (35) .26
Type 2 diabetes 58 (32) 13 (19) .03 30 (26) 17 (33) .38
mellitus
SAPS 11 50 (36-61) 61 (41-77) .002 63 (49-74) 61 (47-76) .75
APACHE II 26 (20-33) 31 (22-36) .01 30 (25-37) 31 (25-36) .83
Lung injury score 3.0 (2.5-3.5) 3.0 (2.8-3.5) .04 2.7 (2.3-3.0) 2.9 (2.3-3.3) .64
Pao,/Fio, 114 (82-192) 116 (77-166) .53 158 (109-215) | 156 (104-238) .80
Shock 110 (61) 47 (67) .38 95 (83) 42 (81) .77
No. of organ 1(0.3-1) 1(1-2) < .001 2 (1-2) 2 (2-3) < .001
failures

Continuous variables are presented as median (interquartile range) and compared by using the Mann-Whitney U test. Categorical data are presented as No.
(%) and compared by using Pearson %> test. Number of organ failures includes only nonpulmonary organ failures. See Table 1 legend for

expansion of abbreviations.

@Comparison between survivors and nonsurvivors in direct ARDS.
PComparison between survivors and nonsurvivors in indirect ARDS.

TABLE 3 | Direct and Indirect ARDS Have Distinct Independent Predictors of Mortality

Total ARDS Direct ARDS Indirect ARDS P Value for
(N =417) (n = 250) (n=167) Interaction
Adjusted OR Adjusted OR P Adjusted OR With
Characteristic (95% CI) P Value (95% CI) Value (95% CI) P Value ARDS Type
Age (per 10 y) 1.17 (1.00-1.36) .04 1.29 (1.06-1.58) .01 1.00 (0.78-1.28) .99 .03
Male 1.06 (0.66-1.69) .82 1.06 (0.57-1.99) .85 1.06 (0.50-2.23) .88
Weight (per 0.97 (0.93-1.02) .26 0.95 (0.88-1.02) .13 0.99 (0.93-1.06) .79
5 kg)
SAPS II (per 15) 0.97 (0.80-1.19) .80 1.21 (0.91-1.60) .19 0.77 (0.56-1.06) 11
Lung injury 1.63 (1.14-2.31) .007 | 2.29(1.39-3.80) .001 1.07 (0.62-1.87) .81 .058
score
No. of organ 1.90 (1.45-2.48) | < .001 1.67 (1.12-2.49) .01 2.08 (1.39-3.12) | < .001 .87
failures
Diabetes 0.79 (0.47-1.33) .38 0.47 (0.22-0.99) .04 1.41 (0.64-3.09) .39 .02
mellitus

Multivariable logistic regression was performed in the total ARDS cohort and then in the direct ARDS and indirect ARDS populations separately. The
interactions of ARDS type (direct or indirect) with age, lung injury score, number of organ failures, and diabetes mellitus were included in the regression
analysis. See Table 1 legend for expansion of abbreviations.
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Figure 2 — Hospital mortality increased with age only with direct ARDS.
Mortality in direct ARDS (blue line) rose with increasing age, whereas
age had no association with mortality in indirect ARDS (red line). Data
are adjusted for sex, weight, Simplified Acute Physiology Score II, lung
injury score, number of organ failures, and diabetes mellitus.

sepsis.”” ' This finding may, in part, be due to a
relatively small effect of ARDS on mortality in the
setting of sepsis.

LIS have been widely used for the assessment of ARDS
severity.”>”* In a previous analysis of the VALID study
cohort, a significant association between LIS and
hospital mortality in ARDS was reported, and the
investigators proposed that LIS may be more suited to
discriminate pulmonary-specific outcomes.’” Our results
confirm this hypothesis and extend these findings in a
subanalysis cohort by showing that the relationship
between LIS and hospital mortality is limited to patients
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Figure 3 — Hospital mortality increased with lung injury score only with
direct ARDS. Mortality in direct ARDS (blue line) increased with
increasing lung injury score, whereas lung injury score had no associ-
ation with mortality in indirect ARDS (red line). Data are adjusted for
age, sex, weight, Simplified Acute Physiology Score II, number of organ
failures, and diabetes mellitus.
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Figure 4 - Preexisting DM was associated with reduced mortality only
in direct ARDS. Patients with preexisting DM had reduced mortality
from direct ARDS compared with indirect ARDS, whereas there was no
impact of ARDS subtype on mortality in the absence of DM. The
adjusted OR for the effect of DM on hospital mortality in ARDS is 0.45
(95% CI, 0.22-0.96 [P = .04]; test for interaction, P = .02). P values
shown were determined by using Pearson X test. DM = diabetes
mellitus.

with direct ARDS and absent in those with indirect
ARDS.

