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Vegetation recovery in tidal marshes reveals critical
slowing down under increased inundation
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Vasilis Dakos5,6, Sonia Kéfi6, Marten Scheffer7, Glenn R. Guntenspergen8 & Tjeerd J. Bouma1,2

A declining rate of recovery following disturbance has been proposed as an important early

warning for impending tipping points in complex systems. Despite extensive theoretical and

laboratory studies, this ‘critical slowing down’ remains largely untested in the complex

settings of real-world ecosystems. Here, we provide both observational and experimental

support of critical slowing down along natural stress gradients in tidal marsh ecosystems.

Time series of aerial images of European marsh development reveal a consistent lengthening

of recovery time as inundation stress increases. We corroborate this finding with

transplantation experiments in European and North American tidal marshes. In particular, our

results emphasize the power of direct observational or experimental measures of recovery

over indirect statistical signatures, such as spatial variance or autocorrelation. Our results

indicate that the phenomenon of critical slowing down can provide a powerful tool to probe

the resilience of natural ecosystems.
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I
n the current context of global change, understanding
ecosystem response to perturbations has become an urgent
necessity1. Some ecological systems may be resilient to changes

while others have been shown to exhibit tipping points caused by
the presence of alternative stable states2. These systems can
catastrophically shift from one state to another in response to
sometimes only slight changes in conditions or small
perturbations2–4. Human dependence on the services and
functions these ecosystems provide1 impels a need to develop
methods to forecast their responses to changing conditions and
perturbations2,5. Mathematical modelling has revealed that
generic indicators may exist for a broad class of systems and
that can serve as early warnings to inform whether resilience is in
decline2,6. These indicators are based on the phenomenon of
‘critical slowing down’, which means that the time needed for a
system to recover from a disturbance lengthens when the level of
stress applied on the system increases3,4. Temporal and spatial
statistical signatures of slowing down have been inferred
indirectly from fluctuations and correlations in system states7,8,
and highly controlled experiments have provided support that the
phenomenon exists in real living systems7–12. However, direct
measurements of the recovery rates that test this theory in the
complex setting of real-world ecosystems, in which sources of
heterogeneity and stochasticity are ubiquitous and may obscure
signals of looming breakdown13,14, remain scarce. Hence, our
understanding of early warning signals in real-world systems is
still insufficient, which severely limits its application to policy
decisions and ecosystem management.

Here we bridge this gap between theory and application by
examining if critical slowing down can be observed along
gradients in environmental stress in tidal marsh ecosystems.
Tidal marshes are globally distributed intertidal ecosystems
inhabiting energetic and stressful coastal environments at the
interface between land and sea15 (Fig. 1a and Supplementary
Fig. 1a). Tidal marshes are amongst the most valuable ecosystems
on earth, yet vulnerable to the direct exposure and effects of
sea-level rise16,17. Field and modelling studies have advanced our
understanding of the key drivers and processes governing
adaptability and vulnerability of tidal marshes to climate
change and sea-level rise17. Still, our ability to predict their
response remains limited due to inherently nonlinear behaviour
resulting from strong biophysical feedback17,18. Coupling
between vegetation growth, hydrodynamics and soil accretion
creates a strong positive feedback that drives wetland
formation17–20 (Fig. 1b). This critical feedback becomes more
important for marsh stability as one moves from the more
elevated landward part to the lower seaward edge of the marsh,
which represents a gradient in inundation stress imposed by tidal
seawater. At the same time, these feedbacks create the potential
for catastrophic shifts to a bare tidal flat state, where all vegetation
and associated functions are lost18,20,21. Hence, being able to
probe the fragility of these valuable wetlands to catastrophic shifts
is particularly pressing because projected sea-level rise and
demographic changes in coastal regions can invoke irreversible
losses when tipping points are surpassed17.

