
ARTICLE

Received 14 Jun 2016 | Accepted 26 Apr 2017 | Published 9 Jun 2017

Constriction of the mitochondrial inner
compartment is a priming event for
mitochondrial division
Bongki Cho1,2, Hyo Min Cho1, Youhwa Jo1, Hee Dae Kim3, Myungjae Song4, Cheil Moon2, Hyongbum Kim4,

Kyungjin Kim2,5, Hiromi Sesaki6, Im Joo Rhyu1, Hyun Kim1 & Woong Sun1

Mitochondrial division is critical for the maintenance and regulation of mitochondrial func-

tion, quality and distribution. This process is controlled by cytosolic actin-based constriction

machinery and dynamin-related protein 1 (Drp1) on mitochondrial outer membrane (OMM).

Although mitochondrial physiology, including oxidative phosphorylation, is also important for

efficient mitochondrial division, morphological alterations of the mitochondrial inner-mem-

brane (IMM) have not been clearly elucidated. Here we report spontaneous and repetitive

constriction of mitochondrial inner compartment (CoMIC) associated with subsequent

division in neurons. Although CoMIC is potentiated by inhibition of Drp1 and occurs at the

potential division spots contacting the endoplasmic reticulum, it appears on IMM indepen-

dently of OMM. Intra-mitochondrial influx of Ca2þ induces and potentiates CoMIC, and

leads to Kþ-mediated mitochondrial bulging and depolarization. Synergistically, optic atrophy

1 (Opa1) also regulates CoMIC via controlling Mic60-mediated OMM–IMM tethering.

Therefore, we propose that CoMIC is a priming event for efficient mitochondrial division.
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M
itochondria continuously undergo fusion and division
to regulate proper function, quality and distribution in
response to changing cellular environments1.

According to the endosymbiosis theory, the outer membrane
(OMM) and inner membrane (IMM) of mitochondria have
different chemical and molecular properties2. Thus, regulation of
mitochondrial morphology requires the coordination of distinct
machineries for OMM and IMM3. In mammalian cells,
mitochondrial fusion is mediated by two sequential steps:
OMM fusion by mitofusin 1/2 (Mfn1/2), and IMM fusion by
optic atrophy 1 (Opa1). In contrast, mitochondrial division is
known to be solely driven by dynamin-related protein 1 (Drp1).
Drp1 translocates from the cytosol to OMM receptors including
Fis1, Mff and MiD49/51 (ref. 4), and forms spiral-like structure
by oligomerization5. Subsequently, this spiral structure constricts
and divides a mitochondrion. However, structural biological
studies have revealed that the Drp1 spiral is not sufficient for the
initiation of mitochondrial constriction because mitochondrial
diameter (0.5–1.0 mm) is much thicker than the Drp1 spiral
(B100 nm)5,6, implying the requirement for an initial
mitochondrial constriction step before Drp1 action. Recent
reports have revealed that actin filaments promote initial
mitochondrial constriction through direct contact of
mitochondria with the endoplasmic reticulum (ER)7,8, and
dynamin 2 collaborates with Drp1 for finalization of
mitochondrial division9. This mode of action is similar to
endocytosis mediated by dynamin10, and recent reports have
demonstrated that Drp1 is involved in endocytosis as well as
mitochondrial division11,12. These findings suggest that Drp1-
dependent mitochondrial division evolutionarily originated from
cytosolic vesicle-scissoring machineries2.

Endosymbiosis theory proposes that the IMM is evolutionarily
derived from a prokaryote-like endosymbiont, while the OMM is
derived from the plasma membrane2. Prokaryotic division is
executed by FtsZ, a tubulin-like protein, forming intracellular
Z-ring2. Consistently, primitive eukaryotes, such as red algae,
have mitochondrial orthologues of FtsZ, and they exhibit a Z-ring
during IMM constriction in the mitochondrial matrix before
Drp1-mediated ring formation13. This information implies that
mitochondria require another step in constriction of the IMM
before the activation of cytosolic Drp1. However, neither FtsZ-
like proteins nor Z-ring structures have been identified in
mammals2. Nonetheless, constriction or division of the IMM in
the absence of Drp1 has been observed in yeast14, C. elegans15

and mouse fibroblasts16,17. Also, electron microscopy studies
have shown that the IMM can divide in the absence of OMM
division18. Although these reports support the notion that OMM-
independent intra-mitochondrial event(s) may exist, its presence
in mammalian cells and the underlying mechanisms have not
been elucidated.

Numerous light-scattering experiments using isolated mito-
chondria have shown that intra-mitochondrial homoeostasis of
cations, such as Ca2þ , Kþ and Naþ , is important for the
regulation of mitochondrial volume, causing changes in mito-
chondrial function19. In particular, Kþ influx into the
mitochondria induces swelling or bulging via osmosis. In
addition, mitochondrial dysfunction by mitochondrial
depolarization and Ca2þ overload induces Drp1-dependent
mitochondrial fragmentation, which contributes to mitophagy
or apoptosis20. In contrast, metabolically active mitochondria are
elongated and are not readily fragmented by intracellular
stressors, which is the result of enhanced fusion with Mfn1/2
and Opa1 and decreased activity of Drp1 (refs 21,22). Recent
papers have reported that elongated mitochondria transiently
form bead-on-a-string shapes with fluctuations in intra-
mitochondrial metabolic status, membrane potential, ROS

production and Ca2þ influx22–25. However, the significance of
these morphological changes and their possible association with
mitochondrial division has not yet been addressed.

In this study, we report that the transient changes in
mitochondrial morphology to bead-on-a-string shape are pri-
marily caused by intra-mitochondrial morphological alterations,
referred to as Constriction of Mitochondrial Inner Compartments
(CoMIC). While this intra-mitochondrial event occurs at ER–
mitochondrial contact sites, it appears to be initiated indepen-
dently of Drp1 action and OMM constriction. We provide
evidence that CoMIC is initiated by an influx of Ca2þ into the
mitochondria, which mediates subsequent mitochondrial influx
of Kþ and Opa1 activation of the IMM. We propose that this
regulatory mechanism can coordinate IMM morphological
changes with OMM constriction for efficient mitochondrial
division.