Multiple studies have shown that underlying DM is
associated with a reduced risk of developing ARDS,"'""”
with one meta-analysis reporting that preexisting DM
has an OR for ARDS development of 0.66."* However,
there are conflicting data about whether DM affects
clinical outcomes of ARDS, with some studies reporting
higher mortality of patients with ARDS and DM, '® lower
mortality of patients with septic shock and DM,

and some showing no association between DM and
ARDS.""'>** Our study found no significant association
of DM with mortality in the overall ARDS cohort
(mortality 26% with DM vs 31% without DM; P = .38).
However, to our knowledge, our study is the first to
assess differences in mortality related to DM in ARDS by
direct or indirect etiology. We found that the
independent association of DM with mortality risk in
ARDS is modified by the underlying ARDS risk factor,
with a protective association of DM with hospital
mortality limited to patients with direct ARDS. The
protective association of DM for hospital mortality in
direct ARDS persisted after adjustment for weight and
BML™
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The potential mechanisms by which DM might lead

to better outcomes in direct ARDS are unclear and
may be related to glycemic control or nonglycemic
mechanisms.'” Studies of acute lung injury in rats have
shown that the presence of DM and hyperglycemia were
associated with less lung injury in direct lung injury
models but with greater lung injury in indirect models of
injury.””® In addition, in patients with direct ARDS,
higher levels of adiponectin (a hormone that affects
glycemic control and fatty acid oxidation) were
associated with increased mortality.” Patients with type
2 DM have reduced levels of adiponectin,®”®* which
may explain the association of DM with improved
survival during direct ARDS.

Differences in predictors of mortality between direct and
indirect ARDS support the growing body of literature
suggesting that there are subphenotypes of ARDS that
affect clinical outcomes.”"””**®” One previous study
comparing sepsis-associated ARDS vs nonsepsis-
associated ARDS reported that patients with sepsis-
associated ARDS had increased severity of illness, lower
Pao,/F10, ratios, and increased mortality, primarily due
to overall disease severity and comorbidities.”” In the
present study, preexisting DM, age, and LIS had
different associations with mortality in patients with
direct or indirect ARDS. These findings suggest that
subgroup analysis of previous ARDS studies may reveal
new insights into the pathogenesis and clinical course of
ARDS by identifying factors associated with disease
progression and clinical outcomes that are relevant in
specific subpopulations of patients with ARDS. In
addition, this approach also identified several variables
associated with mortality in the overall study population
that are common across ARDS subtypes, including
chronic liver disease and number of organ failures. We
found no differences in the associations of sex, ethnicity,
alcohol abuse, or current smoking with mortality
between direct and indirect ARDS; however, each of
these variables has been associated with mortality in
other ARDS studies that did not assess underlying
etiology.”®”* Retrospective analysis of previous clinical
trials for ARDS may yield additional mechanistic clues
about how the underlying etiology of ARDS might affect

journal.publications.chestnet.org

clinical outcomes and could identify new potential
therapeutic targets.

The present study has some limitations. First, to avoid
overfitting, only a limited number of clinical variables
were entered into the logistic regression models, and it
is possible that potentially relevant variables were not
evaluated. However, our focus was on those study
variables that had been previously associated with poor
outcomes in ARDS and other critical illnesses. In
addition, the smaller sample size of patients with indirect
ARDS may limit identification of prognostic factors in
this subgroup. We attempted to account for this factor by
specifically testing for interactions between age, LIS, DM,
and mortality between ARDS subgroups. Our findings
suggest that the magnitude of the effect rather than the
sample size drives the statistical significance. Because of
the retrospective nature of this study, we were unable to
establish causality between DM and improved mortality
in direct ARDS. Future studies will be necessary to
determine the mechanisms that explain our observations.
Because of the low numbers of patients with type 1 DM
in our study, whether the impact of DM also differs
according to etiology of DM remains unknown. Finally,
because we excluded patients with trauma, drug
overdose, and other less common risk factors for ARDS,
the findings cannot be generalized to these patients.

Conclusions

The present study reports significant differences in
predictors of mortality between patients with direct
ARDS and those with indirect ARDS. Despite having
lower severity of illness scores and fewer organ failures,
patients with direct ARDS had similar mortality
compared with patients with indirect ARDS. Factors
that have previously been associated with increased
mortality (eg, age, LIS) or reduced mortality (eg, DM)
were only associated with mortality in direct ARDS in
this analysis. Overall, this study provides new support
for the focused analysis of subpopulations of patients
with ARDS to reduce heterogeneity and target

new therapies to the most appropriate subgroups of
patients.
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