In the current study, we analysed long-term (B30 years)
observational data and conducted disturbance-recovery
experiments to test if a decline in tidal marsh resilience along a
gradient of inundation stress can be observed. The results of both
analyses demonstrate that vegetation recovery slows down when
inundation by seawater increases, thereby signalling a decline of
resilience and corroborating theoretical predictions. In addition,
the results reveal that direct assessments of the resilience by
measuring recovery rate is much more sensitive to changes in
resilience than the assessment based on statistical resilience
indicators. These findings suggest that an increased risk of tidal
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Figure 1 | Tidal marsh vegetation and elevation along a gradient of

seawater inundation. (a) False colour image of tidal marsh vegetation

along inundation gradient (red indicates vegetated area) from the sea to

land side. (b) Cross-shore height profile data show that elevation

topography in tidal marshes is shaped by the presence of vegetation.

Due to the feedback between vegetation and accumulation of silt and

clay the actual elevation (open dots) starts to deviate from the

unvegetated base elevation (dashed black line) once vegetation is

present on the tidal flat. (c) These feedbacks create the risk for

catastrophic shifts as suggested by reconstruction of the potential

(dark grey shading) of the vegetation along the inundation gradient

based on the NDVI. The reconstruction indicates a region of bimodality

(grey boxes) at intermediate inundation stress (base elevation)

between the high NDVI (biomass) tidal marsh state and a low NDVI

(biomass) tidal flat state, highlighting the likely presence of a tipping

point in this system (red arrows). White filled and open dots depict these

local minima and maxima, respectively. The green line indicates mean

NDVI. Error bars indicate s.d. All panels are based on data from site 1

‘Hellegat’.
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marsh collapse, for instance in response to intensified inundation
due to sea-level rise, can be assessed if a further slowing down of
vegetation recovery is observed.

Results
Critical slowing down in remotely sensed imagery. We
established direct support for the presence of tipping points and
critical slowing down along an inundation gradient by analysing
time series of aerial images of tidal marsh development
and recovery from episodic erosion in two marsh sites in The
Netherlands. Aerial images revealed bimodality at intermediate
inundation stress (intertidal elevation) between the high biomass
tidal marsh state and a low biomass tidal flat state22–24 (site 1:
Fig. 1c, site 2: Supplementary Fig. 1b). The critical condition at
which the two tidal marshes are observed to tip from high-to-low
biomass are found at base elevation 0.0 and 0.3 m above mean sea
level (Fig. 1c and Supplementary Fig. 1b, left arrows), which
corresponds with an inundation time of 47% and 43%,
respectively. In combination with experimental and
observational studies revealing clear density-dependent
thresholds for vegetation establishment in these same tidal
marshes (refs 20,21,25), our results highlight the potential
presence of bistability and tipping points at the two tidal
marshes under study.

To test for the presence of critical slowing down along the tidal
inundation gradient, we determined whether temporal changes in
local vegetation cover can provide information on the time
needed for vegetation to recover from local disturbances
(Fig. 2a,b), as a function of the location along the inundation
gradient (Fig. 2c,d). In line with our theoretical predictions
(Supplementary Note 1 and Supplementary Fig. 2c), recovery
rates decreased with increasing inundation stress along the
elevation gradient from high-to-low marsh (Fig. 2c,d and

Supplementary Table 2). Hence, our observations corroborate
the prediction that the stress imposed by seawater inundation
slowed down recovery, and thereby impairs the resilience of tidal
marshes.