Results
Elongated mitochondria exhibit CoMIC before division. To
explore the intra-mitochondrial events that take place during
mitochondrial division, we performed time-lapse imaging in rat
cultured cortical neurons expressing DsRed-mito, which labels
the mitochondrial matrix26. Interestingly, a subset of long
mitochondria in neuronal processes spontaneously exhibited
repetitive and reversible beads-on-a-string-like structures
accompanying focal constriction and bulging (Fig. 1a and
Supplementary Movie 1). On the other hand, co-expressed
green fluorescent protein (GFP) signals were not altered, ruling
out the possibility that the observed mitochondrial change is
influenced by morphological alteration of neuronal processes.
This phenomenon was also observed in other cell types, including
293T, HeLa and HepG2 cells (Supplementary Fig. 1a), indicating
that CoMIC is common to diverse cell types and species. Through
kymographic analysis, we temporally and spatially analyzed the
occurrence of CoMICs and mitochondrial division. The bulged
and constricted sites were spatially conserved during repetitive
CoMICs (Fig. 1b), and each mitochondrion exhibited unique and
unsynchronized patterns of CoMIC spikes (Fig. 1c). These
properties imply that CoMICs may be an intrinsic property of
mitochondria. In young neurons (days in vitro 4, DIV4), the
probability that a mitochondrion shows a CoMIC in a 10-min
time period was 12.3%, and in mature neurons (DIV10), which
have more elongated mitochondria27, the probability was 35.6%
(Fig. 1d). Notably, mitochondria longer than 5 mm have a
significantly higher probability of CoMIC (young neurons, 50%;
mature neurons, 61.3%) than do shorter mitochondria (young
neurons, 7.4%; mature neurons, 10.5%) (Fig. 1e). This indicates
that elongated mitochondria are prone to CoMIC. In addition,
mitochondria exhibiting CoMIC often underwent subsequent
division at only one of multiple constricted sites (Fig. 1a–c).
Further quantitative analyses revealed that 54.1 and 61.3% of
mitochondria exhibiting CoMIC underwent subsequent division
in young and mature neurons, respectively (Fig. 1e), and that
larger proportions (61.5% and 81.7%, respectively) of dividing
mitochondria exhibited prior CoMIC (Fig. 1f). These results
suggest that CoMIC is closely correlated with mitochondrial
division.

CoMIC is potentiated by suppression of Drp1. We further
examined the association of CoMIC with mitochondrial division
by overexpression of a GTPase-defective mutant of Drp1 (DN-
Drp1), which inhibits the activity of endogenous Drp1 (ref. 28),
resulting in marked elongation of mitochondria with a reduced
rate of division (Supplementary Fig. 2). By using other chemical
and genetic dyes, we confirmed that the CoMIC was real but not
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DsRed-specific artifact (Supplementary Fig. 3). Strikingly, DN-
Drp1-expressing neurons exhibited potentiated frequency and
duration of CoMIC compared with control neurons (Fig. 2a and
Supplementary Movie 2), although the probability of CoMIC was
not affected when compared with elongated mitochondria
(Fig. 2b). This phenomenon was also found in other cell types,
including 293T, HeLa and HepG2 cells (Supplementary Fig. 1b),
implying that the CoMIC-enhancing effect of DN-Drp1 is con-
served in cells of diverse types and species. Kymographic analysis
revealed that CoMIC was more frequent and prolonged in the
mutant compared with control neurons (Fig. 2c). Further quan-
titative analyses showed significant increases in total duration,
frequency and mean interval of CoMIC in DN-Drp1-expressing
neurons compared with control neurons (Fig. 2d). In addition,
mitochondrial bulging during CoMIC was also enhanced by DN-
Drp1 (Fig. 2e,f). These results show that Drp1 relieves mito-
chondria from the tension caused by CoMIC by executing
mitochondrial division. It is known that DN-Drp1 maintains
strong oligomerization activity and affinity for the lipid

membrane29. In addition, photo-damage or hypoxic stress may
induce CoMIC-like morphology resulting from inhibition of
Drp1 on the OMM22,25. Therefore, we wondered if the
overexpression of DN-Drp1 promoted CoMIC via enhanced
mitochondrial constriction with perturbation of division.
However, knockdown of endogenous Drp1 with a small hairpin
RNA (shRNA) similarly promoted CoMIC (Supplementary
Fig. 4). Crucially, Drp1-knockout mouse embryonic fibroblasts
also exhibited CoMIC (Fig. 2g). These data suggest that Drp1 is
not required for the initiation of CoMIC, but may terminate
CoMIC cycles by mitochondrial division.

ER-mitochondria contact site spatially specifies CoMIC spots.
Recent studies revealed that physical association of ER–
mitochondria and actin filaments can trigger mitochondrial
constriction before recruitment of Drp1 (refs 7,8). Our
kymographic analyses showed that mitochondrial constriction
occurs in spatially conserved sites throughout repetitive CoMIC
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(Figs 1e and 2b), implying the presence of structural foci for
CoMIC. We thus postulated that spatial association with the ER
may specify the position at which CoMIC occurs. As expected,
CoMIC and subsequent mitochondrial division occurred when
mitochondria spatially intersected with or were enclosed by the
ER, as assessed by labelling with GFP-Sec61b (Fig. 3a,b and
Supplementary Fig. 5a). DN-Drp1-expressing neurons and 293T
cells also exhibited CoMIC at ER–mitochondrial intersections
(Fig. 3c,d, Supplementary Movie 3 and Supplementary Fig. 5b–d).
In addition, GFP-Mff, which marks putative sites of constriction
and division in ER–mitochondria contact site7, localized on
constriction sites during CoMIC in control and DN-Drp1-
expressing neurons (Fig. 3e,f). More recently, it has been
demonstrated that replication of mitochondrial DNA (mtDNA)

is spatially associated with mitochondrial division in
ER–mitochondria contact site30. By using GFP-tagged Twinkle
which is mtDNA helicase for replication31,32, we examined the
positions where mtDNA replisomes localize during CoMIC. In
off-phase, Twinkle–GFP signals were localized on the elongated
mitochondria, and mitochondrial constrictions occurred
juxtaposition of Twinkle–GFP during CoMIC (Fig. 3g,h).
Therefore, we suggest that structural specification of CoMIC is
associated with ER–mitochondrial contact site. Remarkably,
however, during CoMIC, the spatial intersections between the
ER and mitochondria seems to be maintained regardless of phase,
and some intersections did not show any CoMIC (Fig. 3a–d and
Supplementary Fig. 5b). However, depletion of Mfn2, which
regulates ER–mitochondria contact33,34, did not modify DN-
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Drp1-potentiated CoMIC (Supplementary Fig. 6), similar to
previous report7. These data indicate that contact with the ER
per se does not induce CoMIC but most likely plays a role in the
structural specification of CoMIC (Fig. 3i). We further examined
whether actin filaments are involved in induction of CoMIC
because actin polymerization triggers constriction of the OMM
before Drp1-dependent division8. However, treatment with
latrunculin B, which disrupts actin filaments, did not modify
CoMIC (Supplementary Fig. 7). Collectively, these data suggest
that the cytosolic vesicle-forming machinery, such as actin
filaments and Drp1, are not involved in the induction of
CoMIC, while ER–mitochondrial intersections spatially specify
the foci of CoMIC.

CoMIC is independent on OMM changes. Because cytosolic
fission machinery is not involved in CoMIC, we wondered the
behaviour of the OMM during CoMIC. Interestingly, a subset of
OMM, which was labelled with Tom20-GFP, in elongated
mitochondria exhibited neither constriction nor bulging during
CoMIC in control neurons, but underwent subsequent division
(Fig. 4a,b nd Supplementary Fig. 8a). Such dissociation of CoMIC
and OMM changes was also observed in 293T cells
(Supplementary Fig. 8b). In some cases, CoMIC and OMM
constrictions were simultaneously observed, along with con-
servation of bulging spots. Similarly, neurons and 293T cells
expressing DN-Drp1 exhibited no or marginal OMM bulging
during potentiated CoMIC (Fig. 4c,d, Supplementary Movie 4
and Supplementary Fig. 8c). The quantification confirmed that
the probability of focal OMM constriction was much lower than
that of CoMIC (Fig. 4e). In addition, bulging of the OMM is
weaker than that of CoMIC (Fig. 4f,g), implying the dissociation
of OMM and IMM at constriction sites during CoMIC. Sup-
porting this, electron microscopy in shDrp1-infected neuron
showed that some elongated mitochondria exhibit focal separa-
tion of IMM and OMM (Fig. 4h). To visualize the distance of
OMM–IMM during CoMIC, we performed proximity assay by
fluorescence resonance energy transfer (FRET) between mito-
chondria matrix and OMM, labelled by mito-BFP and Tom20-
GFP, respectively (Supplementary Fig. 9). We expected that
proximity between IMM and OMM may be represented by FRET
signal, and found some hot and cold spots were shown on
mitochondria (Fig. 4i). Strikingly, among the hot spots, bulging of
mitochondrial matrix occurred at some spots with enhanced
proximity between OMM and IMM during CoMIC compared
with off-phase (Fig. 4i,j). After CoMIC, these hot spots returned
to their basal level. On the other hand, the cold spots became
striking at the constriction sites during CoMIC (Fig. 4i,j), indi-
cating that constriction of mitochondrial matrix increases OMM–
IMM distances. Notably, the hot and cold spots appeared to be
spatiotemporally conserved with moderate dynamicity during off-
phase (Fig. 4k). Therefore, these data suggest that CoMIC induces
transient disorganization of OMM–IMM contact.

Mitochondrial Ca2þ initiates and potentiates CoMIC. Spatial
association of CoMIC with ER may indicate the Ca2þ -mediated
functional linkage between CoMIC and ER. Especially, intra-mito-
chondrial Ca2þ entry is implicated in many mitochondrial func-
tions, including respiration, apoptosis, reactive oxygen species
production and mitochondrial transport35,36. To investigate
involvement of intra-mitochondrial Ca2þ in CoMIC, we
monitored the level of intra-mitochondrial Ca2þ during CoMIC
by using CEPIA3mt (ref. 37). Notably, intra-mitochondrial Ca2þ

was transiently increased just before the CoMIC in DN-Drp1-
expressing neuron, and returned to basal level in off-phase (Fig. 5a–
c, mitochondrion #2). However, some mitochondria

did not undergo CoMIC in spite of mitochondrial Ca2þ rise
(Fig. 5a–c, mitochondrion #1). It implies that mitochondrial Ca2þ

signal may be necessary, but not sufficient, for CoMIC. Next, we
examined the role of Ca2þ in CoMIC. Treatment with BAPTA-
AM, a cell-permeable Ca2þ chelator, completely inhibited CoMIC
in DN-Drp1-expressing neurons (Supplementary Fig. 10a,b).
However, ethylene glycol-bis(b-aminoethyl ether)-N,N,N0,N0-
tetraacetic acid (EGTA), a non-cell-permeable Ca2þ chelator, did
not affect CoMIC (Supplementary Fig. 10c). In contrast, A23187,
which is a Ca2þ ionophore, induced robust CoMIC and eventual
mitochondrial fragmentation (Supplementary Fig. 10d). These data
indicate that intracellular Ca2þ rise can induce CoMIC. In
consistent, 2-APB, which is an inhibitor of IP3 receptor releasing
Ca2þ from ER, significantly declined the probability of basal
CoMIC and shortened its total and average single durations
(Fig. 5d,e), implying the contribution of intra-mitochondrial Ca2þ

shuttling from ER to CoMIC. To more selectively explore the
involvement of intra-mitochondrial Ca2þ entry in CoMIC
initiation, we treated DN-Drp1-expressing neurons with Ru360, an
inhibitor of mitochondrial Ca2þ uptake. Remarkably, treatment
with Ru360 inhibited CoMIC as compared with vehicle (DMSO)
treatment (Fig. 5f,g). Quantitative analyses revealed that Ru360
significantly reduced the probability of CoMIC, and shortened the
average duration of an individual CoMIC (Fig. 5j). Furthermore,
Ru360 efficiently blocked CoMIC induced by thapsigargin (TG),
which increases intracellular Ca2þ concentration by blocking
calcium uptake via inhibition of sarco/ER Ca2þ ATPase (Fig. 5h-
j). Similarly, depletion of Mcu by specific shRNA, which is
mitochondrial uniporter, decreased the probability of CoMIC and
shortened total duration of CoMIC (Fig. 5k,l), although it did not
affect mitochondrial morphology (Supplementary Fig. 11). Taken
together, these data suggest that intra-mitochondrial Ca2þ entry is
required for the induction and potentiation of CoMIC.

Mitochondrial Ca2þ promotes efficient mitochondrial division.
Previous reports have shown that intra-mitochondrial Ca2þ entry
is involved in mitochondrial division, although precise molecular
mechanism was yet unclear38–41. Since CoMIC occurs before
mitochondrial division and is mediated by intra-mitochondrial
Ca2þ , we tested the Ca2þ -mediated functional link between
CoMIC and mitochondrial division. First, we monitored the level
of intra-mitochondrial Ca2þ during CoMIC and subsequent
mitochondrial division in control neurons. Similarly to DN-Drp1-
expressing neurons, control neuron also exhibited spontaneous,
transient and dramatic increment of intra-mitochondrial Ca2þ

just before and during CoMIC, and it returned to basal level during
off-phase (Fig. 6a–c). However, there was no remarkable
fluctuation of intra-mitochondrial Ca2þ during mitochondrial
division. These data indicate that intra-mitochondrial Ca2þ is
involved in induction of CoMIC but not Drp1-mediated
mitochondrial division. Next, we examined the effect of intra-
mitochondrial Ca2þ on mitochondrial length. Treatment with
Ru360 significantly increased mitochondrial length and attenuated
TG-induced mitochondrial fragmentation (Fig. 6d,e). Consistently,
depletion of Mcu also significantly decreased mitochondrial length
(Fig. 6f,g). These data indicate that intra-mitochondrial Ca2þ

entry promotes mitochondrial division as well as CoMIC.
Considering that mitochondrial division does not always
accompany with fluctuation of intra-mitochondrial Ca2þ , we
suggest that intra-mitochondrial Ca2þ indirectly promotes
mitochondrial division by promoting CoMIC.