Critical slowing down in experimental disturbances. We then
experimentally tested our hypothesis that recovery of marsh
vegetation slowed down with increasing inundation by disturbing
vegetation at both the two Dutch sites used in the time-series
analysis, as well as in a North American marsh. The two Dutch
field sites are macrotidal, polyhaline and the pioneer vegetation is
dominated by the cordgrass Spartina anglica. Here, mineral
deposition drives soil elevation change and as a consequence,
vegetated marshes can keep pace relatively easily with sea-level
rise26. To test the generality of our results to globally diverse and
important marshes, we conducted a similar disturbance-recovery
experiment (Methods) at a microtidal, mesohaline tidal marsh in
North America that is dominated by the bulrush Schoenoplectus
americanus. In this marsh, root growth and subsequent
belowground biomass accumulation are the main drivers of
slow intertidal elevation change, forming organic rich soils that
are rapidly submerging in response to sea-level rise27. In all sites,
in early summer, small tussocks of tidal marsh vegetation were
transplanted to different intertidal elevations, after which
vegetation was disturbed by clipping all aboveground biomass
(Methods). Recovery was measured at the end of the growing
season by comparing biomass regrowth of the clipped tussocks
with that of unclipped transplanted tussocks (Methods,
Supplementary Note 2).

Consistent with critical slowing down, the disturbance-
recovery experiments revealed unambiguously that recovery rates
declined with increasing submergence in disparate marshes on
both sides of the Atlantic Ocean (Fig. 3). Although the threshold
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Figure 2 | Remotely sensed vegetation recovery along a gradient of seawater inundation. (a,b) The spatial distribution of the average time (in years)

needed for vegetation to recovery after a perturbation in two Dutch tidal marsh sites. (c,d) Estimated recovery rates as a function of the average

(multi-annual) inundation time revealing critical slowing down of vegetation recovery with increasing inundation time. Grey area (in a, b) represents never

disturbed stable marsh vegetation, white area is the unvegetated tidal flat. Red symbols (c) depict recovery rates at site 1 ‘Hellegat’ (NL), blue symbols (d)

are rates at site 2 ‘Paulina’ (NL) and error bars depict c.i. Arrows depict the critical condition of marsh vegetation. Linear regression: site 1, R2¼0.83,

Po0.001; site 2, R2¼0.59, Po0.005.
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inundation time at which tidal marsh vegetation ceased to survive
was very different between the Dutch (Fig. 3a) and North
American (Fig. 3b) sites, the response trend was strikingly similar.
Differences in, for example, tidal range, exposure to waves,
salinity and species physiological tolerances to stress likely explain
the difference in threshold levels. Due to the microtidal range of
the Northern American marsh site (o25 cm), the vegetation is
rarely submerged completely, allowing it to survive longer
inundation times up to B90% (ref. 28). Still, these results
support the idea that critical slowing down is a generic
phenomenon that can be used to assess the resilience of diverse
marsh ecosystems around the world under varying hydrodynamic
and geomorphological conditions. Hence, these differences
between the Dutch and North American marsh sites stipulate
the need for critical slowing down as alternative indicator to
assess site-specific differences in resilience against seawater
flooding.

Testing indirect spatial signatures of critical slowing down.
Finally, we tested if critical slowing down could be detected in our
data indirectly from spatial statistics. Theoretical studies have
predicted that spatial variance and autocorrelation could provide
an alternative, less data demanding, fingerprint of declining
resilience2,7,8,29. Especially, when direct measurements on critical
slowing down will not be feasible due to lack of long-term data set
or inaccessibility of the area of interest, these indicators could be
more convenient. In particular, spatial variance is predicted to
rise and neighbouring sites become more alike resulting in an

increased correlation, as a consequence of a slower response to
disturbance when stressed29. To test if these trends can be
detected in our data, we calculated how spatial variance and
correlation with neighbouring sites changed along the inundation
gradient of the two Dutch sites (Methods).

We observed that trends in the indirect resilience indicators
were not consistently significant to forecast an impending
catastrophic shift. Even though a sharp increase in both resilience
indicators (that is, spatial variance and correlation with
neighbouring sites) near the tipping point can be observed
for both sites (Fig. 4 and Supplementary Table 2), the trends in
resilience indicators showed to be significant only in one site
(site 1, ‘Hellegat’). The resilience indicators failed in the other
site (site 2, ‘Paulina’). These results were independent of the
spatial resolution at which these indirect resilience indicators
were analysed (Supplementary Table 3). Overall, the indirect
resilience indicators were less sensitive to changes in inundation
stress compared to the direct measurements of recovery rates, as
evidenced by the lower correlation between the indicators and the
average inundation time (Supplementary Table 2). This difference
in correlation strength can be explained by the difference in
response along the inundation gradient: Recovery rates slowed
down linearly along the whole gradient (Fig. 2c,d), while the
indirect resilience indicators show little response before 32%
inundation time after which they rapidly increased (Fig. 4). Thus,
our results highlight the superiority of direct measurement of
critical slowing down from aerial observations or manipulative
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Figure 3 | Experimental recovery rates of tidal marsh vegetation.