Mitochondrial bulging and depolarization is mediated by Kþ .
Mitochondrial bulging or swelling is induced by osmotic move-
ment of water molecules into the mitochondrial matrix, and this
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process is mainly regulated by Kþ influx controlled by the
mitochondrial big-conductance Ca2þ -dependent Kþ channel
(mitoBKCa) and ATP-dependent Kþ channel (mitoKATP), which
finally leads to an increase in osmotic pressure between the
cytoplasm and the mitochondrial matrix19. Considering that
intra-mitochondrial Ca2þ induces CoMIC accompanied by

mitochondrial bulging, we investigated the possible involvement
of mitoBKCa in CoMIC. Pre-treatment with paxilline (Pax), an
inhibitor of mitoBKCa, suppressed the probability of TG-induced,
but not basal, CoMIC (Fig. 7a–c), but it did not affect the total
duration, frequency or mean interval of CoMIC (Supplementary
Fig. 12), implying partial involvement of induction/potentiation
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of CoMIC unlike Ca2þ . Instead, Pax efficiently prevented basal
and TG-induced mitochondrial bulging during CoMIC
(Fig. 6d,e). Previous studies have demonstrated that intra-
mitochondrial influx of Kþ induces depolarization of
mitochondria as well as bulging42,43. Recently, it has been also
demonstrated that CoMIC accompanies with mitochondrial
depolarization23,24. Consistently with these studies, we also
found that mitochondria are transiently depolarized during
CoMIC (Fig. 6f,g). Remarkably, Pax efficiently alleviated
mitochondrial depolarization during CoMIC (Fig. 6f,h). On the
other hand, prolonged treatment of NS1619, an opener of
mitoBKCa, induced robust CoMIC and eventual mitochondrial
fragmentation in DN-Drp1-expressing neuron (Supplementary
Fig. 13), although the effect of NS1619 may not be a result from
mitoBKCa opening44. Collectively, these data indicate that

mitoBKCa is involved in mitochondrial bulging and
depolarization during CoMIC.

Cleavage of Opa1 synergistically regulates CoMIC with Ca2þ .
Recently, Opa1 has been reported as a coupler between mito-
chondrial morphology and transient mitochondrial depolariza-
tion during CoMIC24. Because we found that mitochondrial
Ca2þ rise is required, but not sufficient for CoMIC (Fig. 5a), we
wondered a possible role of Opa1 in CoMIC. First, we knocked
down the expression of Opa1 with shRNA (shOpa1), and found
that shOpa1 efficiently inhibits CoMIC without affecting DN-
Drp1-induced mitochondrial hyper-elongation (Fig. 8a,b and
Supplementary Fig. 14). Although the probability of CoMIC was
not affected, the total duration and frequency of CoMIC were
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significantly decreased by shOpa1 (Fig. 8e). In addition, shOpa1
significantly reduced the TG-increased probability of CoMIC as
well as total duration and average single duration (Fig. 8c-e).
These data indicate that Opa1 is required for induction and
potentiation of CoMIC. We further examined whether other
mitochondrial fusion machinery, Mfn1 and Mfn2, is also involved
in CoMIC. Single depletion of Mfn1 or Mfn2 by shRNA affected
neither DN-Drp1-potentiated CoMIC nor mitochondrial
morphology (Supplementary Fig. 6). Notably, double depletion
of Mfn1 and Mfn2 strongly inhibited DN-Drp1-induced
mitochondrial hyper-elongation, thereby reducing CoMIC,
which occurs in only elongated mitochondria. However,
elongated mitochondria also exhibited DN-Drp1-potentiated
CoMIC, and it appears that mitochondrial fusion indirectly
contributes to potentiation of CoMIC by elongating
mitochondria.

It has been known that IMM bound long Opa1 (L-Opa1) is
cleaved by Oma1, which senses mitochondrial depolarization,
resulting in the accumulation of soluble short Opa1 (S-Opa1) in
the intermembrane space45. Thus, we postulated that Oma1 is
upstream regulator of Opa1 in CoMIC. Very similarly to shOpa1,
depletion of Oma1 by shRNA significantly reduced, but not
probability, the total and average single duration of CoMIC
without modifying DN-Drp1-induced mitochondrial hyper-

elongation (Fig. 8f,g and Supplementary Fig. 15). It indicates
that Oma1-mediated cleavage of Opa1 may play a role in the
regulation of CoMIC. Recently, it has been demonstrated that
S-Opa1 can induce mitochondrial fragmentation and its GTPase-
defective mutant localizes to the foci of constriction and division
with Drp1 at the ER–mitochondria contact site46. Thus, we
further examined the differential involvement of the S-Opa1 and
L-Opa1 in CoMIC. We co-transfected neurons with S-Opa1
fusing intermembrane space-localizing signal of apoptosis-
inducing factor or L-Opa1 lacking cleavage sites with DN-Drp1
(Supplementary Fig. 16a). While S-Opa1 induced excessive
mitochondrial fragmentation in neurons and 293T cells as
shown in previous report46, its co-expression with DN-Drp1
did not affect mitochondrial hyper-elongation by DN-Drp1
(Supplementary Fig. 16b,c), indicating that S-Opa1-induced
mitochondrial fragmentation requires Drp1. Interestingly, in
neurons co-expressing S-Opa1 with DN-Drp1, a greater
proportion of mitochondria exhibited CoMIC-like structures
(Fig. 8i). Quantitative analyses showed that the probability, total
duration and average single duration of CoMIC were dramatically
increased by S-Opa1 (Fig. 8h,i,n), indicating that the S-Opa1
sufficiently promotes induction/potentiation of CoMIC. In
contrast, L-Opa1 induced mitochondrial elongation in control
neurons, but it did not affect in DN-Drp1-expressing
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Opa1- (111 mitochondria), RuR-treated DN-Drp1þ S-Opa1- (105 mitochondria) and Pax-treated DN-Drp1þ S-Opa1-expressing neurons (104 mitochondria), and

quantification of the total duration, frequency and average single duration of CoMIC (***Po0.01, **Po0.02 and *Po0.05 by Mann–Whitney rank sum test).

(o) Probability of CoMIC in elongated mitochondria from DN-Drp1-, TG-treated-DN-Drp1- (138 mitochondria), DN-Drp1þ L-OPA1- (140 mitochondria) and TG-

treated DN-Drp1þ L-Opa1-expressing neurons (104 mitochondria), and quantification of the total duration, frequency and average single duration of CoMIC.

(***Po0.01 and **Po0.02 by Mann–Whitney rank sum test).
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neuron (Supplementary Fig. 16b,c). Notably, L-Opa1 exhibited
inhibitory effects on the induction of basal CoMIC and TG-
induced CoMIC (Fig. 8l,m,o), indicating inhibitory role of
L-Opa1 in CoMIC.

Interestingly, the effect of S-Opa1 was efficiently blocked by
ruthenium Red (RuR), an inhibitor of mitochondrial calcium
uptake, or Pax (Fig. 8j,k,n). These data suggest that S-Opa1-
induced/potentiated CoMIC requires intra-mitochondrial influx
of Ca2þ /Kþ . Taken together, these data suggest that intra-
mitochondrial influx of Ca2þ /Kþ and cleavage of Opa1 are two
interdependent pathways for the regulation of CoMIC.

Opa1 regulates OMM-IBM tethering during CoMIC. Finally, we
explored how S-Opa1 regulates CoMIC. S-Opa1 is a component of
mitochondrial contact site and intermembrane space bridging
(MIB) complex, which play a role in cristae morphogenesis and
mitochondrial inner boundary membrane (IBM)–OMM tethering,
together with Mic60 (Mitofilin/Immt), Mic19 (ChchD3), Mic25
(ChchD6) and Sam50 (refs 47,48). Based on the rearrangement of
OMM–IBM during CoMIC (Fig. 4), we postulated the involvement
of Mic60 in the regulation of CoMIC by S-Opa1. Remarkably,
Mic60 depletion by shRNA significantly increased probability of
CoMIC in DN-Drp1-expressing neurons (Fig. 9a,b and
Supplementary Fig. 17a), although it did not affect DN-Drp1-
induced mitochondrial hyper-elongation (Supplementary
Fig. 17b,c). Conversely, Mic60 overexpression strongly blocked the
induction and potentiation of CoMIC in DN-Drp1-expressing
neurons (Fig. 9c,d and Supplementary Fig. 17a,d,e). Quantitative
analyses showed that the probability, total duration and mean
interval of CoMIC are markedly decreased by Mic60 overexpression
(Fig. 9g). Co-expression of Mic60 with S-Opa1 in DN-Drp1-
expressing neuron remarkably inhibited S-Opa1-induced/poten-
tiated CoMIC (Fig. 9e–g), suggesting that Mic60 is inactivated by

S-Opa1 and the S-Opa1-induced CoMIC can be reversed by over-
expression of Mic60 (Fig. 10).

Discussion
In this study, we found that a subset of elongated mitochondria
underwent transient and repetitive CoMIC, which was closely
associated with subsequent mitochondrial division. So far,
CoMIC-like events have been proposed to be associated with
mitochondrial physiologies, including mitochondrial uncoupling,
ROS production and oxidative phosphorylation22–24. In this
study, we suggest that CoMIC is strongly associated with
mitochondrial division, based on that (1) mitochondria
undergoing CoMIC have higher probability for subsequent
mitochondrial division; (2) mitochondrial division occurs at the
CoMIC foci; (3) suppression of Drp1 strongly influences the
extent of CoMIC; and (4) conditions blocking CoMIC suppressed
mitochondrial division. Furthermore, by inhibiting mitochondrial
division, we dissected intra-mitochondrial events mediating the
CoMIC; (1) intra-mitochondrial Ca2þ flux triggering CoMIC,
(2) mitoKCa-mediated mitochondrial bulging and depolarization
and (3) Oma1-mediated accumulation of S-Opa1, which
neutralizes Mic60-mediated OMM–IBM tethering (Fig. 10).
Therefore, we propose that CoMIC is an intra-mitochondrial
priming event for mitochondrial division.

Although we primarily focused on the mitochondria in neuronal
processes, CoMIC was also found in multiple cell types including
fibroblasts (mesoderm-derived cells) and HepG2 cells (endoderm-
derived cells) as well as neurons (ectoderm-derived cells). Previous
reports have also showed CoMIC-like mitochondrial constriction in
other many mammalian cells under normal and pathologic
conditions22–25,49–52. Furthermore, this event has also been
observed in yeast13, C. elegans14 and even plants53. Therefore, we
suggest that the fundamental machinery triggering CoMIC may be
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conserved and operating in most, if not all, eukaryotic cells.
Mitochondrial influx of Ca2þ plays an essential role in the
induction of CoMIC. Interestingly, Ca2þ also promotes cellular
constriction in prokaryotic cells by enhancing FtsZ polymerization
and further bundling of FtsZ polymers54. Although mammalian FtsZ
ring does not exist, this implies that Ca2þ -mediated CoMIC seems
to be a fundamental and highly conserved machinery from
prokaryotic to eukaryotic cells.

Controversial data reported that there was no detectable
change in intra-mitochondrial Ca2þ concentration during a
CoMIC-like event23. However, we used more sensitive genetic dye
CEPIA3mt (ref. 37), and could detect rise on intra-mitochondrial
Ca2þ during CoMIC. In addition, Ru360 and depletion of Mcu
inhibited DN-Drp1-potentiated CoMIC. Considering that
elongated mitochondria can more efficiently absorb Ca2þ than
short mitochondria in neuronal cells55, mitochondrial hyper-
elongation by DN-Drp1 may amplify intra-mitochondrial Ca2þ

signals. When Drp1 is expressed normally and mitochondria is
endogenously elongated, CoMIC is very transient and the effect of
intra-mitochondrial Ca2þ influx on CoMIC may be small
enough to be virtually undetectable. Furthermore, we showed
that blockade of intra-mitochondrial Ca2þ entry inhibits efficient
mitochondrial division. Consistently with our data, previous
pharmacological studies have shown that Ru360 inhibits
mitochondrial fragmentation by Ca2þ released from the ER by
p20, which is a cleaved form of BAP31 by caspase 8 during Fas-
mediated cell death39. Furthermore, inhibition of mitochondrial
Ca2þ uptake by NIM811 and carbonyl cyanide-p-
trifluoromethoxyphenyl-hydrazone, which are a mitochondrial
permeability transition inhibitor and a mitochondrial uncoupler,