(a) Biomass recovery after mowing (disturbance) within one growing

season in two Dutch tidal marsh sites. (b) Recovery after mowing within

one growing season in the North American experiment. Red symbols

indicate measurements at site 1 ‘Hellegat’ (NL), blue symbols are from site

2 ‘Paulina’ (NL), and green symbols site 3 ‘Blackwater’ (USA). Arrows

depict the critical condition of marsh vegetation. (Linear regression: site 1,

R2¼0.18, P¼0.02; site 2, R2¼0.28, Po0.005; US site 3, R2¼0.66,

Po0.01.) Error bars depict s.e.m.
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of seawater inundation. (a) Variance and (b) neighbourhood correlation of

aerial images as a function of the underlying stress gradient by seawater

inundation for which only one of two sites show a significant trend with

increasing inundation stress. Red symbols indicate site 1 ‘Hellegat’ (NL),
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experiments over indirect statistical measures such as spatial
variance and autocorrelation.

Discussion
Anthropogenic and climate stressors are changing and degrad-
ing ecosystems worldwide at alarming rates1, emphasizing the
need to identify indicators of resilience loss. This is particularly
true for coastal wetlands, which are globally threatened by
sea-level rise and growing coastal populations, but also
desired for coastal protection17,30, as nursery grounds for
commercially important fisheries, as biofilters and for carbon
sequestration16,17. In wetlands and other ecosystems,
thresholds and nonlinearity make precise predictions of their
response to changing environmental conditions difficult. This
complexity makes it challenging to identify when management
intervention is needed to prevent a dramatic change in
ecosystem state1,9,31. Our results provide clear support that
the phenomenon of critical slowing down can be used to
identify declining resilience in natural systems, despite many
sources of heterogeneity and stochasticity. Therefore, the
application of critical slowing down to evaluate increased
vulnerability of ecosystems to changing conditions—such as sea
level in the case of tidal marshes—will allow for timely
adoption of appropriate management strategies before
catastrophic and irreversible loss of functioning occurs.

Our results highlight the superiority of direct measurements
of recovery rates over indirect resilience indicators, such as
spatial variance and correlation with neighbouring sites. The
inconsistency between sites in revealing declining resilience
along an inundation gradient suggests that indirect statistical
signals can be too unreliable to provide a dependable signal of
the loss of resilience. The main reason for this is that
the performance of indirect statistical indicators, such as
variance and correlation between neighbouring sites, depends
on specific assumptions that are difficult to meet outside
the territories of artificial or controlled systems13,14,32.
Specifically, statistical signs of upcoming catastrophic
transitions may fail when variability is relatively high due to
internal feedback processes, external stochastic forcing, or
other sources of heterogeneity13,14,32. Nevertheless, with the
rapid development of satellite systems, direct measurements of
recovery rates become feasible at large spatial and temporal
scales. Consequently, quantifying critical slowing down using
remotely sensed images, as done in our study with aerial
photographs, comes within reach for a growing number of
ecosystems around the globe, and will provide a valuable tool
for informed ecosystem management2,23.