also blocks mitochondrial fragmentation by NMDA-mediated
entry of extracellular Ca2þ in neurons39,41,52,56. Conversely, cells
with mutations in the Micu1 gene, which regulates Mcu activity,
exhibit excessively fragmented mitochondria with increased intra-
mitochondrial Ca2þ (ref. 57). These reports indicate that intra-
mitochondrial Ca2þ is critical for efficient mitochondrial
division. However, considering that mitochondrial division did
not directly accompany intra-mitochondrial Ca2þ rise, Ca2þ -
mediated CoMIC is a prior event before mitochondrial division.
In fact, intracellular Ca2þ activates cytosolic vesicle-forming
machinery for mitochondrial division. Drp1 is upregulated by the
Ca2þ -dependent kinase CaMKIa following neuronal
depolarization58 or the Ca2þ -dependent phosphatase
calcineurin following mitochondrial damage and neuronal
outgrowth59,60. In addition, Ca2þ can activate inverted formin-
2, thereby promoting actin polymerization61. Therefore, Ca2þ

mediates and coordinates both of cytosolic and intra-
mitochondrial events for mitochondrial division. According to
this model, a substantial increase in cytosolic Ca2þ can recruit
Drp1 to the mitochondria to complete mitochondrial division,
whereas CoMIC occurs when a lower level of Ca2þ is released
from the ER and taken up into mitochondria.

Our data revealed that mitochondrial bulging during CoMIC is
mediated by Kþ via mitoBKCa. Because the concentration of Kþ in
the cytosol is higher than that in mitochondria, as the IMM is
impermeable to potassium ions, mitochondrial influx of Kþ across
the IMM requires specific channels, mitoBKCa and mitoKATP

19.
Opening of these channels induces mitochondrial influx of Kþ ,
resulting in osmotic movement of water molecules into the
mitochondrial matrix, thereby causing mitochondrial bulging or
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Figure 10 | Schematic model of CoMIC for mitochondrial division. Intra-mitochondrial Ca2þ flux triggers mitoBKCa-mediated mitochondrial bulging and

depolarization. Synergistically, stabilized Oma1 cleaves L-Opa1 resulting accumulation of S-Opa1, which neutralizes Mic60-mediated OMM–IBM tethering.

This CoMIC contributes to Drp1-mediated mitochondrial division.
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swelling. Potential role of intra-mitochondrial Kþ in mitochondrial
volume and morphology has been elucidated. Intra-mitochondrial
influx of Kþ promotes the formation of doughnut-like mitochondria
during mitochondrial adaptation to conditions of hypoxia-
reoxygenation62, and is also involved in formation of CoMIC-like
structures by depletion of Letm1, which regulates homoeostasis of
intra-mitochondrial Ca2þ and Kþ (ref. 63). Furthermore, inhibition
of aquaporin by HgCl2 suppresses tunicamycin-induced CoMIC and
further mitochondrial fragmentation64, indicating the involvement of
osmosis in mitochondrial division. Notably, the Ca2þ -responsive
regulatory domain of mitoBKCa is likely to face the mitochondrial
matrix rather than the cytosol65, supporting the notion that intra-
mitochondrial Ca2þ , but not cytosolic Ca2þ , mediates
mitochondrial bulging. In addition, we found that DN-Drp1
enhances mitochondrial bulging during CoMIC, and it appears to
result from increased Ca2þ uptake by mitochondrial hyper-
elongation55. Although previous report demonstrated that Hþ leak
contributes to mitochondrial depolarization during CoMIC30,31, we
found that inhibition of mitoBKCa efficiently suppresses
mitochondrial depolarization during CoMIC. Recent study
demonstrated the transient mitochondrial pH flash by bulky Hþ

leakage, which could be induced by intra-mitochondrial Ca2þ /Kþ

influx66. Alternatively, the Hþ leak may contribute to recovery from
CoMIC to off-phase, because efflux of Ca2þ and Kþ from the
mitochondrial matrix are mainly mediated by a mitochondrial Naþ /
Ca2þ exchanger and Kþ /Hþ exchanger driven by Hþ leak19.
However, we also found that long exposure to carbonyl cyanide
m-chlorophenyl hydrazone (CCCP), which disrupts the proton
gradient and induces bulky Hþ leak, induces irreversible CoMIC
with mitochondrial depolarization (Supplementary Fig. 18).
Therefore, although we could not completely exclude that Hþ leak
may mediate CoMIC, it appears that intra-mitochondrial Ca2þ /Kþ

influx mainly mediates morphological and physiological change
during CoMIC.

Our data also suggested that Oma1-induced S-Opa1 induces
and potentiates CoMIC. Recent studies have highlighted the role
of S-Opa1 on mitochondrial division. Unlike L-Opa1, S-Opa1
sufficiently induced Drp1-dependent mitochondrial fragmenta-
tion in neurons, in agreement with a previous report46.
Considering that potentiation of CoMIC in DN-Drp1-
expressing neurons was further strengthened by overexpression
of S-Opa1, it is likely that S-Opa1 promotes CoMIC. However,
shOpa1 did not influence the basal probability of CoMIC,
although it efficiently suppressed the frequency and duration of
CoMIC. Therefore, it is likely that S-Opa1 does not directly
constrict the IMM, but is involved in the regulation of CoMIC.
Based on our data with previous studies, S-Opa1 may have pro-
fission activity. However, S-Opa1 is required for proper
mitochondrial fusion67, and in vitro IMM fusion can be
promoted by S-Opa1 produced by i-AAA protease Yme1l
under active oxidative phosphorylation and by Oma1 under
mitochondrial depolarization46,68. This opposite effect of S-Opa1
could be mediated by disorganization of OMM–IBM contact via
interplay between S-Opa1 and Mic60. The effect of S-Opa1 on the
CoMIC was strongly modified by alterations of Mic60, which
plays a role in tethering of OMM–IBM as core component of
mitochondrial contact site and MIB complex47,48. Mic60 is evenly
localized in IMM69, but S-Opa1 is preferentially localized in MIB
complex and interacts with Mic60 (refs 47,48). Considering that
S-Opa1 and L-Opa1 form oligomer70, this model may explain
how L-Opa1 inhibits CoMIC: L-Opa1 may inhibit the S-Opa1-
and Mic60-mediated activation of CoMIC via neutralization of
S-Opa1 as a dominant-negative molecule. Therefore, we propose
that S-Opa1 is involved in the disorganization of OMM–IBM,
whereas L-Opa1 antagonizes this process, thereby contributing to
the CoMIC and IMM reorganization.