Methods
Study sites. We focused our remote-sensing analysis and corresponding field
experiments in the Netherlands on two polyhaline tidal marsh sites in the
Westerschelde Estuary for which over 25 years of tidal marsh development could
be established based on aerial photographs (site 1, ‘Hellegat’, 51.367�N, 3.95�E;
site 2, ‘Paulina’, 51.355�N, 3.715�E). This turbid and well-mixed estuary is
macrotidal with 3.8 m mean tidal range at the mouth of the estuary near Vlissingen
and about 5.0 m located 80 km upstream near Antwerp33. The sites experience a
spring tidal range of 4.86 and 4.7 m, respectively26. The cordgrass Spartina anglica
is the prime colonizer in this area and dominates the lower tidal marsh, but is
successively replaced by sedges (Aster tripolium, Limonium vulgare, Suaeda
maritima and Plantago maritima) and grasses (Puccinellia maritime and Elymus
arenarius) at higher elevations. Soil accretion in these marshes is largely driven by
mineralogical depositon25,26.

To test the generality of our results, we conducted a parallel experiment in a
large brackish marsh on the Atlantic Coast of North America. The study site is
adjacent to the Blackwater River, a tributary of the Chesapeake Bay (Maryland,
USA) (site 3, ‘Blackwater’, 38.40�N, 76.07�W). Changes in water level are primarily
driven by meteorological events, with mean astronomical tides of o0.25 m.
Long-term porewater salinities average 10 p.p.t. within the marsh soil, and
intertidal vegetation is dominated by Schoenoplectus americanus and Spartina

patens27. The site receives little mineral sediment from the catchment, and has lost
B50% of its marshland since the 1930s (refs 34,35). Thus, the US study site differs
fundamentally from the Netherlands study sites in tidal range, salinity, vegetation,
sediment supply and historical stability.

Remotely sensed spatial data. Development of tidal marshes in the Dutch study
area is known from aerial photo surveys conducted systematically since the 1970s
by Rijkswaterstaat. Time series of false colour aerial images (near infrared (NIR),
red (R) and green (G) colour bands) over 25 years were available for two sites (see
Supplementary Table 1 for which years were available and used per site). These
photos were digitized at 0.25 m spatial resolution and classified for tidal marsh
vegetation presence and absence based on supervised classification33.

Reconstruction of basins of attraction. We tested whether tidal marshes
responded gradually or abruptly to changes in inundation by reconstructing the
basins of attraction along the inundation gradient22–24. The reconstruction was
based on Normalized Difference Vegetation Index (NDVI) values calculated from
false colour aerial images in 2010 as NDVI¼ (NIR-R)/(NIRþR) (data file
v_Westerschelde_2010.ecw from Rijkswaterstaat http://www.rijkswaterstaat.nl/
apps/geoservices/geodata/dmc/orthofotomozaieken_ecologie/geogegevens/raster/).
NDVI values were binned based on inundation ranges after which the probability
density function Pd was estimated. The vegetation potential U is directly related to
the density function and calculated as U¼ � log(Pd). A 3 by 3 median filter was
used to smooth out small irregularities in the reconstructed potential. Local
minima and maxima in the reconstructed potential landscape were interpreted as
the basins of attraction and repulsion, respectively.

Remotely sensed disturbance and recovery of tidal marshes. The sequential
data of presence and absence of tidal marshes vegetation was treated as a natural
disturbance-recovery experiment36. Disturbance of vegetation was detected if
vegetation present on the classified aerial images was absent in the subsequent
image. By recording the time needed for a grid cell to recover, once disturbed, a
record of vegetation recovery time was established on a pixel-by-pixel basis. As we
assumed that inundation duration is the main stressor of the tidal marsh
ecosystem, we binned the obtained recovery times based on the local average
inundation time (in %), before estimation of the recovery rates. The bin width
was 1% (which corresponds with 0.12 h per tide). Inundation frequency maps
were calculated from bathymetry maps and actual recorded water level
measurements at a nearby water level gauge (at Terneuzen; by Rijkswaterstaat
http://live.waterbase.nl). Recovery rates were estimated, for each bin, from the
established recovery times using a maximum likelihood estimator for the
exponential model. To avoid overestimation of the recovery rates the maximum
likelihood estimator corrects for censored recovery times (grids cells that were
disturbed but did not recover by the end of the time series). A full protocol for the
timing of recovery based on sequential spatial data can be found in ref. 36. We
focused our analysis on the areas in the Dutch sites where the disturbance-recovery
experiments were executed.