It is likely that intra-mitochondrial Ca2þ–Kþ and Oma1–
Opa1–Mic60 are two different axes for the control of CoMIC, and
both are required for the efficient CoMIC. Therefore, inhibition
of either cascades appear to inhibit CoMIC, while we do not
entirely rule out the possibility that two cascades have significant
interactions. For example, intra-mitochondrial influx of Ca2þ

induces mild depolarization of mitochondria, leading to Oma1-
dependent cleavage of Opa1 (refs 40,46). On the other hand,
Opa1 can also regulate intra-mitochondrial influx of Ca2þ . In
digitonin-permeabilized cells, depletion of Opa1 increases intra-
mitochondrial influx of Ca2þ in spite of a dissipation of the
mitochondrial membrane potential71, indicating that Opa1 plays
a role in intra-mitochondrial structure for proper calcium uptake.
Therefore, mutually dependent interaction between Ca2þ and
Opa1 could be an important aspect explaining the cyclic nature of
CoMIC, and the blockade of any part of this cascade can disrupt
the CoMIC cycle.

Methods
Cell culture and gene transfection. Cortices were carefully dissected from
Sprague–Dawley rats (Orient Bio and Koatech, Korea) on embryonic day 17 in pre-
chilled Hank’s buffered salt solution (Gibco) supplemented with 6% glucose
(Sigma) and 50 unit per ml penicillin–streptomycin (PS) (Gibco). Then, the
samples were trypsinized and physically dissociated into single neurons. The dis-
sociated neurons (105 cells per cm2) were plated on glass coverslips, plates and
dishes coated with poly-D-lysine (sigma), and incubated in neurobasal media
(Gibco) containing 2% B27 supplement (Gibco), 0.5 mM L-glutamine (Gibco),
25 mM L-glutamate (Sigma) and 50 unit per ml penicillin/streptomycin (Gibco).
The neurons were incubated in 5% CO2 at 37 �C. This experiment was carried out
in strict accordance with the recommendations in the Guide for the Care and Use
of Laboratory Animals of the Korea University Institutional Animal Care and Use
Committee. The protocol was approved by the Committee on the Ethics of Animal
Experiments of the Korea University (Permit Number: KUIACUC20110304-2).
After 2 days in vitro (DIV2), we exchanged the medium for media containing no L-
glutamate and maintained the cultured neurons in this medium. We transfected
plasmids into cultured neurons on DIV2 or DIV8 using the Calphos mammalian
transfection kit (Clontech) according to the manufacturer’s protocol. After 24–48 h
(DIV3–4 or DIV9–10), experiments were performed. Thapsigargin, Ru360 and
latrunculin B were purchased from Calbiochem. Paxilline and CCCP were pur-
chased from Abcam. Two-APB, ruthenium red and mito-TEMPO were purchased
from Sigma. Drp1-knockout mouse embryonic fibroblasts were obtained from Dr
Hiromi Sesaki17. 293T (ATCC CRL-3216), HeLa (ATCC CRM-CCL-2) and HepG2
(ATCC HB-8065) cells were incubated with Dulbecco’s modified eagle medium
(Gibco) supplemented with 10% foetal bovine serum (Gibco) and 50 unit per ml
penicillin/streptomycin in 5% CO2 at 37 �C, and gene transfection was performed
using Lipofectamine 2000 (Invitrogen, USA) and the Calphos mammalian
transfection kit according to the manufacturer’s protocols. Experiments were
performed 24 h after transfection.

DNA constructs. DsRed-mito and mito-GFP, which label the mitochondrial
matrix, were purchased from Clontech. The PCR product of DN-Drp1 was
obtained from pcDNA-Drp1 (K38A)28 and inserted using the XhoI (50) and EcoRI
(30) sites of pIRES2-GFP (Clontech) and pIRES-DsRed-mito, which was modified
from pIRES2-GFP by exchanging GFP with DsRed-mito. Tom20-GFP was
generated by insertion of a human Tom20 PCR fragment into the XhoI (50) and
SalI (30) sites of pEGFP-N1 (Clontech). GFP-Sec61b was generated by insertion of
human Sec61b PCR fragment into the XhoI (50) and EcoRI (30) sites of pEYFP-C1
(Clontech). Via serial PCR, a flag-tagged S-Opa1 fragment was obtained by fusing
the N-terminal signal peptide of apoptosis-inducing factor (amino acids 1–95) and
the C-terminal of the human Opa1 isoform 1 cDNA (amino acids 202–969). A flag-
tagged L-Opa1 lacking proteolytic cleavage sites (amino acids 191–201) also was
constructed by serial PCR. These DNA fragments were inserted into the BamHI
(50) and XhoI (30) sites of pcDNA3.0 (Invitrogen, USA). In addition, myc-tagged
Mic60 and Oma1 cDNAs were obtained by RT–PCR from RNA of rat cultured
neuron, and were inserted into the BamHI (50) and XhoI (30) sites of pcDNA3.0.
GFP-Mff (Addgene plasmid # 49153) and mito-BFP (Addgene plasmid # 49151)
were gifts from Gia Voeltz. CEPIA3mt (Addgene plasmid # 58219) and Twinkle–
GFP also were gifts from Masamitsu Iino and Johannes N. Spelbrink, respectively.

The targeted sequences for shRNA were 50-GAA GAG TGT AAC TGA
TTC A-30 for rat Drp1, 50-GCC AGA GAC AGA CAA TAC T-30 for rat Mcu, 50-
GAT TGT GCC TGA CTT TAT A-30 for rat Opa1, 50-CGA AAC CAG ATG AAC
CTT T-30 for rat Mfn1, 50-TGA GGA TGT TTG AGT TTC A-30 for rat Mfn2, 50-
GCC ATA AGA GAG GTC CGG A-30 for rat Oma1 and 50-CTG AGA TTG CAG
GTG AGA A-30 for rat Mic60. The shRNA constructs were generated using
the pSuper.neoþGFP vector (OligoEngine) according to the manufacturer’s
protocol.
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Immunoblotting. Rat cortical neuron and 293T cell were collected in lysis buffer
(125 mM Tris-Cl, 4% SDS, pH 6.8). After SDS–PAGE and transfer into membrane,
immunoblotting was performed using the following antibodies: anti-Opa1 (BD
Transduction Laboratories, #612606, 1:500), anti-Mcu (abcam, #ab121499,
1:1,000), anti-myc (Santa Cruz Biotechnology, #sc-40, 1:1,000) and anti-�-Actin
(Santa Cruz Biotechnology, #sc-47778, 1:2,000).