Disturbance-recovery experiments. Manipulative field experiments37 were
conducted in Europe and North America to verify if critical slowing down
responses could be detected in a field setting. These field experiments tested
for thresholds of vegetation tolerance to flooding. At the Dutch study sites
randomized tussocks of Spartina anglica vegetation were transplanted to six levels
along the inundation gradient. Because the present-day marsh edge does not
necessarily reflect the position of the actual extinction threshold for vegetation
tolerance in this actively evolving system, the six inundation levels were chosen
in such a way that they encompass both the leading marsh edge and the
extinction threshold. Transplanted vegetation tussocks were approximately
0.0625 m2 (0.25 by 0.25 m) and included roots and soil to a depth of 0.4–0.5 m
(site 1: 1,497±420 stems m� 2; site 2: 721±304 stems m� 2). At every level,
vegetation exposed to mowing disturbances is compared to transplanted control
tussocks to measure the relative recovery. The setup of control and disturbed
tussocks was replicated five times at every inundation level. The experiment ran
for about 4 months before harvesting all aboveground biomass (site 1: from 20
May, when the disturbance was applied, to 1 September 2011 when both disturbed
and control plots were harvested (104 days); site 2: from 13 July to 20 October 2011
(129 days)). After setup, the intertidal height of the experimental plots was
measured using a dGPS (Leica Geosystems) to determine the actual inundation
time per plot.

At our US study site, we measured the response of plants to disturbance across a
gradient in inundation times by transplanting tussocks of Schoenoplectus
americanus into mesocosms of different elevation37. The mesocosms were arranged
into structures commonly described as ‘marsh organs’. Here we utilize two marsh
organs each containing 54 mesocosms constructed of 6-inch diameter (0.0182 m2)
polyvinyl chloride pipe, arranged into nine rows containing six pipes of identical
elevation. The experimental design and basic patterns of vegetation response to
inundation have been previously described27. Both organs were planted on 11 April
2012 and harvested on 21 August 2012. Plants in one organ were disturbed by
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clipping all aboveground vegetation on 20 June 2012 (62 days), and left
undisturbed in a control organ.

In each experiment, plant stems were clipped at the soil surface to isolate
standing aboveground material, and sorted into live and dead fractions by species.
Aboveground biomass was washed and dried at 70 �C to a constant weight.
Recovery rates are estimated assuming exponential distribution4 as
l¼ � log(1� f)/Dt (see Supplementary Note 2 and ref. 37), in which the relative
recovery f is the fraction of total aboveground biomass recovered comparative to
the undisturbed transplanted controls and Dt is the duration of the experiment
after which recovery was measured. We used Pearson product–moment correlation
coefficient to quantify the strength of the trend along the inundation gradient of
the resilience indicators measured38. The choice for Pearson product–moment
correlation coefficient over the Kendall’s t did not affect our results in a qualitative
way.

A full protocol for the disturbance-recovery experiments can be found in ref. 37.

Indirect spatial indicators of resilience. Using the same binning scheme as
used for the direct measurement of recovery rate (that is, resilience) from the
remotely sensed vegetation data we measured a range of spatial statistics,
following ref. 38. We measured coverage, and the regular proposed measures of
resilience variance and neighbourhood correlation (that is, spatial autocorrelation
with the four neighbouring pixels) for the spatial data in each of the NDVI
maps2,7–9. We furthermore checked the sensitivity of these analysis for the
resolution of the data by coarse graining the NDVI maps to a spatial resolution of
1, 5 and 10 m.

Data availability. The aerial images, experimental data and the code used to
analyse the data and model tidal marsh dynamics that support the findings of this
study are available from the corresponding author upon reasonable request and via
Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.7174h.
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