Live cell imaging and microscope image acquisition. Live cell imaging was
mainly performed using an inverted fluorescence microscope (Carl Zeiss, Observer Z1)
equipped with CoolLED (pE-2) as the light source, a definite focus module, a CCD
camera (Photometrics, CoolSNAP fx), and a humidified chamber that maintained cells
at 5% CO2 and 37 �C. Primary neurons and other cell lines were incubated in the
appropriate culture media during live cell imaging. A � 63 oil-immersion objective
lens (Carl Zeiss, EC Plan-Neofluar, 1.25 NA) was used for image acquisition, and time-
lapse images were obtained every 5 s for 10 min using the Metamorph (version 7.7.5)
imaging program (Molecular Devices). In addition, we used a confocal inverted laser-
scanning microscope (Carl Zeiss, LSM7 LIVE) equipped with a humidified incubator
that maintained cells in 5% CO2 at 37 �C, and images were obtained with ZEN
software (Carl Zeiss) with a � 63 oil-immersion objective lens (Carl Zeiss, Plan-
Apochromat, 1.4 NA). High-resolution live cell confocal images were obtained using
an inverted laser-scanning microscope (Carl Zeiss, DE/LSM510 NLO) equipped with a
humidified incubator that maintained cells in 5% CO2 at 37 �C. A � 100 oil-
immersion objective lens (Carl Zeiss, EC Plan-Neofluar, 1.3 NA) was mainly used with
� 3 digital zoom for image acquisition. Confocal serial sectional images were obtained
every 10 s for 10 min using ZEN software (Carl Zeiss). Each time-lapse image consists
of four or five sections obtained with a centred Z-section mode. For synchronized
imaging of dual channels, we used two mixed lasers, 488 and 536 nm, for emission,
and detected excitation using a splitter filter. To avoid excessive photo-damage caused
by the LED or laser, we took time-lapse images from one slide within 1–1.5 h after
drug treatment. The images were analyzed using the ImageJ program (USA National
Institutes of Health). We linearly adjusted the intensity of the images, smoothed the
images with ‘Gaussian Blur’ filtering and reconstructed three-dimensional images
using the ‘3D viewer’ module. The reconstructed images were recorded in 360�
rotation. For measurement of mitochondrial length, we first fixed primary neurons
expressing DsRed-mito with 4% paraformaldehyde in PBS, then stained their nuclei
with 1mg ml� l Hoechst 33342. Then, we captured images using an upright fluorescent
microscope (Carl Zeiss Axioskop2 Plus) with a CCD camera (Photometrics, Cool-
SNAP cf) using the Metamorph imaging programme. A � 40 objective lens (Carl
Zeiss, EC Plan-Neofluar, 0.75 NA) was used for image acquisition. In addition, we
used a confocal inverted laser-scanning microscope (Carl Zeiss, LSM700). A � 40
water-immersion objective lens (Carl Zeiss, LD C-Apochromat, 1.1 NA) was mainly
used with � 3 digital zoom for image acquisition. FRET images were acquired by
confocal microscopy (Carl Zeiss, LSM700) using microscope filter combination for
BFP and FRET: 405 nm excitation, 0–415 nm and 415–735 nm emission filters,
respectively. Images were analysed using ImageJ software.

Kymographic and quantitative analyses of CoMIC. All images were modified
with the ImageJ programme. For kymographic analysis, we modified time-lapse
images of mitochondria in curved neuronal processes to straight images using the
‘straighten’ function. Then, the images were resliced to y axis and Z-projected with
the ‘reslice’ and ‘Z-project’ modules. We manually generated constriction spikes
(right diagram of kymography). Each incidence of CoMIC was labelled as one
spike, and the duration of the CoMIC was expressed by the thickness of the spike.
We performed quantitative analyses, including the total duration, frequency and
mean interval, of CoMIC from all mitochondria longer than 5 mm in neuronal
processes B200mm from the soma. To measure the bulging ratio of foci, we
selected two mitochondrial images of off-phase and maximum bulging from more
than 10 CoMIC-containing mitochondria, and measured the ratio of the diameter
of each foci in the off-phase and bulging site.

Measurement of mitochondrial length. Mitochondrial images captured from all
neuronal processes (200 mm from the soma) were converted to binary images using
the ‘threshold’ module in ImageJ. Then, the binary images were converted to
images 1 pixel wide by the ‘skeletonize’ module, and mitochondrial length was
assessed by the ‘analyse particles’ module.

Electron microscopy. The Drp1 knockdown viral constructs were transfected into
293gpg packaging cells using PEI (Polyscience, #23966). After transfection, media
were changed to the neurobasal media containing 2% B27 supplement, 0.5 mM L-
glutamine and 50 unit per ml penicillin/streptomycin. The supernatants containing
viral particles were collected at 2–4 days after transfection, and infected primary
cortical neurons. Drp1 knockdown cortical neurons were washed with 0.1 M
phosphate-buffered saline (pH 7.4, PBS) and fixed with 10% paraformaldehyde,
2.5% glutaraldehyde in PBS at 4 �C for overnight. After fixation, cells were washed
with PBS and post fixed with 1% osmium tetroxide for 90 min. The fixed cells were
dehydrated through ascending series of ethanol, and then embedded in Epon
mixture. The embedding blocks were semi-thin sectioned (200 nm) using a
Reichert-Jung Ultracut E ultramicrotome (Leica Microsystems), stained with
Toluidine blue and trimmed for further observation. The trimmed sections were

collected on 200-mesh cooper grid and stained with uranyl acetate and lead citrate.
Observation of mitochondrial structure was performed using an H-7500 electron
microscope (Hitachi) with 80 kV acceleration voltage.

Statistical analysis. Statistical analyses and graph plotting were conducted using
the Sigmaplot 12.5 software. Centre values and error bars of all graph indicate
mean value and s.e., respectively. To measure the probability of CoMIC, we
separated mitochondria into those that showed CoMIC and those that did not, and
assigned them values of 100% or 0%, respectively. Then, we averaged them and
tested statistical significance with the Mann–Whitney rank sum test. To examine
the statistical significance of the proportion of mitochondria undergoing sub-
sequent division to that of mitochondria showing no or prior CoMIC, we generated
contingency tables according to the presence of CoMIC and division. The con-
tingency tables were tested with w2-tests with Yates’s correction for continuity.
Similarly, contingency tables for mitochondria showing prior CoMIC among non-
dividing or dividing mitochondria were also tested with a w2-test with Yates’s
correction for continuity. For statistical analysis of total CoMIC duration, fre-
quency and mean interval and bulging ratio of the foci containing CoMIC, the
Mann–Whitney rank sum test was used.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information Files or
from the corresponding author on reasonable request.
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